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Abstract. A novel effective medium theory for homogenized transport coefficients of anisotropic mixtures
of possibly anisotropic materials is developed. Existing theories for isotropic systems cannot be easily
extended, because that would require geometric characterizations of anisotropic connectivity. In this work
anisotropic connectivity is characterized by introducing a tensor that is constructed from a histogram of
local percolating directions. The construction is inspired by local porosity theory. A large number of known
and unknown generalized effective medium approximations for anisotropic media are obtained as limiting
special cases from the new theory. Among these limiting cases the limit of strong cylindrical anisotropy is
of particular interest. The parameter space of the generalized theory is explored, and the advanced results
are applied to experiment.

1 Introduction

Accessible and applicable characterizations of the irreg-
ular geometry and connectivity of disordered media are
currently enjoying a surge of attention [1–11]. Disor-
dered systems as diverse as nano-structured composites
[12–14], randomly doped crystals [15], metallic alloys
[16], sandstones [17], sedimentary rocks [18,19], chalk
[20], wood [21], soil [22], zeolites [23], polymer blends
[24], porous silicon [25], or ceramics [26] all require
quantitative characterizations of their connectivity as
a prerequisite for predicting the transport of charge,
volume, mass, momentum or energy in these materials.

Much attention was paid in recent years [1,11] to
the study of certain additive quantities [27] known as
intrinsic volumes, quermaßintegrals [28] (p.240), val-
uations [29] (p.173) or Minkowski functionals [30,31].
Additivity means that adding the values for two sam-
ples equals the sum of the value for the union plus that
for the intersection [27], Eq. (42). In particular the addi-
tive Euler characteristic [27] (p.31), [28] (p.237) is often
believed to determine transport in disordered media
[32,33] or to “account for connectivity in a macroscale
way” [1](p.325). On the other hand it is widely appreci-
ated, that transport in random systems depends upon
the existence of percolating paths from inlet to outlet
[34–38]. Rigorous relations between the Euler character-
istic and percolation were established in Eqs. (48)–(52)
in Ref. [39], p. 386. Except for certain special geometries
these relations show that in general the Euler character-
istic cannot possibly suffice to characterize connectivity
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or transport. Most importantly, the Euler characteristic
is additive, while connectivity, connectedness or “per-
colativity” are not.

Disordered systems often exhibit anisotropic geome-
try and/or connectivity. Examples include metamateri-
als [40], composites [41–43] metallic filters [44], shales
and clay [45,46], wood [21,47], layered porous media
[48,49], fibrous media [50,51], piezoelectric polymer
foams, photonic crystals [52] or liquid crystals. It is
therefore important to generalize theories and geomet-
ric characterizations to the case of anisotropic media.

Geometric quantities for anisotropic media, espe-
cially vectorial [53] and tensorial [54,55] extensions of
additive functionals are currently under active inves-
tigation [56]. Let us emphasize that higher order
Minkowski functionals as well as their tensorial exten-
sions are studied primarily as descriptors of geome-
try and have, to the best of our knowledge, not been
used as predictors for physical transport. Our inten-
tion in this work is to introduce novel effective medium
approximations to predict percolation and conduction
in disordered materials. Recall that classical effective
medium theories [35,57–60] contain only volume, more
precisely volume density i.e. volume fraction, as a geo-
metrical descriptor. In self-consistent effective medium
theories for mixtures with infinite material contrast a
percolation transition emerges at volume fraction 1/3.
Anisotropic variants of effective medium theory based
on volume fraction [41,61,62] exhibit the same percola-
tion transition and they continue to attract much inter-
est [42,52,63]. Minkowski functionals other than vol-
ume, however, have, as far as we know, not been used
to generalize effective medium theories to anisotropic
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media, and the same applies to pair connectivity [38],
the pair connectedness [64], or n-connectedness [65].

The self-consistent effective medium approximation
for the effective dc-conductivity of homogeneous and
isotropic media with porosity φ reads [35,57,58]

φ
(σ′

p − σ′)
σ′
p + 2σ′ + (1 − φ)

(σ′
m − σ′)

σ′
m + 2σ′ = 0 (1)

where σ′
p and σ′

m are the dc-conductivities of two
isotropic materials filling pores p and matrix m (they
will be introduced more precisely in Eq. (7) below).
For infinite contrast σ′

p/σ′
m = ∞ this equation has a

singularity at φ = φc = 1/3 which marks the percola-
tion transition. Nonzero solutions for σ′ exist only for
φ > φc, while for φ ≤ 1/3 the effective conductivity
σ′ = 0 vanishes.

Equation (1) has been generalized to anisotropic
media in the special case where p is a homogeneous
mixture of aligned oblate ellipsoids (x/b)2 + (y/b)2 +
(z/c)2 ≤ 1 with half axes b ≥ c > 0. In this case the
effective conductivity σ′ becomes tensorial. Its eigen-
values σ′

x,σ′
y,σ′

z obey σ′
x = σ′

y and Eq. (1) becomes
essentially two coupled equations [41], Eq. (8)

0 =
φ(σ′

p − σ′
x)

σ′
x + Na(σ′

p − σ′
x)

+
(1 − φ)(σ′

m − σ′
x)

σ′
x + Na(σ′

m − σ′
x)

(2a)

0 =
φ(σ′

p − σ′
z)

σ′
z + Nc(σ′

p − σ′
z)

+
(1 − φ)(σ′

m − σ′
z)

σ′
z + Nc(σ′

m − σ′
z)

(2b)

for σ′
x = σ′

y and σ′
z. The depolarization factors Na, Nc

depend on a combined ratio R of the two unknowns
σ′

x,σ′
z and the two half axes b, c through the relations

1 =2Na + Nc (2c)

Nc =R−3(1 + R2)(1 − arctan R) (2d)

R =

√
σ′

z

σ′
x

b2

c2
− 1 (2e)

that couple the two Eqs. (2a) and (2b). As in the
isotropic case, these two coupled equations exhibit a
percolation singularity at φ = φc = 1/3.

Local porosity theory [36] is a generalized self-
consistent effective medium theory that contains local
porosity distributions and local percolation probabili-
ties above and beyond volume fractions to character-
ize the geometry and connectedness of a disordered
medium. An important consequence are percolation
thresholds φc �= 1/3. Predictions from local porosity
theory agree with observations such as the empirically
known Archie’s law [36]. Local porosity distributions
and local percolation probabilities have become stan-
dard tools for image analysis of porous media [66,67].
They were applied to clay rocks [68], fractured coal
[69], Opalinus clay [70,71], chalk [72], reticulate porous

ceramics [73], macroporous reticulated silicon oxycar-
bide [74], dielectric characterization of wood [21], highly
porous polymeric matrices [75], metallic filters [44],
beryllium pebbles and arctic firns [64], and recently
even to Ibuprofen tablets in pharmaceutical research
[76]. Numerous publications [17,32,77–81] have demon-
strated the predictivity of percolation probabilities and
the total fraction of percolating cells for physical trans-
port.

2 Problem and objective

A shortcoming of local porosity theory for electrical
transport in heterogeneous media (introduced in Ref.
[36] and reviewed in Refs. [37,82]) is that the local per-
colation probability λ, which characterizes the geomet-
rical connectivity of the medium, is a scalar but not a
tensorial quantity. Disordered or heterogeneous media,
however, generally have tensorial transport properties
even if the constituent materials are isotropic.

An attempt to extend LPT to anisotropic systems
was made in Ref. [83]. The anisotropy is described
using eigenvalues of the “orientation matrix”. The ori-
entation matrix is constructed from the position vec-
tors of those voxels within a measurement cell, that
belong to the largest percolating cluster in the cell. The
position vectors are computed relative to the “cluster
center” defined as an arithmetic average. Two eigen-
value ratios of the orientation matrix are collected into
local anisotropy distribution. The relation of the local
anisotropy distribution to local percolation probabili-
ties is not discussed in Ref. [83]. As a consequence the
generalized effective medium equation is unchanged and
transport quantities such as conductivities or perme-
abilities remain scalar quantities.

The objective of this work is to extend local poros-
ity theory and effective medium theories to anisotropic
media in such a way, that the transport quantities
become tensorial. For brevity and simplicity we con-
sider only transport of charge, i.e. the case of electrical
transport.

3 Model

Let p,m ⊂ Rd denote the domains (pore space, matrix)
occupied by the two components of a heterogeneous or
porous sample S = p∪m ⊂ Rd. The Maxwell equations
[84] read

∇ · D(r, t) = Q(r, t), r ∈ p ∪ m, (3a)
∇ · B(r, t) = 0, r ∈ p ∪ m, (3b)

∇ × E(r, t) = −∂B(r, t)
∂t

, r ∈ p ∪ m, (3c)

∇ × H(r, t) = J(r, t) +
∂D(r, t)

∂t
, r ∈ p ∪ m, (3d)
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where D(r, t) is the electric displacement, B(r, t) is
the magnetic induction, E(r, t) is the electric field, and
H(r, t) is the magnetic field. Taking the divergence of
Eq. (3d) gives the equation of continuity

∂Q(r, t)
∂t

+ ∇ · J(r, t) = 0, r ∈ Rd = p ∪ m. (3e)

It relates the macroscopic charge density Q(r, t) and
the macroscopic current density J(r, t).

Causality and locality in space restrict the constitu-
tive equations to convolutions in time written as

Jc(r, t) =

t∫
−∞

σ′(r, t − t′)E(r, t′) dt′ (4a)

D(r, t) = ε0

t∫
−∞

εr(r, t − t′)E(r, t′) dt′ (4b)

H(r, t) =
1
μ0

t∫
−∞

[μr(r, t − t′)]−1 B(r, t′) dt′ (4c)

for r ∈ p ∪ m, where σ′ is the electrical conductiv-
ity tensor. The symbols ε0,εr denote the of dielec-
tric permittivity of the vacuum resp. the permittiv-
ity tensor of the medium, and μ0,μr are the scalar
resp. tensorial magnetic permeabilities of the vacuum
resp. the medium with μ0 = 4π × 10−7N/A2 and
ε0 = 1/(μ0c

2) ≈ 8.8542 × 10−12F/m. The conduction
current due to free charges Jc appearing in Ohm’s law,
Eq. (4a), is related to the total current via the current
of bound charges defined as Jb(r, t) = J(r, t) − Jc(r, t).
Fourier transformation with respect to t gives

Jc(r, ω) = σ′(r, ω)E(r, ω) r ∈ p ∪ m, (5a)
D(r, ω) = ε0 εr(r, ω)E(r, ω) r ∈ p ∪ m, (5b)
B(r, ω) = μ0 μr(r, ω)H(r, ω) r ∈ p ∪ m, (5c)

where ω = 2πν is the angular frequency and ν denotes
frequency. One has

ε(r, ω) =ε′(r, ω) + iε′′(r, ω)

=εr(r, ω) + i
σ′(r, ω)

ω
(6a)

σ(r, ω) =σ′(r, ω) + iσ′′(r, ω)

=σ′(r, ω) + iω (1 − εr(r, ω)) (6b)

for the complex conductivity and dielectric tensors.
The material parameter functions for a composite

material consisting of two homogeneous but anisotropic
components are assumed to have the form

σ′(r, ω) = σ′
p(ω) χp(r) + σ′

m(ω) χm(r) (7a)

εr(r, ω) = ε′
p(ω) χp(r) + ε′

m(ω) χm(r) (7b)

μr(r, ω) = 1 (7c)

where

χ
X
(y) =

{
1, y ∈ X

0, y /∈ X
(8)

is the characteristic (or indicator) function of a subset
X ⊂ Rd. The relaxation frequencies, defined as

ωp= lim
ω→0

detσ′
p(ω)

ε0 detε′
p(ω)

, ωm= lim
ω→0

detσ′
m(ω)

ε0 detε′
m(ω)

, (9)

are assumed to exist. They can be used to make ω
dimensionless.

The discontinuity of the material parameters at the
interface requires one to specify boundary conditions at
∂p = ∂m. Mathematically the equations are interpreted
in a weak sense as equations for distributions. Depend-
ing on the boundary conditions a suitable domain could
be a Sobolev space for the potentials resp. a space of
potential fields for the electromagnetic fields [85,86].
The boundary conditions at the interface are

n(r) · (B∂p(r, ω) − B∂m(r, ω)) = 0, (10a)
n(r) · (D∂p(r, ω) − D∂m(r, ω)) = Q∂(r, ω), (10b)
n(r) × (E∂p(r, ω) − E∂m(r, ω)) = 0, (10c)
n(r)× (H∂p(r, ω)−H∂m(r, ω)) =J∂(r, ω), (10d)

for r ∈ ∂p = ∂m, where Q∂(r, ω) (resp. J∂(r, ω)) are
the Fourier transforms of (possibly time dependent)
surface charge (resp. surface current) densities with
support in ∂p = ∂m. The notation B∂p(r, ω) (resp.
B∂m(r, ω)) is the limiting value of the vector field as
the point r ∈ ∂p = ∂m is approached from within p
(resp. from within m).

