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Traditional Boltzmann-Gibbs statistical mechanics does not apply to systems with unstable interactions,
because for such systems the conventional thermodynamic limit does not exist. In unstable systems the ground
state energy does not have an additive lower bound, i.e., no lower bound linearly proportional to the number
N of particles or degrees of freedom. In this article unstable systems are studied whose ground state energy
is bounded below by a regularly varying function of N with index σ � 1. The index σ � 1 of regular variation
introduces a classification with respect to stability. Stable interactions correspond to σ = 1. A simple example for
an unstable system with σ = 2 is an ideal gas with a nonvanishing constant two-body potential. The foundations
of statistical physics are revisited, and generalized ensembles are introduced for unstable interactions in such
a way that the thermodynamic limit exists. The extended ensembles are derived by identifying and postulating
three basic properties as extended foundations for statistical mechanics: first, extensivity of thermodynamic
systems, second, divisibility of equilibrium states, and third, statistical independence of isolated systems. The
traditional Boltzmann-Gibbs postulate, resp. the hypothesis of equal a priori probabilities, is identified as a
special case of the extended ensembles. Systems with unstable interactions are found to be thermodynamically
normal and extensive. The formalism is applied to ideal gases with constant many-body potentials. The results
show that, contrary to claims in the literature, stability of the interaction is not a necessary condition for the
existence of a thermodynamic limit. As a second example the formalism is applied to the Curie-Weiss-Ising
model with strong coupling. This model has index of stability σ = 2. Its thermodynamic potentials [originally
obtained in R. Hilfer, Physica A 320, 429 (2003)] are confirmed up to a trivial energy shift. The strong coupling
model shows a thermodynamic phase transition of order 1 representing a novel mean-field universality class.
The disordered high temperature phase collapses into the ground state of the system. The metastable extension
of the high temperature free energy to low temperatures ends at absolute zero in a phase transition of order 1/2.
Between absolute zero and the critical temperature of the first order transition all fluctuations are absent.
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I. INTRODUCTION AND OBJECTIVE

A central tenet of equilibrium statistical mechanics holds,
that stability of interaction potentials is a conditio sine qua
non for normal thermodynamic behavior (see, e.g., Refs. [1],
p. 378; [2], p. 265; and [3], p. 632). Despite its widespread
acceptance this central dogma disagrees with the general
practice to assign temperature (i.e., a quantity from normal
thermodynamics) to unstable systems such as stars (i.e., to
systems outside of normal thermodynamics).

Mathematical models with unstable interactions appear
frequently in theoretical physics [4]. A prominent example
is given by classical point particles with purely attractive
forces (such as gravitation) [5]. It seems less appreciated,
that the Curie-Weiss-Ising model without rescaling of the
spin-spin coupling strength is a model with unstable inter-
actions [6,7]. One objective in this paper is to provide the
derivation of the free energy of the Curie-Weiss-Ising model
with unstable interactions (in Ref. [6], p. 430, Eq. (3)) and
its entropy (Ref. [7], p. 309, Eq. (4.1)) from first principles.
Rigorous discussion of these results is clearly impossible
without first revisiting and then extending the foundations
of statistical mechanics and thermodynamics. Ensembles for

unstable interactions will be introduced in this paper based
on fundamental principles, such as extensivity. Model calcu-
lations with these extended ensembles are carried out for two
examples to demonstrate and exemplify their applicability.

Despite the nonextensivity of unstable systems and the
key role played by a certain fractional exponent, called α

in this paper, the theory presented here has nothing in com-
mon with “nonextensive thermodynamics” [8]. Extensivity
remains valid throughout this work and the fractional expo-
nent α in this work is not a free parameter, but determined
by the Hamiltonian through Eq. (72) below. In “nonextenstive
thermodynamics” [8] extensivity and the zeroth law do not
hold, and the fractional exponent q is a free parameter.

Given that stability of interactions and extensivity are
fundamental for statistical mechanics, a general theory for
unstable interactions necessitates a new perspective on the
Boltzmann-Gibbs ensemble hypothesis. Let me emphasize
that this modified perspective is implicit, but not explicit, in
earlier work [9–18] on the ensemble limit, as witnessed by the
results in [6,7]. One can show that the basic formulae (77) and
(89) of the present paper are related to Eq. (3.3) in Ref. [15]
(p. 68). Rather than to postulate Eqs. (77) and (89) and justify
them by their consequences, the objective in this paper is to
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obtain these formulae from basic and accepted laws of statis-
tical mechanics. In fact, it will be shown here that the basic
principles of equilibrium statistical mechanics follow from
three physically natural hypotheses, namely extensivity of
the macroscopic energy, divisibility of equilibrium states, and
independence of noninteracting systems. Accordingly, these
three hypotheses are postulated as three fundamental laws of
statistical mechanics. Macroscopic extensivity and existence
of thermodynamic potentials are closely related to existence
of the thermodynamic limit and stability of interactions [1].