It is assumed that there are neither volume nor sur-
face charges or currents inside the medium so that
Q = 0, Q∂ = 0, J = 0 and J∂ = 0 from now on.
This assumption is commonly made to exclude phe-
nomena and effects arising from electrical double layers
and other physico-chemical processes in the interfacial
region.

When the wavelength is large compared to the scale
of heterogeneities the time derivatives in in Faraday’s
law, Eq. (3), are small compared to spatial derivatives.
Setting them to zero results in the quasistatic approxi-
mation valid for small frequencies

ω 
 1
�
√

ε0μ0
=

c

�
=

299792458
�

Hz (11)

where � denotes the scale of heterogeneities and c is the
speed of light. For heterogeneities with � ≈ 10...100μm
one finds ω 
 3...30THz approaching the infrared.
The quasistatic approximation decouples the full equa-
tions (3). Fourier transformation of eqs. (3) with respect
to t results in the quasistatic equations

∇ · D(r, ω) = 0, (12a)
∇ × E(r, ω) = 0 (12b)
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D(r, ω) = ε0 ε(r, ω)E(r, ω) (12c)
n(r) · (D∂p(r, ω) − D∂m(r, ω)) = 0, (12d)
n(r) × (E∂p(r, ω) − E∂m(r, ω)) = 0, (12e)

where r ∈ p ∪ m in Eqs. (12a)–(12c), r ∈ ∂p = ∂m in
Eqs. (12d)–(12e), and where ε(r, ω) denotes the com-
plex frequency dependent local dielectric function.

The effective macroscopic dielectric tensor ε of self-
consistent effective medium approximations [58] is usu-
ally defined by averaging Eq. (12c)

〈D(r, ω)〉 = ε0 ε(ω;Π) 〈E(r, ω)〉 (13)

where the angular brackets 〈·〉 denote (spatial or ensem-
ble) averaging and Π are parameters of physical impor-
tance (such as porosity or connectivity) that arise from
averaging the smaller scale heterogeneities.

4 Local geometry

4.1 Disordered media

A disordered (or porous) medium m (or p) is assumed
to be a random set. A random set is a set-valued ran-
dom variable [87]. The probability space of random dis-
ordered geometries is denoted (Ω,A, P ). The set Ω is
the set of all closed subsets of Rd including ∅. The σ-
algebra is generated by the system of closed sets having
nonempty intersection with compact sets and the ran-
dom geometry distribution P is the image measure of
the measure on the probability space underlying the set-
valued random variable. For mathematical details on
random sets the interested reader is referred to Ref. [82].

4.2 Local porosity

Let K ⊂ Rd be a convex and compact set with centroid
at the origin 0 ∈ Rd. The centroid is the geometrical
center of K. Then

K(r) = r + K = {r + q ∈ Rd : q ∈ K} (14)

denotes its translate by a vector r ∈ Rd. The local
porosity in a measurement cell K(r) placed at position
r is defined as

φ(K(r)) =
|p ∩ K(r)|

|K(r)| (15)

where

|K| =
∫
K

ddq =
∫
Rd

χK(q) ddq (16)

is the volume of a set K. The local matrix volume frac-
tion is φm = 1 − φ.

4.3 Anisotropic local matrix fraction

Consider from now on d = 3 and let mi denote the local
matrix space clusters defined as (path-)connectedness
components of m ∩ K(r). Then

m ∩ K(r) =
nm(K(r))⋃

i=1

mi (17)

where mi ∩ mj = ∅ for i �= j and nm(K(r)) is the total
number of local clusters within K(r). The barycenters
of these local clusters are

rmi =
1

|mi|
∫
mi

q d3q (18)

and

φmi(K(r)) =
|mi|

|K(r)| (19)

is their local volume fraction. The matrix is assumed
to have a constant density taken to be unity. Averaging
over the local clusters the tensor

Im(K(r)) =
1

nm

nm∑
i=1

⎛
⎝φm X(r − rmi)

+φmi

1
|mi|

∫
mi

X(q − rmi)d
3q

⎞
⎠ (20a)

is introduced, where X(r) = r ⊗ r, is the tensor pro-
duct. The tensor is real, symmetric and non-negative
definite. In the following the tensor is normalized as

Jm(K(r)) =
Im(K(r))

Tr Im(K(r))
(20b)

by dividing with its trace. The non-negative eigenvalues
Jma(K(r)), Jmb(K(r)), Jmc(K(r)) obey Jma(K(r)) +
Jmb(K(r)) + Jmc(K(r)) = 1, and are assumed to be
ordered as 1 ≥ Jma ≥ Jmb ≥ Jmc ≥ 0.

4.4 Local percolation

Let ∂K(r) denote the boundary of a measurement cell
with centroid r. A measurement cell K(r) = r + K is
called percolating if there exists a continuous path

p : [0, 1] → R3

t �→ p(t) = pt (21a)

with

p0 ∈ ∂K(r) (21b)
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Fig. 1 Schematic illustration from Ref.[88] of the local per-
colation criterion (21). The grey hatched circle centered
at p0 is the forbidden ball B (p0, |r − p0|). Two paths are
shown that start at p0 on the left boundary. The dashed
path is percolating according to the percolation criterion
(21), because it ends outside the forbidden ball. The dash-
dotted path is not percolating, because it ends inside the
forbidden ball

pt ∈ p for all t ∈ [0, 1], (21c)
p1 ∈ ∂K(r) \ B (p0, |r − p0|) (21d)

where B(x, a) = {r ∈ R3 : |r − x| ≤ a} denotes a ball of
radius a centered at x. Equation (21) is illustrated in
Figure 1.

The set of local percolating directions for a measure-
ment cell K(r) centered at r is defined as

L(K(r)) =
{

p0− p1

|p0− p1|
∈S2 :p0,p1∈∂K(r),

p0�p1

}
(22)

where S2=∂B(0, 1) is the unit sphere and p0 � p1
means that p0 is the starting point and p1 is the end
point of a percolation path in the sense of Eq. (21). The
local percolation indicators, defined as

Λ(K(r)) =
{

0 if L(K(r)) = ∅
1 otherwise,

(23)

are a family of {0, 1}-valued random variables

Λ( · ;K) : (Ω,A, P ) → {0, 1}
p �→ Λ(p;K) (24)

indexed by K. The image of the measure P under the
map

Λ(P )( · ;K) : {∅, {0}, {1}, {0, 1}} → [0, 1]
∅ �→ 0, ∀K

{0} �→ 1 − p(K),
{1} �→ p(K),

{0, 1} �→ 1 ∀K (25)

defines the total percolation probability p(K) of the
measurement cell K.

4.5 Anisotropic local percolation

The set L of local percolating directions defines a tensor

Ip(K(r)) =
1
4π

∫
L(K(r))

X(q) d2q (26a)

with respect to the cell center r. It is again normalized

Jp(K(r)) =
Ip(K(r))

Tr Ip(K(r))
(26b)

by dividing with the trace. The non-negative eigen-
values Jpa(K(r)), Jpb(K(r)), Jpc(K(r)) obey Jpa(K(r))
+Jpb(K(r)) + Jpc(K(r)) = 1, and are assumed to be
ordered as 1 ≥ Jpa ≥ Jpb ≥ Jpc ≥ 0.

4.6 Local geometry distribution

The local geometry of a random set p inside a measure-
ment cell K is characterized by the geometric parame-
ters g(p;K) = (Λ, φ, d, e) where

d = Λdp + (1 − Λ)dm (27a)
e = Λep + (1 − Λ)em (27b)

and

dm =
Jmb

Jma
, em =

Jmc

Jmb
(27c)

dp =
Jpb

Jpa
, ep =

Jpc

Jpb
(27d)

parametrize the anisotropy of the measurement cell K
with local porosity φ. These quantities form a family of
G-valued random variables

g( · ;K) : (Ω,A, P ) → (G,B)
p �→ g(p;K) (28)

indexed by K where G = {0, 1} × [0, 1]3 and B is the
standard Borel σ-algebra of the unit hypercube in R4.
The family of image measures
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μ( · ;K) : B → [0,∞]
B �→ P (g−1(B;K)) (29)

of P under g is the family of local geometry distributions
with family index K.

In practical applications the distribution P of the
random geometries is unknown. Instead one is given a
sample assumed to be a realization of a random geom-
etry. The local geometry distribution is then estimated
as the joint empirical probability measure

μ(g;K) = lim
N→∞

1
N

N∑
i=1

δ (g − g(K(ri)))

where ri is a sequence of cell centers such that all K(ri)
are mutually disjoint, and N denotes the total num-
ber of different placements of K. Mathematically this
empirical density is an estimator for a Young measure
(see Refs. [39,82,89] for details).

4.7 Limiting local geometry distributions

The dependence of μ(g;K) on K disappears in the limit
where K shrinks to a point or expands to become R3. In
the limit |K| → 0 of small pointlike measurement cells
one has with Eq. (27)

μ(g) = μ(1, φ, dp, ep) + μ(0, φ, dm, em) (30a)

= φ δ [(φ, dp, ep)−(1,1,1)]

+ (1 − φ) δ [(φ, dm, em)−(0,1,1)] (30b)

where φ = φ(S) is the total porosity of the sample.
In the opposite |K| → ∞ limit the limiting local

geometry distributions are also expected to become
independent [89] of K. Then Eq. (27) gives

μ(g) = μ(1, φ, dp, ep) + μ(0, φ, dm, em) (31a)
= λ(φ)μ1(φ, dp, ep) + (1 − λ(φ))μ0(φ, dm, em)

λ(φ) =

1∫
0

1∫
0

μ(1, φ, dp, ep)ddpdep (31b)

= 1 −
1∫

0

1∫
0

μ(0, φ, dm, em)ddmdem (31c)

where μ1(φ, dp, ep) is the conditional probability den-
sity that a cell is percolating in the scaling limit,
has porosity φ and percolation anisotropy parameters
dp, ep, while μ0(φ, dm, em) is the conditional probability
density that a cell is non-percolating in the scaling limit,
has porosity φ and percolation anisotropy parameters
dm, em. The quantity λ(φ) is the conditional probability
that a very large measurement cell is percolating given
that it has local porosity φ. It may be called limiting
local percolation probability (cf. Ref. [36]) in the sense

that

p =

1∫
0

1∫
0

1∫
0

λ(φ)μ1(φ, dp, ep) dφ ddpdep

= lim
|K|→∞

p(K) (31d)

is expected to hold from Eq. (25).
The possible macroscopic limits have been classified

in Ref. [89], Sec.VII.b, into four cases. In the follow-
ing the macroscopically heterogeneous cases will be
neglected and the porous medium is assumed to be
macroscopically homogeneous and anisotropic. If it is
macroscopically non-random one has

μ1(φ, dp, ep) =δ
[
(φ, dp, ep)−(φ, dp, ep)

]
(32a)

μ0(φ, dm, em)=δ
[
(φ, dm, em)−(φ, dm, em)

]
(32b)

where φ is the macroscopic porosity and dp, ep, dm, em
are the macroscopic anisotropy parameters for pore and
matrix. The simple choice

λ(φ) =

⎧⎨
⎩

0, for 0 ≤ φ < φ

λ, for φ = φ

1, for φ < φ ≤ 1
(32c)

will be used below. Expectation values of measurable
functions f : G → R are computed as

〈f〉μ =
∫
G

f(g) dμ(g)

=

1∫
0

1∫
0

1∫
0

λ(φ)f(1, φ, dp, ep)μ1(φ, dp, ep)depddpdφ

+

1∫
0

1∫
0

1∫
0

(1 − λ(φ))f(0, φ, dm, em)

μ0(φ, dm, em) dem ddm dφ. (33)

5 Coated ellipsoidal inclusion

5.1 Formulation of the local problem

Let d = 3 and let rT = (x, y, z) ∈ R3 denote a vec-
tor in cartesian coordinates. The potential problem for
the unknown electrostatic potentials Uc, Us, Uu in the
domains c, s,u ⊂ R3 reads

∇ · εc∇Uc(r)=0, r ∈ c (34a)
∇ · εs∇Us(r)=0, r ∈ s (34b)
∇ · εu∇Uu(r)=0, r ∈ u (34c)

Uu(r)=Us(r), r ∈ ∂e (34d)
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n∂e(r)Tεu∇Uu(r)=n∂e(r)Tεs∇Us(r), r ∈ ∂e (34e)
Us(r)=Uc(r), r∈ ∂c (34f)

n∂c(r)Tεs∇Us(r)=n∂c(r)Tεc∇Uc(r), r∈∂c (34g)

lim
|r|→∞

Uu(r)
|r| =−ET

ext · r
|r| (34h)

where εc,εs,εu are the dielectric tensors of the homo-
geneous but anisotropic dielectric materials filling the
domains c, s,u and Eext denotes a constant applied
field. The union of c and s forms an ellipsoidal inclusion

e = c ∪ s =
{
r ∈ R3 : rTQe(εs) r ≤ 1

}
(35a)

consisting of an ellipsoidal core

c =
{
r ∈ R3 : rTQc(εs) r ≤ 1

}
(35b)

surrounded by a shell

s = e \ c (35c)

that is embedded into an environment (or background)

u = R3 \ e (35d)

defined as the complement of e. It is assumed that the
quadratic forms Qe,Qc are non-degenerate, and that
c ⊂ s and s \ c �= ∅ holds throughout. The finite two-
dimensional boundaries are denoted

∂e =
{
r ∈ R3 : rTQe(εs) r = 1

}
(35e)

∂c =
{
r ∈ R3 : rTQc(εs) r = 1

}
(35f)

∂s = ∂e ∪ ∂c (35g)
∂u = ∂e (35h)

and the vector fields n∂e,n∂c in Eq. (34) are unit nor-
mal vector fields on e and c. The boundary condi-
tions (34d), (34e) at ∂u∩∂s=∂e and (34f), (34g) at
∂s ∩ ∂c=∂c express continuity of the potentials and
the normal component of the dielectric displacement.
The boundary condition (34h) demands that the poten-
tial vanishes at infinity |r| → ∞.

The non-degenerate quadratic form matrices Qe,Qc

(with detQe �= 0,detQc �= 0) depend on the material
properties εs of the shell as follows. Assume that
det εs �= 0 and define the coordinate transformation√

εs by the formula

εs =
√

εs

√
εs

T
(36a)

r =
√

εsrs (36b)

as the square root of εs. The linear, non-orthogonal and
non-singular coordinate transformation (36b) relates
the vector r = (x, y, z)T in the original coordinate sys-
tem with the vector rs = (xs, ys, zs)T in the transformed

coordinates. To specify the transformation uniquely it
is assumed that

xs
2

a2
e,s

+
ys

2

b2e,s

+
zs

2

c2e,s

= 1, (37a)

xs
2

a2
c,s

+
ys

2

b2c,s

+
zs

2

c2c,s

= 1, (37b)

with

∞ > ae,s ≥ be,s ≥ ce,s > 0, (37c)
∞ > ac,s ≥ bc,s ≥ cc,s > 0 (37d)

holds true. Here ae,s, be,s, ce,s denote the semiaxes of
the outer shell ellipsoid e and ac,s, bc,s, cc,s for the core
ellipsoid c in (xs, ys, zs)-coordinates.

Finally, it is assumed that the ellipsoids es =
√

εs
−1

e

and cs =
√

εs
−1

c are confocal, i.e. it is assumed there
exists a number 0 < C < c2e,s such that

a2
e,s = a2

c,s + C (38a)

b2e,s = b2c,s + C (38b)

c2e,s = c2c,s + C (38c)

holds. Then ac,s < ae,s, bc,s < be,s and cc,s < ce,s and
the coated ellipsoid is parameterized by four param-
eters. If the half axes ae,s, be,s, ce,s are normalized by
division with their sum ae,s + be,s + ce,s, then three
parameters suffice to characterize the coated ellipsoid.
They could be chosen as the volume fraction φc, and
two normalized half axes, or as φc and two of the axis
ratios

ds=
be,s

ae,s
, 0<ds≤1 es =

ce,s

be,s
, 0<es≤1 (39a)

dc =
bc,s

ac,s
, 0<dc≤1 ec =

cc,s

bc,s
, 0<ec≤1 (39b)

ϕc =
bc,s

be,s
, 0<ϕc≤1 (39c)

for shell and core. Here the axis ratio ϕc is a core to
shell length fraction for the intermediate axes. The con-
focality condition (38) implies the relations

1 − ϕ2
c =

1
d2s

− ϕ2
c

d2c
(40a)

= e2s − e2cϕ
2
c (40b)

between these axis ratios. The core c within the coated
ellipsoidal inclusion e has a local volume fraction

φc =
|c|
|e| =

ac,sbc,scc,s

ae,sbe,sce,s
=

ds
dc

ec
es

ϕ3
c (41)

that can be used to eliminate ϕc in exchange for φc.
Then 0 < φc < 1 with φc → 1 for C → 0, while φc → 0
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for C → c2e,s. Given ds, es and φc these equations are
solved for ϕc to determine

dc = Dc(φc, ds, es) (42a)
ec = Ec(φc, ds, es) (42b)

as functions of ds, es and φc. The functions Dc, Ec :
[0, 1]3 → [0, 1] show clearly, that dc, ec are not inde-
pendent parameters. Instead, they are fixed as soon as
φc, ds, es are given.

5.2 Solution of the local problem

To solve Eq. (34), one first transforms Eq. (34c) into the
Laplace equation in vacuum using the transformation

εu =
√

εu

√
εu

T
(43a)

r =
√

εuru (43b)

where it is assumed that detεu �= 0. To specify the lin-
ear, non-orthogonal and non-singular coordinate trans-
formation

√
εu uniquely it is assumed that

xu
2

a2
e,u

+
yu

2

b2e,u

+
zu

2

c2e,u

= 1 (44)

holds true in (xu, yu, zu)-coordinates with ae,u ≥ be,u ≥
ce,u > 0.

Following Refs. [90] and [91], Eq. (44), the solution of
the boundary value problem (34) can be written as

Uc(r) = −(Gc Eext)Tr, r ∈ c (45a)

Us(r) = [Gs(ξs) Eext]Tr, 0 ≤ ξs ≤ C, r ∈ s (45b)

Uu(r) = [Gu(ξu) Eext]Tr, ξu ≥ 0, r ∈ u (45c)

where ξu = ξu(r) (resp. ξs = ξs(r)) is the first ellipsoidal
coordinate of the vector r in (xu, yu, zu)-coordinates
(resp. (xs, ys, zs)-coordinates) and C > 0 is the con-
focal constant in Eq. (38). The ellipsoidal coordinates
(ξu, ηu, ζu) of a point (xu, yu, zu) are defined as the three
roots ξu, ηu, ζu of the equation [92] (p. 19)

xu
2

a2
e,u + u

+
yu

2

b2e,u + u
+

zu
2

c2e,u + u
= 1 (46a)

which obey

−a2
e,u≤ζu≤−b2e,u≤ηu≤−c2e,u≤ξu < ∞. (46b)

Similarly, the ellipsoidal coordinates (ξs, ηs, ζs) of a
point (xs, ys, zs) are defined as the three roots of the
equation

xs
2

a2
c,s + u

+
ys

2

b2c,s + u
+

zs
2

c2c,s + u
= 1 (47a)

which obey

−a2
c,s≤ζs≤−b2c,s≤ηs ≤ −c2c,s≤ξs<∞. (47b)

To formulate expressions for Gc,Gs(ξs),Gu(ξu) three
diagonal tensors, Ne,u(ξu), Nc,s(ξs) and Ne,s(ξs) of
depolarizing factors are needed. All of them have unit
trace, i.e. are normalized. The diagonal entries N

(xu)
e,u ,

N
(yu)
e,u , and N

(zu)
e,u of Ne,u(ξu) are

N (i)
e,u(ξu) =

3|e|
8π

∞∫
ξu

1
(u + w2)Re,u(u)

du (48a)

Re,u(u)=
√

(u + a2
e,u)(u+ b2e,u)(u+ c2e,u) (48b)

where w = ae,u, be,u, ce,u for i = xu, yu, zu and |e| is the
volume of e. The diagonal entries N

(xs)
c,s , N

(ys)
c,s , N

(zs)
c,s of

Nc,s(ξs) are

N (i)
c,s(ξs) =

3|c|
8π

∞∫
ξs

1
(u + w2)Rc,s(u)

du (49a)

Rc,s(u)=
√

(u + a2
c,s)(u + b2c,s)(u + c2c,s) (49b)

where |c| is the volume of c and w = ac,s, bc,s, cc,s for
i = xsu, ysu, zsu. The diagonal entries N

(xs)
e,s , N

(ys)
e,s , N

(zs)
e,s

of Ne,s(ξs) are

N (i)
e,s(ξs) =

3|es|
8π

∞∫
ξs

1
(u + w2)Re,s(u)

du (50a)

Re,s(u)=
√

(u+ a2
e,s)(u + b2e,s)(u + c2e,s) (50b)

where w = ae,s, be,s, ce,s for i = xsu, ysu, zsu and |es| =
|e| is the volume of e. Then

Le,u(ξu) = (
√

εu
−1

)TNe,u(ξu)
√

εu
−1

(51a)

Lc,s(ξs) = (
√

εs
−1

)TNc,s(ξs)
√

εs
−1

(51b)

Le,s(ξs) = (
√

εs
−1

)TNe,s(ξs)
√

εs
−1

(51c)

are the depolarization tensors in (x, y, z)-coordinates.
With the abbreviations Ne,u = Ne,u(0), Le,u = Le,u(0),
Nc,s = Nc,s(0), Lc,s = Lc,s(0) etc., one has

Gc = {φcLe,uΔ + [1 + Le,u(εs − εu)]

[1 + (Lc,s − φcLe,s)Δ]}−1 (52a)
Gs(ξs) = − [1 + Lc,sΔ]Gc + Lc,s(ξs)ΔGc (52b)
Gu(ξu) = −1 + Le,u(ξu) {φcΔ + (εs − εu)

[1 + (Lc,s − φcLe,s)Δ]}Gc (52c)
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where φc = |c|/|e| is the local core volume fraction and

Δ = εc − εs (52d)

is the dielectric difference between the core and the shell
material.

6 Self-consistent approximation

The potentials Uc(r;εc,εs,εu), Us(r;εc,εs,εu), and
Uu(r;εc,εs,εu) in Eq. (45) depend on the data εc,εs,
εu. The dielectric permittivity εe of the coated ellip-
soidal inclusion is determined as the solution of the
equation

Uu(r;εc,εs,εu) = Uu(r;εe,εe,εu) (53)

for all r ∈ u by demanding that the potential outside
of the inclusion is identical to that of the full solution.
Setting εc = εs = εe in Eq. (52) gives for the potential

Ge = [1 + Le,u(εe − εu)]−1 (54a)
Gu=−1+Le,u(ξu)(εe−εu)Ge (54b)

and

Ee = [1 + Le,u(εe − εu)]−1 Eext (55a)
De = εeEe (55b)

for the fields. Equating Eq. (54b) with Eq. (52c) yields

(εe − εu) [1 + Le,u(εe−εu)]−1 =
[φcΔ + (εs−εu)B]Gc (56)

where

B = 1+(Lc,s−φcLe,s)Δ. (57)

and

Gc={φcLe,uΔ+[1 + Le,u(εs − εu)]B}−1
. (58)

Solving Eq. (56) for εe gives

εe=εu+
[
([φcΔ+(εs−εu)B]Gc)

−1 −Le,u

]−1

(59)

which simplifies to become

εe(εc,εs;φc, ds, es) = εs + φcΔB−1 (60)

for the dielectric permittivity of the ellipsoidal inclusion
in terms of its geometric and material parameters. The
geometric parameters are restricted to φc, ds, es because
Lc,s follows from Le,s and the latter depends only on
ds, es.