To exhibit the stability problem in an example consider the
ideal gas. The Hamilton function for a D-dimensional ideal
gas of N point particles of mass m in a region G ⊂ RD with
volume (Lebesgue measure) V = |G| is generally assumed to
be (Refs. [19], p. 46; [20], Eq. (6.42))

H
G

(p1, . . . , pN , r1, . . . , rN ) =
N∑

i=1

p2
i

2m
, (1)

where ri ∈ G are the positions and pi ∈ RD the momenta
of the particles. Here it has been assumed that the particles
are free in the sense that the potential energy vanishes. In
particular, the (two-body) interaction potential �(2) = 0 has
been assumed to vanish.

Existence of the thermodynamic limit requires that the
region G = G(N ) grows with N → ∞ in such a way that the
volume |G| = V → ∞ diverges and the particle density

ρ = lim
N→∞

N

|G(N )| (2)

exists in the limit. For finite N the textbook result (Ref. [19],
p. 47) for the Helmholtz free energy computed from the
canonical ensemble is

F0(T,V, N ) = −kBT log

[
V N (2πmkBT)

DN
2

N! hDN

]
, (3)

where T is the temperature of the ideal gas. It is readily seen
that the thermodynamic limit exists, and that it yields the
thermodynamic potentials of the ideal gas.

The thermodynamic limit does not always exist, if the
particles are understood to be free in the sense that they do
not exert forces on each other, because a constant nonzero in-
teraction potential �(2)(ri, r j ) = �

(2)
0 �= 0 is compatible with

this understanding. Repeating the computations gives in this
case

F(T,V, N ) = �
(2)
0

2
N (N − 1) + F0(T,V, N ) (4)

for the free energy. Now, the free energy per particle F/N
diverges to +∞ in the limit N → ∞ for �

(2)
0 > 0 and to −∞

for �
(2)
0 < 0. Compared to the case �

(2)
0 = 0 the physical sit-

uation is unchanged, because the particles do not exert forces
on each other. Especially when �

(2)
0 ≈ 0 one would expect

the ideal gas laws to remain unchanged. It may come as a
surprise to some readers that conventional Boltzmann-Gibbs
statistical mechanics does not exist for �

(2)
0 �= 0, because the

thermodynamic limit and hence the thermodynamic potentials
do not exist.

As stated in its title the main objective and result
of this paper is to introduce a modification of the con-

ventional Boltzmann-Gibbs theory that allows to include
unstable interactions into statistical mechanics without vio-
lation of extensivity or existence of the thermodynamic limit.
Clearly, such an endeavor is tantamount to reestablishing the
foundations of Boltzmann-Gibbs statistical mechanics and
thermodynamics.

Reestablishing foundations of a physical theory requires
to revisit its basic concepts, such as system or state. In ther-
modynamics the basic concept of a thermodynamic system
is described vaguely as some “piece of the world” (Ref. [21],
p. 17) or as a “macroscopic system in a static state” (Ref. [22],
p. 6). The basic concept of a thermodynamic variable is
vaguely defined as a “measurable macroscopic quantity which
characterizes a system” (Ref. [23], p. 1). In statistical mechan-
ics the basic concept of an ensemble is usually introduced as a
“collection of identical systems” (Ref. [20], p. 63) or as “very
many gases at one instant in time” (Ref. [24], p. 21). Under-
standing, exploring, or defining the limits of applicability of
thermodynamics and statistical mechanics is hardly possible
without reformulating these vague ideas more precisely, i.e.,
more mathematically.

In this paper, ensembles are defined as probability mea-
sures on the microscopic phase space, which is 1023

dimensional or so. Macroscopic conditions such as constant
temperature, pressure, or energy specify submanifolds hav-
ing practically the same dimensionality (if they are again
manifolds), but vanishing volume (Lebesgue measure). This
circumstance alone requires a clear and systematic use of
probability measures and spaces. This need is exacerbated in
the thermodynamic limit in which the phase space becomes
infinite dimensional. A brief definition of measure spaces is
given in Appendix A.

The thermodynamic limit entails also the necessity to spec-
ify domains and their limits mathematically (Refs. [1], Sec. 6,
and [25], pp. 13, 46). The vague concept of a thermodynamic
system becomes insufficient. Here, a thermodynamic system
is defined as a certain type of macroscopic region filled with
a substance. More precisely, thermodynamic systems are re-
stricted to finite unions of convex and compact subsets of R3.
The basic definitions are given in Appendix B.