Following Ref. [58] and Eq. (13), the effective dielec-
tric permittivity ε is defined by averaging Eq. (55) over
the disorder to get

〈εeEe〉 = ε 〈Ee〉 (61a)

=⇒
〈
(εe − ε)[1+Le,u(εe−εu)]

−1
〉

= 0 (61b)

where 〈. . . 〉 is the disorder average. The implicit depen-
dencies of εe are clear from Eq. (60). The implicit
dependencies of Le,u emerge from noting that the
quadratic form matrix Qe of the ellipsoidal inclusion
from Eq. (35a) can be expressed equivalently as

Q−1
e =

√
εu

⎛
⎜⎝

a2
e,u 0 0
0 b2e,u 0
0 0 c2e,u

⎞
⎟⎠√

εu
T

(62a)

=
√

εs

⎛
⎜⎝

a2
e,s 0 0
0 b2e,s 0
0 0 c2e,s

⎞
⎟⎠√

εs
T

(62b)

in ru-coordinates or rs-coordinates. Noting that Eq. (48)
can be written as

Ne,u =

√
det(Q−1

e )

2

∞∫
0

[Q−1
e + u1]−1√

det(Q−1
e + u1)

du (63)

allows to rewrite Le,u as

Le,u =
1

2
√

det(Qe)

∞∫
0

[Q−1
e + sεu]−1√

det(Q−1
e + sεu)

ds (64)

and this shows that Le,u = Le,u(εu,εs) depends on εs

and εu.
Self-consistency determines ε and L such that the

background equals the effective medium. Setting

εu = ε (65a)

Le,u = L (65b)

in Eq. (61b) yields

〈
(εe − ε)

{
1 + L [εe − ε]

}−1
〉

= 0, (66)

the self-consistent effective medium approximation for
ε. The effective depolarisation tensor L defined as

L =
1

2
√

det(Qe)

∞∫
0

[Q−1
e + sε]−1√

det(Q−1
e + sε)

ds (67)

with Q−1
e given in Eq. (62b) depends on ε. In addition

to ε also the shape of the ellipsoidal inclusion e has to
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be determined self-consistently. This differs from con-
ventional Bruggemann theory.

7 Local porosity theory

The self-consistent equation of local porosity theory is
obtained by expressing εe and L in terms of local geo-
metric quantities and replacing the disorder average
with an average over the local geometry distribution
μ. This gives

〈{
(εe − ε)−1 + L

}−1
〉

μ
= 0 (68a)

with 〈. . . 〉μ given in Eq. (33). The dependencies

εe = εe(εc,εs;φc, ds, es) (68b)

L = L(ε,εs; ds, es) (68c)

have to be related to the materials filling p and m.
The cases of Λ = 0 (nonpercolating local geometry)
and Λ = 1 (percolating local geometry) need to be dis-
tinguished, because for percolating local geometries the
shell s should contain p-material, while it should con-
tain m-material in the nonpercolating case. The core
and shell properties are specified as

εc = (1 − Λ)εp + Λεm (69a)
εs = (1 − Λ)εm + Λεp (69b)
φc = (1 − Λ)φ + Λ(1 − φ) (69c)
ds = (1 − Λ)dm + Λdp (69d)
es = (1 − Λ)em + Λep. (69e)

Inserting Eq. (69) into Eq. (68) and using (33) gives

0 =

1∫
0

1∫
0

1∫
0

λ(φ)
{

[εe(εm,εp; 1 − φ, dp, ep) − ε]−1

+ L(ε,εp; dp, ep)
}−1

μ1(φ, dp, ep)depddpdφ

+

1∫
0

1∫
0

1∫
0

(1 − λ(φ))
{

[εe(εp,εm;φ, dm, em) − ε]−1

+ L(ε,εm; dm, em)
}−1

μ0(φ, dm, em) demddmdφ (70)

as the mixing law of local porosity theory. The unknown
quantity in Eq. (70) is ε. The functional εe is given
in Eq. (60) with Eqs. (57) and (52d), while L is from
eq.(67).

8 Analytical results

8.1 Small measurement cells

In the limit |K| → 0 of pointlike measurement cells the
mixing law of local porosity theory becomes

0 = φ
{

[εe(εm,εp;0,1,1)−ε]−1+ L(ε,εp;1,1)
}−1

+ (1−φ)
{

[εe(εp,εm;1,1,1)−ε]−1+L(ε,εm; 1, 1)
}−1

(71)

after inserting Eq. (30) into Eq. (70). For isotropic
materials εp = εp1,εm = εm1 the classic Bruggemann
effective medium approximation (EMA) equation

0 = φ
εp − ε

εp + 2ε
+ (1 − φ)

εm − ε

εm + 2ε
(72)

ensues, which should be compared to Eq. (1). The
known anisotropic effective medium formula (2) is recov-
ered setting μ(1, φ, dp, ep)= φδ

[
(φ, dp, ep) − (1,1,c/b)

]
and μ(0, φ, dm, em) = (1−φ)δ[(φ, dm, em) −(0,1,c/b)] in
Eq. (30), where b, c are the parameters in Eq. (2). The
limit of small measurement cells is the limit in which
the basic assumption of statistical independence under-
lying effective medium approximations is violated. It is
also worth to remark that, in a limiting sense, Eq. (2)
requires measurement cells to remain anisotropic when
they shrink to a point.

8.2 Large measurement cells

For large measurement cells |K| → ∞ Eq. (32) gives

0 =λ(φ)
{[

εe(εm,εp; 1 − φ, dp, ep) − ε
]−1

+ L(ε,εp; dp, ep)
}−1

+ (1 − λ(φ))
{[

εe(εp,εm;φ, dm, em) − ε
]−1

+ L(ε,εm; dm, em)
}−1

. (73)

For geometrical isotropy Nc,s = Ne,s = 1/3 and mate-
rial isotropy εp = εp1, εm = εm1 this becomes

0 = λ(φ)
εC − ε

εC + 2ε
+ (1 − λ(φ))

εB − ε

εB + 2ε
(74)

the generalized effective medium approximation from
Ref. [36], Sec.V.A, where

εC = εe(εm, εp; 1 − φ, 1, 1) (75a)

εB = εe(εp, εm;φ, 1, 1) (75b)

are the local dielectric functions.
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8.3 Geometrical isotropy

Geometrical isotropy is the special case where the local
geometry is spherical instead of ellipsoidal. Computing
the integrals gives

Nc,s = Ne,s =
1
3

1 (76)

and hence

Lc,s = Le,s = (3εs)
−1

. (77)

Inserting this into Eq. (57) and (60) gives

εe(εc,εs;φc) = εe(εc,εs;φc, 1, 1) =

εs + φc

{
(εc − εs)−1 + (1 − φc) (3εs)

−1
}−1

(78)

for coated spheres. In this case Eq. (70) becomes

0 =

1∫
0

[
λ(φ)

{
[εe(εm,εp; 1−φ)−ε]−1+ L(ε,εp)

}−1

+(1−λ(φ))
{

[εe(εp,εm;φ)−ε]−1+ L(ε,εm)
}−1

]
μ(φ) dφ (79)

where the shorthand notation L(ε, · ) = L(ε, · ; 1, 1),
was used and μ(φ) = μ1(φ) = μ0(φ) is the local porosity
distribution. This generalizes local porosity theory to
anisotropic materials.

For |K| → 0 (pointlike measurement cells) Eqs. (30),
(57), (60) and (77) for spheres give again Eq. (71) as
the generalized effective medium equation for ε in the
case of anisotropic media.

9 Material isotropy

A situation of great practical and applied interest is the
case of material isotropy but geometrical anisotropy.
In this case the effective material parameters the effec-
tive dielectric properties become anisotropic only due to
geometric properties of the mixture, while the materials
themselves are isotropic. General results for macroscop-
ically random systems will be investigated in the first
Sect. 9.1 of this section. The non-random case will be
discussed in more detail in the remaining subsections.

9.1 Macroscopically random systems

Isotropic materials occupying p and m have dielectric
tensors proportional to 1

εp = εp1, εp ∈ C, (80a)
εm = εm1, εm ∈ C, (80b)

where the scalar prefactors

εp(ω) = ε′
p(ω) + i

σ′
p(ω)
ω

(80c)

εm(ω) = ε′
m(ω) + i

σ′
m(ω)
ω

(80d)

are in general frequency dependent. Then εc = εc1,
εs = εs1 so that

Le,s =
1
εs

Ne,s (81a)

Lc,s =
1
εc

Nc,s (81b)

where Ne,s,Nc,s and hence Le,s,Lc,s are all diagonal. It
follows now from Eq. (62b) that Q−1

e is diagonal and
hence from Eq. (62a) that εu is diagonal, and thus that
Le,u is diagonal. As a result

ε = diag(εx, εy, εz) (82)

and L are diagonal. Equation (60) becomes

εe = εs

[
1+φc

{
εs

εc−εs
1+Nc,s−φcNe,s

}−1
]

(83)

where the diagonal matrices Nc,s,Ne,s, given in Eqs.
(49) and (50), can be written as

N (xs)
e,s = Na(ds, es), (84a)

N (ys)
e,s = Nb(ds, es), (84b)

N (zs)
e,s = Nc(ds, es), (84c)

N (xs)
c,s = Na (Dc(φc, ds, es), Ec(φc, ds, es)) , (84d)

N (ys)
c,s = Nb (Dc(φc, ds, es), Ec(φc, ds, es)) , (84e)

N (zs)
c,s = Nc (Dc(φc, ds, es), Ec(φc, ds, es)) (84f)

with

Na(d, e)=
e

2d

∞∫
0

du[
u+ 1

d2

]3
2 [u+1]

1
2 [u+e2]

1
2

(85a)

Nb(d, e)=
e

2d

∞∫
0

du[
u+ 1

d2

]1
2 [u+1]

3
2 [u+e2]

1
2

(85b)

Nc(d, e)=
e

2d

∞∫
0

du[
u+ 1

d2

]1
2 [u+1]

1
2 [u+e2]

3
2

(85c)
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and Dc, Ec from Eq. (42). Inserting Eq. (82) into Eq.
(67), using

Q−1
e = b2e,s

√
εs

⎛
⎝d−2

s 0 0
0 1 0
0 0 e2s

⎞
⎠√

εs
T

(86)

and substituting s = (b2e,sεsu)/εy in (67) gives

L = ε−1N = Nε−1 (87)

with

N =diag(Na(dεs, eεs), Nb(dεs, eεs), Nc(dεs, eεs)) (88a)

where

dεs = ds

√
εx

εy
, eεs = es

√
εy

εz
(88b)

are self-consistently determined parameters that depend
upon the unknown ε. Equation (68) becomes diagonal

〈{
(εe − ε)−1 + N ε−1

}−1
〉

μ
= 0 (89)

with N = N(dεs, eεs) depending on ε. This coupled
system of three equations needs to be solved for ε with
material data from (69).

Substituting u = e2s in Eq. (85) gives a form that is
useful when d = 0 or e = 0

Na(d, e) =
1
2

∞∫
0

d2e2 ds

(d2e2s + 1)
3
2 (e2s + 1)

1
2 (s + 1)

1
2

(90a)

Nb(d, e) =
1
2

∞∫
0

e2 ds

(d2e2s + 1)
1
2 (e2s + 1)

3
2 (s + 1)

1
2

(90b)

Nc(d, e) =
1
2

∞∫
0

ds

(d2e2s + 1)
1
2 (e2s + 1)

1
2 (s + 1)

3
2
.(90c)

This form is convenient, because it allows one to read
off the limiting cases

Na(1, 1) = Nb(1, 1) = Nc(1, 1) =
1
3

(91a)

Na(0, 1) = 0, Nb(0, 1) = Nc(0, 1) =
1
2

(91b)

Na(1, 0) = Nb(1, 0) = 0, Nc(1, 0) = 1 (91c)
Na(0, 0) = Nb(0, 0) = 0, Nc(0, 0) = 1 (91d)

and

Na(d, 0) = Nb(d, 0) = 0, Nc(d, 0) = 1 (91e)

Na(0, e) = 0, Nb(0, e)=
e

1 + e
, Nc(0, e)=

1
1 + e

(91f)

Na(1, e) = Nb(1, e), (91g)
Nb(d, 1) = Nc(d, 1), (91h)

for all 0 ≤ d, e ≤ 1.
Compared to the elliptic integrals in Eqs. (48), (49),

(50) the parameters dεs, eεs in Eq. (88b) are neither
from the unit interval nor real, but in general complex
numbers. As a consequence the well known formulae for
real numbers given in Ref. [93] do not apply. The results
for Na, Nb, Nc with complex parameters d, e have been
computed below in Appendix A.

9.2 Macroscopically non-random systems

For macroscopically homogeneous but non-random sys-
tems Eq. (32) yields the diagonal equation

0 = λ(φ)
{

[εC − ε]−1 + N(dεp, eεp) ε−1
}−1

(92)

+(1 − λ(φ))
{

[εB − ε]−1 + N(dεm, eεm)ε−1
}−1

for ε where the notation

εC = εe(εm, εp; 1 − φ, dp, ep) (93a)

εB = εe(εp, εm;φ, dm, em) (93b)

is used again for local functions. Written in components
the diagonal Eq. (92) becomes three coupled equations
(j = x, y, z)

0 = λ

[
1

εCj − εj
+

Npj

εj

]−1

+ (1 − λ)
[

1
εBj −εj

+
Nmj

εj

]−1

(94)

where the abbreviations

Npj =[N(dεp, eεp)]j =
[
N

(
dp

√
εx

εy
, ep

√
εy

εz

)]
j

(95a)

Nmj =[N(dεm, eεm)]j =
[
N

(
dm

√
εx

εy
, em

√
εy

εz

)]
j

(95b)

were introduced. The local functions are obtained from
Eqs. (68b), (93), (83) as

εCj =εp
εp+(εm−εp)(NCj + 1 − φ)

εp + (εm − εp) NCj

(96a)

εBj =εm
εm+(εp−εm)(NBj + φ)

εm + (εp − εm) NBj

(96b)

where

NCx(φ, dp, ep)=Na(Dp, Ep)−(1−φ)Na(dp, ep) (96c)

123



Eur. Phys. J. B (2022) 95 :117 Page 13 of 26 117

NCy(φ, dp, ep)=Nb(Dp, Ep) − (1−φ)Nb(dp, ep) (96d)

NCz(φ, dp, ep)=Nc(Dp, Ep) − (1−φ)Nc(dp, ep) (96e)

NBx(φ, dm, em)=Na(Dm, Em) − φNa(dm, em) (96f)

NBy(φ, dm, em)=Nb(Dm, Em) − φNb(dm, em) (96g)

NBz(φ, dm, em)=Nc(Dm, Em) − φNc(dm, em) (96h)

are the diagonal elements in Ne,s, Nc,s from Eq. (84),
and εp, εm are from Eq. (80). Here

Dp = Dc(1−φ, dp, ep) (96i)

Ep = Ec(1−φ, dp, ep) (96j)

Dm = Dc(φ, dm, em) (96k)

Em = Ec(φ, dm, em) (96l)

from Eq. (42). The material parameters ε′
p, ε′

m,σ′
p,σ′

m

in εp, εm and the geometrical parameters φ, λ, dp,

dm, ep, em in these equations are measurable or known
from experiment.

The complex effective depolarization factors for p
and m depend on ε. They couple the three equations
(94) via Eq. (88b). Clearly, εj = 0 solves Eq. (94) for
any j. For εj �= 0 one can rewrite the system of equa-
tions as

λε̂j

Mj − ε̂j
+

(1 − λ)ε̂j

Pj − ε̂j
= Rj(ε̂) (97a)

where the normalized effective dielectric permittivity

ε̂j =
εj

εp
(97b)

is the unknown,

Rj(ε̂) = λ
[
Npj(ε̂) − Nmj(ε̂)

]− Npj(ε̂) (97c)

is the right hand side, and

Pj =
εCj

εp
=

1 + K − K(NCj + 1 − φ)
1 + K − KNCj

, (97d)

Mj =
εBj

εp
=
(

1
K+1

)
1 + K(NBj + φ)

1 + K NBj

, (97e)

K =
εp

εm
− 1 (97f)

with j = x, y, z are parameters. Equation (97) can also
be formulated as

ε̂j = Aj

(
1 ±

√
1 − Bj

A2
j

)
(98a)

Aj =
Rj(ε̂)(Pj + Mj) + λPj + (1 − λ)Mj

2(1 + Rj(ε̂))
(98b)

Bj =
Rj(ε̂)PjMj

1 + Rj(ε̂)
. (98c)

This is not a solution of Eqs. (94) but a reformulation,
because Aj , Bj depend through Rj on the two ratios
ε̂x/ε̂y and ε̂y/ε̂z .

To obtain analytical information about solutions it is
useful to consider limiting and special cases. The iden-
tity

∑
j=x,y,z

λε̂j

Mj − ε̂j
+

(1 − λ)ε̂j

Pj − ε̂j
= −1 (99)

holds generally. It is obtained by summation of Eq. (97a)
with the help of Eq. (A13).

9.3 Spherical (Isotropic) Limit

The spherically isotropic limit is the limit dp → 1, and
dm → 1, and ep → 1, and em → 1. In this limit Ne,s =
Nc,s = 1/3 and Npj =Nmj . Inserting this into Eq. (97)
renders Pj , Mj independent of j and Rj =−Npj follows
from Eq. (95a) and (95b). Subtracting Eq. (97a) with
j = x from (97a) with j = y gives

λ

M
ε̂x

− 1
+

1 − λ

P
ε̂x

− 1
− λ

M
ε̂y

− 1
− 1 − λ

P
ε̂y

− 1
= Npy − Npx

=
1
2

∫ ∞

0

(
s +

ε̂z

ε̂y

)−1

−
(

s +
ε̂z

ε̂x

)−1

√(
ε̂x
ε̂z

s + 1
)(

ε̂y

ε̂z
s + 1

)
(s + 1)

ds (100)

where Eq. (97c) was used. The integral on the right
hand side depends on ε̂z, while the left hand side does
not. Thus the equation can only be fulfilled for ε̂x = ε̂y.
Repeating the same subtraction with j = y and j = z
gives ε̂y = ε̂z, now invoking that the integral depends
on ε̂x. In this way the equality

ε̂x = ε̂y = ε̂z (101)

and the generalized effective medium equation from
Ref. [36] is recovered.

9.4 Planar (flat) limits

The planar or flat limits arise when ep → 0 or em →
0. Then Eq. (41) implies Ep → 0 and Em → 0 and
Eq. (40) gives ϕc = 1, d

2

p = D2
p and d

2

m = D2
m. From

Eq. (96) follows NCx, NCy, NBx, NBy → 0, NCz → φ,
NBz →1 − φ. With this (97d) and (97e) give

Px = Py =
1 + Kφ

1 + K
= Mx = My (102a)
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Pz =
1

1 + K(1 − φ)
= Mz (102b)

and eqs. (97a) simplify to become

ε̂j = Rj(ε̂)(Pj − ε̂j) (103)

for j = x, y, z. Note that these equations do not decou-
ple. For dp = dm and ep = em Eq. (103) is independent
of λ and hence the solution ε̂ becomes independent of
λ.

9.5 Percolation limit

For sufficiently small frequencies ω 
 ωp, ω 
 ωm the
effective dielectric function ε̂j(ω) → σ′(0) approaches
the effective d.c. conductivity and the same holds for
the material parameter functions εp(ω) → σ′

p(0) and
εm(ω) → σ′

m(0). The complex quantity K approaches
a non-negative real value

κ = lim
ω→0

K(ω) =
σ′
p(0)

σ′
m(0)

− 1 (104)

which will be called conductivity contrast. The d.c. con-
ductivities obey σ′

p(0),σ′
m(0) ≥ 0. Without loss of gen-

erality it can be assumed that

σ′
m(0) ≤ σ′

p(0) ⇐⇒ κ ≥ 0 (105)

holds true, i.e. that the material of higher conductivity
occupies the pore space p. Vanishing contrast κ = 0
means σ′

p = σ′
m.

In the limit κ → ∞ of infinite conductivity contrast
one has for j = x, y, z

lim
κ→∞ Pj =

φ − NCj

1 − NCj

=: P∞
j (106a)

lim
κ→∞ Mj = 0 (106b)

in Eq. (97d) and (97e). Then Eq. (99) becomes

∑
j=x,y,z

σ̂′
j

P∞
j − σ̂′

j

=
3λ − 1
1 − λ

(107)

where

0 ≤ σ̂′
j =

σ′
j(0)

σ′
p(0)

≤ 1 (108)

is the normalized d.c.-conductivity. Because σ̂′
j ≤ P∞

j ,
the left hand side is non-negative. For λ ≤ 1/3 the
right hand side becomes negative, and hence λ = 1/3 is
a percolation threshold.

Because Mj = 0, Eq. (98c) gives Bj = 0. Thus σ̂′
j =

2Aj and

σ̂′
j

P∞
j

=
λ + Rj(σ̂′)
1 + Rj(σ̂′)

(109)

in the percolation limit. These are three coupled equa-
tions, that can be reduced to two coupled equations

uxy :=
σ̂′

x

σ̂′
y

=
P∞

x

P∞
y

(λ + Rx)(1 + Ry)
(1 + Rx)(λ + Ry)

(110a)

uyz :=
σ̂′

y

σ̂′
z

=
P∞

y

P∞
z

(λ + Ry)(1 + Rz)
(1 + Ry)(λ + Rz)

(110b)

by taking ratios. They have to be solved for the two
unknown ratios uxy, uyz. The functions Rx, Ry, Rz

depend only on these two ratios. For λ = 1 and for
λ = 0 one finds

σ̂′
j =

{
P∞

j for λ = 1
0 for λ = 0

(111)

because the expression P∞
j Npj/(Npj − 1) resulting

from Eq. (109) becomes negative.

9.6 Degenerate cases of Eq. (97)

Neither equation (97) nor Eq. (98) can be solved for ε̂
in full generality. To simplify the equations consider the
special case dp = dm = d and ep = em = e, with 0 < d,
e ≤ 1. Then Npj = Nmj = N j and Rj = −N j ensues.

9.6.1 Spherical LPT

The spherical case d = 1 = e implies σ′
x = σ′

y = σ′
z

and P∞
x = P∞

y = P∞
z from Section 9.3. Then Eq. (107)

recovers

σ̂′
x = σ̂′

y = σ̂′
z =

⎧⎨
⎩

(3λ − 1)φ
λ(3 − φ)

for 1
3 ≤ λ ≤ 1

0 for 0 ≤ λ ≤ 1
3

(112)

the known results from Ref. [36], eqs.(5.1),(6.3) and Sec-
tion 9.3 above.

Note, that σ̂′ depends on two geometric parameters,
namely porosity φ and connectivity λ of the medium.
Here λ = λ(φ) was assumed to be constant. In gen-
eral λ(φ) is a nonlinear or singular function of φ (see
Ref. [36], Sec. VI.C).

9.6.2 Planar (flat) LPT

In the planar case with ep = em = e → 0 the ellipsoids
degenerate into flat ellipses. As discussed in Section 9.4
one has d

2

p = D2
p in this case. Inserting Eq. (C7) into
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Eq. (96) and (106a) yields

P∞
x = P∞

y =φ (113a)

P∞
z =0 (113b)

for the local functions. Then Eq. (109) implies that
σ̂′

z = 0 for all λ. Furthermore, σ̂′
x = σ̂′

y = φ must
hold for λ = 1, because of Eq. (111).

9.6.3 Oblate LPT

Here dp = dm = 1 and ep = em = e with 0 < e < 1.
Evaluating the integrals in Eq. (90) for d = 1 and using
Eqs. (B3), (B4) yields Eq. (C3). Inserting Eq. (C3a) into
Eq. (97) gives Px = Py and Mx = My. Subtracting Eq.
(97a) with j = y from (97a) with j = x yields

σ′
x = σ′

y (114)

by an argument analogous to that in Section 9.3 for the
spherically isotropic limit.

With this result Eq. (109) reduces to a system of two
coupled equations

σ̂′
y

P∞
y

=
λ − Nb(1, eu)
1 − Nb(1, eu)

, (115a)

σ̂′
z

P∞
z

=
λ − Nc(1, eu)
1 − Nc(1, eu)

(115b)

where u =
√

σ̂′
y/σ̂′

z generates the coupling, and the
functions Nb(1, e), Nc(1, e) are given in Eq. (C3). They
obey 2Nb + Nc = 1. From Eq. (40) one finds

1 − φ = φc =
Ep

e

(
1 − e2

1 − E2
p

) 3
2

(116)

and Eqs. (106) and (96) give

P∞
y =

φ − Nb(1, Ep) + (1 − φ)Nb(1, e)
1 − Nb(1, Ep, ) + (1 − φ)Nb(1, e)

, (117a)

P∞
z =

φ − Nc(1, Ep) + (1 − φ)Nc(1, e)
1 − Nc(1, Ep) + (1 − φ)Nc(1, e)

. (117b)

9.6.4 Prolate LPT

In this case e = 1, i.e. one has ep = em = 1 and dp =
dm = d with 0 < d < 1.

Evaluating the integrals in Eq. (90) for e = 1
using Eq. (B3) and Eq. (B4) yields Eq. (C1). Inserting
Eq. (C1c) into Eq. (97) shows Py = Pz and My = Mz.
Subtracting Eq. (97a) with j = z from (97a) with j = y
yields

σ′
y = σ′

z (118)

by an argument analogous to that in Section 9.3 for the
spherically isotropic limit.

With this result Eq. (109) reduces to a system of two
coupled equations

σ̂′
x

P∞
x

=
λ − Na(du, 1)
1 − Na(du, 1)

, (119a)

σ̂′
y

P∞
y

=
λ − Nb(du, 1)
1 − Nb(du, 1)

(119b)

where u =
√

σ̂′
x/σ̂′

y generates the coupling, and the
functions Na(d, 1), Nb(d, 1) are given in Eq. (C1). They
obey Na + 2Nb = 1. From Eq. (40) one finds

1 − φ = φc =
D2

p

d
2

(
1 − d

2

1 − D2
p

) 3
2

(120)

and Eqs. (106) and (96) give

P∞
x =

φ − Na(Dp, 1) + (1 − φ)Na(d, 1)
1 − Na(Dp, 1) + (1 − φ)Na(d, 1)

, (121a)

P∞
y =

φ − Nb(Dp, 1) + (1 − φ)Nb(d, 1)
1 − Nb(Dp, 1) + (1 − φ)Nb(d, 1)

. (121b)

For d ≈ 1 an approximate solution of Eq. (119) can be
obtained for 1/3 ≤ λ ≤ 1 by setting

u ≈
√

P∞
x [λ − Na(d, 1)][1 − Nb(d, 1)]

P∞
y [λ − Nb(d, 1)][1 − Na(d, 1)]

(122)

with Na, Nb from Eq. (C1). This decouples Eqs. (119)
and yields σ̂′ as a function of φ, λ, d.

For d ≈ 0 the prolate ellipsoids become strongly elon-
gated and Eq. (C1) can be approximated by Eq. (C2)
to lowest order in d. Approximating Na(du, 1) ≈ 0 and
Nb(du, 1) ≈ 1/2 in Eq. (119) by their limiting values
gives

σ̂′
x ≈ λP∞

x (123a)

σ̂′
y ≈ (2λ − 1)P∞

y (123b)

for 1/2 ≤ λ ≤ 1. Then σ̂′
j ≥ 0 implies σ̂′

y = σ̂′
z = 0 for

λ ≤ 1/2. An anisotropic percolation threshold arises at
λ = 1/2. Inserting σ̂′

y = σ̂′
z = 0 into Eq. (107) implies

σ̂′
x ≈ 3λ − 1

2λ
P∞

x (124)

for 1/3 ≤ λ ≤ 1/2. In this case, i.e. for d ≈ 0 an
approximate solution of Eq. (119) can be obtained for
1/3 ≤ λ ≤ 1 by using u from Eq. (122) with Na, Nb

from Eq. (C2).
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9.6.5 Circocylindrical LPT

Here dp = dm = d = 0 and ep = em = e = 1. This
case resembles the spherical case. Inserting Eq. (91b)
decouples Eq. (119) and yields

σ̂′
x =

⎧⎪⎪⎨
⎪⎪⎩

λφ for 1
2 ≤ λ ≤ 1

(3λ − 1)φ
2λ

for 1
3 ≤ λ ≤ 1

2

0 for 0 ≤ λ ≤ 1
3

(125a)

σ̂′
y = σ̂′

z =

⎧⎨
⎩

(2λ − 1)φ
(2 − φ)

for 1
2 ≤ λ ≤ 1

0 for 0 ≤ λ ≤ 1
2

(125b)

as a function of φ, λ. Here the case 1/3 ≤ λ ≤ 1/2 in
Eq. (125a) follows from inserting σ̂′

y = σ̂′
z = 0 in Eq.

(107).

9.6.6 Ellipsocylindrical LPT

In this case d = 0 and ep = em = e and 0 < e < 1.
Evaluating the integrals in Eq. (90) for d = 0 gives

eqs. (91f) resp. (C5). From Eq. (40) one finds

1 − φ = φc =
Ep

e

e2 − 1
Ep

2 − 1
(126)

or

Ep =
e2 − 1

2e(1 − φ)
+

√
1 +

(
e2 − 1

2e(1 − φ)

)2

(127)

so that Eqs. (106) and (96) yield

P∞
y =

e − Ep

e(1 − eEp)
(128a)

P∞
z =

e(e − Ep)
1 − eEp

(128b)

for the local functions, and

P∞
y

P∞
z

=
1
e2

(129)

holds true for their ratio. Dividing Eq. (109) for j = y
by Eq. (109) for j = z results in the simple expression

√
σ′

y

σ′
z

=
1
e

(130)

for the ratio of the unknown effective conductivity com-
ponents. Inserting this into Eq. (95a) gives the surpris-
ing result

Npx = 0, Npy = Npz =
1
2

(131)

for all e, i.e. independent of σ′
j or e. The result decouples

eqs. (109) to give with the help of Eq. (106)

σ̂′
x = λ φ (132a)

σ̂′
y =

(2λ − 1)(e − Ep)
e(1 − eEp)

(132b)

σ̂′
z =

(2λ − 1) e (e − Ep)
1 − eEp

(132c)

for 1/2 ≤ λ ≤ 1 where Ep is from Eq. (127). For λ ≤ 1/2
it follows that σ̂′

y = σ̂′
z = 0 and inserting this into

Eq. (107) gives

σ̂′
x =

(3λ − 1)φ

2λ
(133)

for 1/3 ≤ λ ≤ 1/2.

10 Numerical results

10.1 Percolation transitions

The Bruggemann effective medium approximation (1)
exhibits a percolation transition at porosity φc = 1/3 at
which the dc-conductivity σ̂′(0) vanishes. While quali-
tatively correct, the percolation threshold is generally
too high for direct application to porous and disordered
media. They often become percolating at much lower
volume fractions. Indeed, Archie’s empirical law [36],
which relates electrical conductivity to porosity, sug-
gests that there is no lower limit for the percolation
threshold.

The Bruggemann result (1) has been generalized from
spheres to oblate ellipsoids in Ref. [41]. It is governed
by the generalized Eq. (2) which reduces to Eq. (1)
for b = c. The numerical solution of the anisotropic or
ellipsoidal Bruggemann equation (2) is shown as dash-
dotted lines in Fig. 2 as a function of φ. The isotropic
or spherical Bruggemann result is plotted as the solid
line Fig. 2. The percolation threshold is φc = 1/3 in
both cases.

The numerical solution of Eq. (109) for a compara-
ble oblate case with (dp, ep) = (1.0, 0.5) is shown as
two dashed lines in Fig. 2. The long dashed line is
σ̂′

x = σ̂′
y and σ̂′

z is short dashed. Here, λ(φ) = φ
1/3

has been assumed for the local percolation probabil-
ity, and the remaining two axis ratios are (dm, em) =
(1.0, 0.01). The percolation threshold φc is then found
as the solution of the equation λ(φ) = 1/3, which gives
φc = 1/27 ≈ 3.7%. This is confirmed in Fig. 2. It is
much more realistic than φc = 1/3 for natural media.
The value of φc depends on the local percolation proba-
bility λ(φ), thereby highlighting the importance of this
geometrical quantity.
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Fig. 2 Comparison of effective medium approximations for
σ̂′ as functions of porosity φ. The solution of Eq. (1) is
shown as a solid line, the solution of Eq. (2) with (dp, ep) =
(1.0, 0.5) is shown as two dash-dotted lines corresponding
to σ̂′

x,Sch = σ̂′
y,Sch (upper and long dash-dotted) and σ̂′

z,Sch

(lower and short dash-dotted). In both cases the perco-
lation threshold is φc = 1/3. Two dashed lines are seen
for LPT corresponding to σ̂′

x = σ̂′
y (long dashed) and σ̂′

z

(short dashed) with λ(φ) = φ
1/3

. This implies a percola-
tion threshold at φc = 1/27 ≈ 3.7%. The axis ratios are
(dp, ep) = (1.0, 0.5) and (dm, em) = (1.0, 0.01)

The solutions of Eq. (2) and Eq. (109) both display
anisotropic σ̂′ conductivity. In both cases σ̂′

x = σ̂′
y,

because the anisotropy is of oblate type. However, sev-
eral differences exist between Eq. (2) and Eq. (109).

While σ̂′
x,Sch and σ̂′

z,Sch in Fig. 2 do not differ much,
the difference between σ̂′

x and σ̂′
z is significant for φ < 1.

This is in part due to the small value of em. In addition
σ̂′

z does not approach unity for φ → 1. This behaviour is
caused by the local functions and stems from the confo-
cality condition. It appears in the limit φ → 1 whenever
ep �= 1 and is absent in the prolate case when ep = 1.
Of course, the two additional axis ratios (dm, em) in Eq.
(109) allow for a greater variety of solutions than for Eq.
(2). Recall also that Eq. (109) is only one of the many
special cases from the generalized LPT in Eq. (70).

10.2 dc-Conductivity at infinite contrast

This section gives numerical solutions of the anisotropic
effective medium equations (109) for the unknown nor-
malized dc-conductivity σ̂′(0). Equations (109) hold
for material isotropy and geometric anisotropy in the
percolation limit, i.e. at frequency ω = 0 and infi-
nite conductivity contrast κ = ∞. The solutions for
the unknown real part of the normalized effective
conductivity σ̂′ are displayed in twelve subfigures of
Fig. 3.They depend on six parameters (φ, λ, dp, ep, dm, em)

with values in the six dimensional unit cube [0, 1]6. The
porosity is fixed at φ = 0.1 in all cases.

The central subfigure in Fig. 3 visualizes the four
dimensional parameter space (dp, ep, dm, em) ∈ [0, 1]4.
The anisotropy parameters (dp, ep) for p are indicated
by open symbols, the parameters (dm, em) for m by
filled symbols in the central unit square. Every parame-
ter quadruple (dp, ep, dm, em) ∈ [0, 1]4 is represented by
a pair consisting of an open and a closed symbol. The
two symbols of such a pair are connected by a dashed
line.

Twelve subfigures in Fig. 3 are arranged around the
central subfigure. They show σ̂′ = (σ̂′

x, σ̂′
y, σ̂′

z) as func-
tions of λ ∈ [0, 1]. Because φ = 0.1 the range of values
is bounded by σ̂′

j ≤ 0.1 for j = x, y, z. Note also that
σ̂′

x(λ) ≥ σ̂′
y(λ) ≥ σ̂′

z(λ) holds true for all λ in all sub-
figures.

The twelve subfigures are labeled from (a) through (l)
as follows

(a) spherical - - - spherical
(b) oblate - - - prolate
(c) prolate - - - oblate
(d) circular - - - circular
(e) (nearly) prolate - - - flat
(f) flat - - - (nearly) prolate
(g) flat - - - flat
(h) flat - - - circocylindrical
(i) cylindrical - - - flat
(j) circocylindrical - - - circocylindrical
(k) cylindrical - - - none
(l) none - - - cylindrical

The first word in e.g. “oblate - - - prolate” characterizes
the position of the pair (dp, ep) in the unit square, while
the second gives the position of the pair (dm, em).

10.2.1 dp ≈ dm and ep ≈ em

The subfigures (a), (d), (g) and (j) located on the four
corners of Fig. 3 illustrate cases with dp ≈ dm and
ep ≈ em. In the isotropic case (a) the three compo-
nents σ̂′

x, σ̂′
y, σ̂′

z are nearly identical as expected from
Eq. (101). In the circular - - - circular case (d) one has
σ̂′

x ≈ σ̂′
y but σ̂′

z ≈ 0. In both these cases the perco-
lation transition occurs at λ = 1/3. In the flat - - -
flat case (g) a second percolation transition starts to
appear in σ̂′

x and σ̂′
y at λ = 1/2 while σ̂′

z ≈ 0 remains
small. Note also that σ̂′

x and σ̂′
y are nearly linear above

λ ≈ 1/2. In the circocylindrical - - - circocylindrical
case (j) the percolation transition in σ̂′

x at λ = 1/3 and
at λ = 1/2 in σ̂′

y and σ̂′
z remain clearly visible. Now all

components are nearly linear above λ ≈ 1/2. The main
difference to the flat - - - flat case (g) is that σ̂′

z �= 0
and σ̂′

x �= σ̂′
y at λ = 1. Other cases with dp ≈ dm

and ep ≈ em interpolate between these four limiting
cases.
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(a)(l)(k)(j)

(i)

(h)

(g) (f) (e) (d)

(c)

(b)

Fig. 3 Effective medium approximations for the real part σ̂′ of the normalized effective conductivity from Eq. (108) at
infinite conductivity contrast κ = ∞. The parameters are (φ, λ, dp, ep, dm, em) ∈ [0, 1]6. The porosity is φ = 0.1 in all
cases. The central subfigure shows the parameter quadruple (dp, ep, dm, em) ∈ [0, 1]4 as (dp, ep)- - - - -(dm, em) pairs where
(dp, ep) is represented by open symbols and (dm, em) by corresponding filled symbols inside the unit square with dp, dm

on the abscissa and ep, em on the ordinate. To facilitate finding them, parameter pairs belonging together are connected
with a dashed line as a guide to the eye. The twelve subfigures surrounding the central subfigure each show the normalized
effective conductivity components σ̂′

x (solid lines), σ̂′
y (dashed lines), and σ̂′

z (dash-dotted lines) as functions of λ. The
symbol displayed in each subfigure indicates the values of the corresponding parameter pair shown in the central subfigure

10.2.2 Flat pores ep ≈ 0

In the case ep ≈ 0 the pores approach flat ellipses
and the open symbol falls near the lower boundary of
the central square. The corresponding subfigures are
(d), (f), (g) and (h). As discussed in Section 9.6.2 one
expects σ̂′

z ≈ 0 for all λ, because P∞
z → 0 for ep ≈ 0.

Secondly one expects σ̂′
x = σ̂′

y = 0.1 at λ = 1, because

P∞
x = P∞

y = φ for ep ≈ 0. Indeed, these expectations
are confirmed in all cases.

10.2.3 Cylindrical pores dp ≈ 0

For dp ≈ 0 the pores tend to become cylindrical and the
open symbol (dp, ep) falls near the left boundary of the
central square. This case is seen in subfigures (g), (i), (j)
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and (k). In all these cases the percolation transition
in σ̂′

x occurs at threshold 1/3, while σ̂′
y approaches a

percolation transition with threshold λ = 1/2 as dp →
0.

10.2.4 Exchanging (dp, ep) with (dm, em)

The parameter pairs (dp, ep) and (dm, em) have very
different impact on the result. This is illustrated in an
approximate way by exchanging them.

Subfigures (b) and (c) illustrate such an exchange for
parameters near the prolate and oblate boundary. Note
that the curvature of σ̂′

y changes.
Subfigures (e) and (f) illustrate the exchange between

positions close to the flat boundary and positions some-
what removed from the upper prolate boundary. Again
the curvature of σ̂′

y changes, but in addition the change
in σ̂′

z is significant. In the case (f) the component σ̂′
z is

nearly zero for all λ, while it becomes strongly curved
upwards in subfigure (e). This indicates a percolation
transition at λ = 1 in the limit em → 0. Keep in
mind, that the condition λ = 1 can be fulfilled for any
0 ≤ φ ≤ 1.

The subfigures (h) and (i) illustrate the exchange
between points near the flat and cylindrical boundary.
Subfigure (h) shows that σ̂′

z ≈ 0 holds for all λ. There is
no percolation transition in σ̂′

y at λ = 1/2 in (h). In (i)
a percolation transition in σ̂′

y occurs at λ = 1/2, while
the strong curvature of σ̂′

z indicates again a percolation
transition at λ = 1 for em → 0.

The cylindrical cases with dp ≈ 0 or dm ≈ 0 are
shown in subfigures (k) and (l). In (k) the percolation
transition for σ̂′

y and σ̂′
z at λ = 1/2 is clearly visible.

This transition does not appear in subfigure (l).
The eight subfigures illustrate the difference between

the parameter pairs (dp, ep) and (dm, em). It is mainly
the pair (dp, ep) that determines whether or not an
additional percolation transition emerges at λ = 1/2.
It is also responsible for the smallness of σ̂′

z in the limit
dp → 0 or ep → 0.

10.2.5 Interpolation

The twelve results for σ̂′ shown in Fig. 3 depend in
many cases continuously on the parameters (dp, ep, dm,
em). The continuous parameter dependence can be used
to interpolate between different cases and to envisage
results for other cases. This will be illustrated with two
examples.

Consider first the sequence (d) → (f) → (h) → (j).
In the first transition the pair (dm, em) moves from
the lower boundary (flat) to the upper boundary (pro-
late) while (dp, ep) moves slightly away from the oblate
boundary. The change in σ̂′ is small and mainly seen
in σ̂′

y. In the transition (f) → (h) both parameter pairs
move towards the cylindrical boundary. The result is
that the curvature in σ̂′

y becomes much more pro-
nounced and also σ̂′

x becomes curved. The curvature

in σ̂′
x is due to the percolation transition that emerges

at λ = 1/2, because the open symbol has moved to
the left. This is confirmed in the transition (h) → (j)
as the parameter pair (dp, ep) moves even closer to the
cylindrical boundary. The change in σ̂′

y on the other
hand is caused by the closed symbol being close to the
cylindrical boundary.

Next, consider the sequence (c) → (e) → (i) → (l). In
the first transition (c) → (e) the pair (dp, ep) remains
essentially fixed, while (dm, em) moves from prolate to
flat. As a result σ̂′

z becomes strongly curved upwards,
indicating a percolation transition at λ = 1. Shifting
(dp, ep) close to the cylindrical boundary and (dm, em)
only slightly keeps the upward curvature in σ̂′

z and
exposes the emerging percolation transition at λ = 1/2
in σ̂′

x and σ̂′
y. The transition (i) → (l) then undoes most

of these changes and suggests to close the circle with an
additional transition (l) → (c).

10.3 ac-Conductivity at infinite contrast

Figure 4 shows numerical solutions of Eq. (94) for
the normalized frequency dependent conductivity ten-
sor σ̂′(ω) at infinite conductivity contrast κ = ∞.
The line styles for σ̂′

x, σ̂′
y and σ̂′

z in Fig. 4 are the
same as in Fig. 3. Each of the subfigures in Fig. 4
has a fixed parameter quadruple (dp, ep, dm, em) and
is labeled (a), (d), (g), (j), (e), and (i), to indicate the
analogous pair (dp, ep) - - - - (dm, em) labelled identi-
cally in the central subfigure of Fig. 3. The six subfig-
ures in Fig. 4 are further subdivided into four subfig-
ures. The two columns are distinguished by λ = 0.35
(left column) and λ = 0.55 (right column). The val-
ues are chosen in this way, because they are slightly
above the two percolation thresholds at λ = 1/3 and
λ = 1/2. In each subplot the upper two plots show
log10(σ̂′) against log10(ω), the lower row displays the
behaviour of the derivative d log10(σ̂′(ω))/d log10(ω)
against log10(ω). The numerical value of the derivatives
may be viewed as a local scaling exponent. The abscissa
in all plots is log10(ω). The frequency is dimensionless
and given in units of the relaxation frequency ωp defined
in Eq. (9).

The porosity is φ = 0.1 in all cases.

10.3.1 General observations

Two different sources can be identified which cause dis-
persion of σ̂′. The first source is the dispersion of the
components Pj and Mj , defined in Eq. (97d) and Eq.
(97e). It is the dispersion in the response of a single
local geometry. The second source causing dispersion
arises from disorder and the percolation limit.

The spherical case (a) is shown for reference in the
upper left corner of Fig. 4. In this case the dispersion
is weak and it has a limited range in frequency.

The ordering σ̂′
x(ω) ≥ σ̂′

y(ω) ≥ σ̂′
z(ω) holds in all

subfigures as for dc-conductivities.
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(a): (a): (d): (d):

(g): (g): (j) (j)

(e) (e) (i) (i)

Fig. 4 Analysis of the real part of the frequency dependent normalized conductivity tensor with eigenvalues σ̂′
j(ω) (j =

x, y, z). In all subfigures frequency is dimensionless and given in units of the relaxation frequency ωp defined in Eq. (9). The
six subfigures are labeled (a), (d), (g), (j), (e), and (i) to indicate the corresponding parameter quadruple (dp, ep, dm, em)
shown in the central subfigure of Fig. 3. Each subfigure consists of four subfigures. The two columns show plots for λ = 0.35
(left) resp. λ = 0.55 (right) as indicated. In each subplot the upper two plots show log10(σ̂

′) against log10(ω), the lower two
show the local exponent d log10(σ̂

′)/d log10(ω) versus log10(ω), i.e. the derivative of the upper plot. The line styles for σ̂′
x

(solid), σ̂′
y (dashed), and σ̂′

y (dash-dotted) are the same as in Fig. 3. The porosity is φ = 0.1 in all cases
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In general, the dispersion decreases for increasing val-
ues of λ. Contrary to the limit ω = 0, the values of σ̂′
at high frequencies are barely affected by λ.

10.3.2 Flat pores ep ≈ 0

The case (d) from Fig. 3 is shown in the upper right cor-
ner of Fig. 4. Clearly, σ̂′

z 
 σ̂′
x and σ̂′

z 
 σ̂′
y holds for

all frequencies. As in the case ω = 0, this results from
Pz → 0 for ep ≈ 0. For σ̂′

x and σ̂′
y, there is one disper-

sive frequency range, which arises from the percolation
transition at λ = 1/3. For σ̂′

z, there is an additional
dispersion at higher frequencies. It arises from the dis-
persion of Pz.

10.3.3 Cylindrical pores dp ≈ 0

The case (j) from Fig. 3 is placed on the right side of
the middle row in Fig. 4. As discussed in section 10.2.3,
σ̂′

y and σ̂′
z approach a percolation transition at λ =

1/2. This yields two effects for the dispersion of these
components at λ = 0.35. First, the dispersion is much
larger than the dispersion of σ̂′

x, and second, it occurs in
a much broader frequency range. Both observations can
be explained by the fact that the percolation limits at
λ = 1/3 and λ = 1/2 lead to dispersion in two different
frequency ranges which overlap. This effect cannot be
observed at λ = 0.55 > 1/2.

10.3.4 Completely flat case

The case (g) from Fig. 3 is shown on the middle left
side of Fig. 4. The dispersion of σ̂′

x and σ̂′
y is similar

to case (j), because σ̂′
x approaches the percolation limit

at λ = 1/3 and σ̂′
y at λ = 1/2. The behavior of σ̂′

z
can be qualitatively understood as a combination of
the cylindrical (j) and the circular case (d). Compared
to case (j), there is an additional dispersion at high
frequencies which arises from the dispersion of Pz for
ep ≈ 0.

10.3.5 Flat matrix em ≈ 0

The case (e) from Fig. 3 is shown in the lower left corner
of Fig. 4. At first sight the dispersion looks similar to the
flat case (g). However, the additional dispersion at high
frequencies for σ̂′

z results from the percolation limit at
λ = 1, and not from the dispersion of Pz for ep ≈ 0.
This can be concluded from the fact that this dispersion
barely changes between λ = 0.35 and λ = 0.55.

10.3.6 Mixed case dp ≈ 0, em ≈ 0

The case (i) from Fig. 3 is shown in the lower right cor-
ner of Fig. 4. Because dp ≈ 0, the conductivity eigen-
value σ̂′

y approaches the percolation limit at λ = 1/2,
and σ̂′

z approaches the percolation limit at λ = 1
because em ≈ 0 holds. This means that the three dif-

Fig. 5 Numerical solution of Eq. (109) for σ̂′
x(φ) (solid

curve), σ̂′
y(φ) (dashed curve) and σ̂′

z(φ) (dash-dotted curve)

as functions of average porosity φ for anisotropy parameters
dp = ep = dm = em = 0.58 and local percolation prob-
ability λ(φ) as in Fig. 2. The percolation threshold is at
φc = 1/27 ≈ 3.7% as in Figure 2. Experimental data for
shaly sands, normalized as in Eq. (108), are displayed as
symbols. Square symbols are the data from Table 1, while
circles are from Table 3 in Waxman and Smits [95]

ferent eigenvalues of σ̂′ approach three different per-
colation limits. From this follows that the components
are dispersive over different broad frequency ranges. At
λ = 0.35, the dispersion at low frequencies results from
the transition at λ = 1/3, the dispersion at interme-
diate frequencies from the transition at λ = 1/2, and
the dispersion at high frequencies from the transition
at λ = 1.

11 Application to experiment

A simple application of the new approximations to
experiment can be made for anisotropic shaly quartz
sands. It has recently been suggested by Nguyen, Vu,
and Vu [94] that the electrical conductivities of shaly
sands measured by Waxman and Smits [95] and Hill and
Milburn [96] are anisotropic. Anisotropy ratios as large
as 5 between normal and transversal conductivities are
suggested in Nguyen, Vu, and Vu [94], Table 1. For
details on the samples and their description the reader
is referred to Waxman and Smits [95], p. 113. The elec-
trical conductivity of the anisotropic shaly sands was
measured using an impedance bridge for only one par-
ticular orientation. The data with an accuracy of 0.1
percent will be viewed here as resulting from randomly
orienting the sample. Figure 5 shows the logarithm of
the measured d.c. electrical conductivities normalized
according to Eq. (108). Square symbols are the data
reported in Table 1, while circles are from Table 3 in
Waxman and Smits [95].
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Detailed sample specific information for the
anisotropy of pore p or matrix m in the shaly sands
are not available from the publication [95]. To apply
the theory nevertheless, it will be assumed for sim-
plicity that dp = ep = dm = em holds true. For the
local percolation probability λ(φ) the function under-
lying Fig. 2 is assumed again, so that the percolation
threshold occurs again at porosity φc = 1/27 ≈ 3.7%.
The numerical solution of Eq. (109) yields the three
eigenvalues σ̂′

x(φ), σ̂′
y(φ) and σ̂′

z(φ) of the conductivity
tensor as functions of average porosity. The three curves
for dp = ep = dm = em = 0.58 are displayed in Fig. 5.

The figure suggests that the scatter in the experi-
mental data may indeed arise from an anisotropy of
the samples. In conclusion, the theoretical assumptions
underlying Eq. (109) and the experimental indications,
that the measured conductivities of shaly sands are
anisotropic, can be consistently quantified with the help
of the approximations developed in this paper.

12 Conclusion

Generalized effective medium approximations for
anisotropic media have been derived from local porosity
theory. A purely geometric and experimentally measur-
able characterization of the anisotropy in (local) con-
nectivities was introduced as a prerequisite for the gen-
eralized theory. The resulting anisotropic local porosity
theory is based on the familiar local geometry distribu-
tions from the isotropic case. These distributions char-
acterize the complex pore-space geometry. The gener-
alized theory contains isotropic local porosity theory as
a special case. The local geometry distributions charac-
terizing local anisotropic connectivity are obtained from
local percolating directions. Local percolating direc-
tions were defined based on the generalized percolation
criterion introduced in Eq. (21). The geometric quanti-
ties enter directly into the generalized anisotropic self-
consistent effective medium equation. No adjustable
parameters appear in the generalized anisotropic local
porosity theory. Several hitherto unknown generalized
effective medium approximation formulae are reported.
Among them the analytical results (125) and (132) for
the cylindrical cases are of greatest interest. The gen-
eralized theory recovers previously known anisotropic
effective medium approximations in the literature as
special cases. The practical applicability of the theoret-
ical predictions has been tested by a simple comparison
with experiment.
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Appendix A: Analytic continuation of
Na,Nb,Nc

To continue Eqs. (85) and (90) analytically into the complex
plane let d, e ∈ C with d �= e and d, e /∈ {0, 1}. Assume
|d|, |e| < ∞ and define a, b, c ∈ C by

a = − 1

d2
, b = −1, c = −e2 (A1)

so that with

I1(a, b, c) =

∞
∫

0

du

(u− a)
√

(u− a)(u− b)(u− c)
(A2a)

I2(a, b, c) =

∞
∫

0

du

(u− b)
√

(u− a)(u− b)(u− c)
(A2b)

I3(a, b, c) =

∞
∫

0

du

(u− c)
√

(u− a)(u− b)(u− c)
(A2c)

Equation (90) can be expressed as

Na(d, e) =
e

2d
I1(a, b, c) (A3a)

Nb(d, e) =
e

2d
I2(a, b, c) (A3b)

Nc(d, e) =
e

2d
I3(a, b, c) (A3c)

in terms of three elliptic integrals. These can be written as
[97] (p. 569)

I1(a, b, c) =
2

(a − c)
3
2

u
∫

0

sn2(u′)du′ (A4a)

I2(a, b, c) =
2

(a − c)
3
2

u
∫

0

sd2(u′)du′ (A4b)

I3(a, b, c) =
2

(a − c)
3
2

u
∫

0

tn2(u′)du′ (A4c)

where sn, sd = sn/dn and tn = sn/cn are Jacobian elliptic
functions in Gudermann notation [98] (p.212). These inte-
grals can be expressed in terms of the basic elliptic inte-
grals of the first, second and third kind. They are inde-
pendent of the path in the complex plane as long as the
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path stays within the fundamental period-parallelogram
[98] (p.241). For each crossing of the boundaries of the
period-parallelogram the corresponding period is added.
The incomplete elliptic integral of the first kind is

u = u(a, b, c) =

cos
√

a/c
∫

0

[

1 − (b − c) sin2 x

a − c

]− 1
2

dx

= F (ϕ, k) =

ϕ
∫

0

1
√

1 − k2 sin2 x
dx (A5a)

and

E = E(a, b, c) =

cos
√

a/c
∫

0

[

1 − (b − c) sin2 x

a − c

]+ 1
2

dx

= E(ϕ, k) =

ϕ
∫

0

√

1 − k2 sin2 x dx (A5b)

is the incomplete elliptic integral of the second kind with
complex amplitude ϕ(a, b, c), modulus k(a, b, c), and com-
plementary modulus k′(a, b, c) defined by

cos2 ϕ =
a

c
(A5c)

k2 =
b − c

a − c
(A5d)

k′2 = 1 − k2. (A5e)

The primitive functions are [97] (p. 576, 16.26)
∫

sn2(u)du =
u − E(u)

k2
(A6a)

∫

sd2(u)du =
E(u) − k′2u − k2sn(u)cd(u)

k2k′2 (A6b)
∫

tn2(u)du =
dn(u)tn(u) − E(u)

k′2 (A6c)

where cd(u) = cn(u)/dn(u). Using the special values

F (0, k) = 0, (A7a)
E(0, k) = 0, (A7b)

sn(0) = 0, (A7c)
dn(0) = 1, (A7d)
tn(0) = 0, (A7e)
cd(0) = 1, (A7f)

and the defining relations

sn(u) = sin ϕ =
(

1 − a

c

) 1
2 (A8a)

cn(u) = cos ϕ =
(a

c

) 1
2 (A8b)

dn(u) =
(

1 − k2 sin2 ϕ
) 1

2 =

(

b

c

) 1
2

(A8c)

one finds

u
∫

0

sn2(u′)du′ =
(a − c)(u − E)

b − c
(A9a)

u
∫

0

sd2(u′)du′ =
(a − c)2E

(a − b)(b − c)
− (a − c)u

b − c

− (a − c)sn(u)cd(u)

a − b
(A9b)

u
∫

0

tn2(u′)du′ =
(a − c)[dn(u)tn(u) − E]

a − b
(A9c)

where u and E are given in Eq. (A5). Summation in Eq.
(A4) yields

I1 + I2 + I3 =
2 sn3(u)

(a − c)
3
2 cn(u) dn(u)

=
2√−abc

(A10)

with the help of identities for elliptic functions [97] (p. 569).
Returning to the parameters from Eq. (A1) the result

becomes

Na(d, e) =
e(F − E)

(e2 − 1)(d2e2 − 1)1/2
(A11a)

Nb(d, e) =
e

(d2e2 − 1)1/2

[

E

(d2 − 1)(e2 − 1)

− F

e2 − 1

(d2e2 − 1)1/2

e(d2 − 1)

]

(A11b)

Nc(d, e) =
d2[(d2e2 − 1)1/2 − e2E]

(d2 − 1)(d2e2 − 1)1/2
(A11c)

where d, e ∈ C with d �= e and d, e /∈ {0, 1},

F (d, e)=

cos[1/(de)]
∫

0

[

1 − d2(e2 − 1) sin2 x

d2e2 − 1

]− 1
2

dx (A12a)

E(d, e)=

cos[1/(de)]
∫

0

[

1 − d2(e2 − 1) sin2 x

d2e2 − 1

]+ 1
2

dx (A12b)

and |d|, |e| < ∞. Inserting the parameters from Eq. (A1)
into Eq. (A10) shows that the sum of the depolarization
factors is unity,

Na(d, e) + Nb(d, e) + Nc(d, e) = 1, (A13)

also for complex parameters d, e. For real parameters the
same result can be seen more directly from the substitution
s2 = (u + (1/d2))(u + 1)(u + e2) in Eq. (85).

Appendix B: Some useful integrals

∫

dx

(ax + b)
3
2 (cx + d)

1
2

=
2

bc − ad

(

cx + d

ax + b

) 1
2

(B1)

∫

dx

x(ax + b)
1
2

= G =
1√
b

log

√
ax + b − √

b√
ax + b +

√
b

(B2)
∫

dx

x(ax + b)
3
2

=
2

b
√

ax + b
+

G

b
(B3)

∫

dx

x2(ax + b)
1
2

= −
√

ax + b

bx
− aG

2b
(B4)
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Appendix C: Special cases

1 Prolate spheroid

For prolate spheroids with a ≥ b = c and e = 1 the depo-
larization factors are

Na(d, 1) =
d2 Π(d)

2(1 − d2)
− d2

1 − d2
(C1a)

Nb(d, 1) =
1

2(1 − d2)
− d2 Π(d)

4(1 − d2)
(C1b)

Nc(d, 1) = Nb(d, 1) (C1c)

where

Π(d) =
1√

1 − d2
ln

(

1 +
√

1 − d2

1 − √
1 − d2

)

(C1d)

with 0 < d < 1. For strongly elongated prolate ellipsoids
with a � b = c and d ≈ 0 one finds

Na(d, 1) ≈ d2 ln

(

2

d
− 1

)

(C2a)

Nb(d, 1) ≈ 1

2

[

1 − d2 ln

(

2

d
− 1

)]

(C2b)

Nc(d, 1) = Nb(d, 1) (C2c)

to lowest order.

2 Oblate spheroid

For oblate spheroids where a = b ≥ c one has d = 1. In this
case

Na(1, e) = Nb(1, e) (C3a)

Nb(1, e) =
Ω(e) − e2

2(1 − e2)
(C3b)

Nc(1, e) =
1 − Ω(e)

1 − e2
(C3c)

where

Ω(e) =
arcsin

(

e
√

e−2 − 1
)

√
e−2 − 1

(C3d)

with 0 < e < 1. When e ≈ 0 this becomes

Na(1, e) ≈ Nb(1, e) (C4a)

Nb(1, e) ≈ πe

4

(

1 − 4e

π

)

(C4b)

Nc(1, e) ≈ 1 − πe

2
+ 2e2 (C4c)

as an approximation for very flat oblate spheroids.

3 Elliptical cylinder

The case d = 0 or a = ∞ has depolarization factors

Na(0, e) = 0 (C5a)

Nb(0, e) =
e

1 + e
(C5b)

Nc(0, e) =
1

1 + e
(C5c)

and corresponds to elliptical cylinders. For strongly elon-
gated general ellipsoids with a � b ≥ c one has d ≈ 0 and

Na(d, e) ≈ d2e ln

(

4

d + de
− 1

)

(C6a)

Nb(d, e) ≈ e

1 + e
− d2e

2
ln

(

4

d + de
− 1

)

+
d2e

4

(

3 + e

1 + e

)

(C6b)

Nc(d, e) ≈ 1

1 + e
− d2e

2
ln

(

4

d + de
− 1

)

+
d2e

4

(

3 + e

1 + e

)

(C6c)

where 0 < e < 1.

4 Flat ellipse

For flat ellipses where c = 0 one has e = 0 and

Na(d, 0) = 0 (C7a)
Nb(d, 0) = 0 (C7b)
Nc(d, 0) = 1 (C7c)

for all 0 < d < 1. For almost flat ellipses with e ≈ 0 the
result is

Na(d, e) ≈ d2e

[

F (d) − E(d)

1 − d2

]

(C8a)

Nb(d, e) ≈ e

[

E(d) − d2F (d)

1 − d2

]

(C8b)

Nc(d, e) ≈ 1 − eE(d) (C8c)

where

F (d) = F
(
√

1 − d2,
π

2

)

(C9a)

E(d) = E
(
√

1 − d2,
π

2

)

(C9b)

are complete elliptic integrals of the first and second kind.
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