The paper is organized as follows: In Sec. II the importance
of extensivity for thermodynamics is discussed. In Sec. III the
foundations of statistical mechanics are revisited and reformu-
lated. In the approach introduced here statistical mechanics
is based on three fundamental laws formulated in Sec. III E:
divisibility of equilibrium states, extensivity of energy, and
independence of isolated systems. Section IV formulates clas-
sical lattice spins and classical point particles as examples of
the approach. It also defines stability of interactions. In Sec. V
it is shown that the laws of statistical mechanics formulated
in Sec. III E severely restrict the functional form of equilib-
rium energy distributions. Based on the functional forms of
equilibrium energy distributions the generalized equilibrium
ensembles are introduced in Sec. VI. The generalized micro-
canonical ensemble for unstable interactions with instability
index 1/α is given in Eq. (76) and its partition sum in Eq. (77),
while the canonical ensemble and its partition sum are given
in Eqs. (88) and (89). These are the main results of this paper.
They reduce to the conventional Boltzmann-Gibbs ensembles
in the special case α = 1.
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Finally, in Secs. VII and VIII the generalized ensembles
are applied to unstable ideal gases and unstable lattice spin
systems. In Sec. VII the new ensembles are applied to the
ideal gases with constant K-body interaction. In Sec. VIII the
generalized microcanonical and canonical ensembles are ap-
plied to the Curie-Weiss-Ising model with strong interactions.
Strong interactions means that the coupling constant is not
rescaled to zero with the number of spins. In conventional
Boltzmann-Gibbs theory the coupling constant is rescaled
to ensure existence of the thermodynamic limit (Ref. [26],
Eq. (6.52)). The Curie-Weiss-Ising model without rescaling
is a textbook example of a system with unstable interactions.

II. FOUNDATIONS OF THERMODYNAMICS

A. Systems and subsystems

Extensivity is fundamental for equilibrium thermodynam-
ics [22,27–29]. Unstable systems are believed to violate
extensivity [3]. It is therefore necessary to recall some aspects
of the foundations of thermodynamics.

Let G ⊂ RD denote a subset of RD, where usually D = 3.
A thermodynamic system is defined to be a region G filled
with a substance (e.g. a fluid). The substance may be a pure
substance or a mixture. The amount of substance contained
in G is measured in moles and denoted as N(G). The mole
is a basic unit in the SI system of units. Because arbitrary
subsets G can be very pathological (fractal sets, non-Borel
sets, nonmeasurable sets etc.), it is necessary to restrict them.
In this paper, the region G ⊂ RD is defined to be an element
of the convex ring R, defined as the set of finite unions of
convex bodies in Eq. (B1) in Appendix B. Readers who prefer
less formal presentations may think of the convex ring as a
device to ensure that subsequent statements involving G do
not become invalid due to set-theoretic pathologies.

Two thermodynamic systems G1,G2 are called isolated
from each other if the interaction between them is negligible.
Isolation of a thermodynamic system requires walls. Walls are
a basic concept of thermodynamics (Refs. [23], p. 28, and
[21], p. 21, footnote 4).
Basic Postulate (Existence of macroscopic walls). Thermo-
dynamic systems can be isolated experimentally from each
other to any desired degree of accuracy by means of (macro-
scopic) walls.
A thermodynamic system G is called isolated if the inter-
action between the substance in G and substances in the
complement RD \ G is negligible.

B. States and observables

The states of a thermodynamic system can be described
by macroscopic thermodynamic quantities (such as volume,
energy, entropy, etc.). A macroscopic thermodynamic quantity
or observable A is defined as a continuous, Euclidean in-
variant functional A : R → R on the convex ring. Continuity
refers to the topology induced by the Hausdorff metric defined
in Eq. (B2). A functional A is called Euclidean invariant if
A(gG) = A(G) holds for all G ∈ R and g ∈ RD × SOD. Here
g is an element from the group RD × SOD of D-dimensional
translations and rotations, and gG denotes the translated and
rotated system G.

Extensive quantities are defined as continuous, Euclidean
invariant and additive functionals on R. A given functional
A : R → R is called additive if

A(∅) = 0 (5a)

A(G1 ∪ G2) = A(G1) + A(G2) − A(G1 ∩ G2) (5b)

holds for all G1,G2 ∈ R. Examples of extensive thermody-
namic observables are the amount of substance N(G) or the
molar volume. The molar volume v(G) is defined such that

v(G)N(G) = V (G) = |G| =
∫

G

dDr =
∫
RD

χ
G

(r)dDr (6)

is the volume where

χ
G

(r) =
{

1, for r ∈ G
0, for r /∈ G

(7)

is the indicator function of the set G ⊂ RD.
Thermodynamic equilibrium states are defined as those

states, that an isolated thermodynamic system approaches by
itself, and that remain invariant under time evolution for a
sufficiently long time. Note that equilibrium states may or
may not exist for a given system, and that it depends on the
system and its evolution how long is “sufficiently long.” If
there is time scale separation [30], microscopically “long”
could be “short” macroscopically. Note also that, although
time scales enter at this fundamental level into the definition
of thermodynamic equilibrium states, time does not appear
explicitly in the mathematical formalism of equilibrium ther-
modynamics.

C. Laws of thermodynamics

Extensivity is postulated in this paper as a fundamental law
of equilibrium thermodynamics. Because of its importance it
is proposed to call extensivity the “minus-first law” of ther-
modynamics. Its formulation is as follows.
Minus-First Law (Extensivity of equilibrium). Every equi-
librium state of a thermodynamic system can be completely
characterized by the values of a finite number of extensive
quantities.
Extensivity is important for the thermodynamic limit, i.e., a
scaling limit in which N(G) → ∞ and V (G) → ∞ such that
the molar volume v(G) = V/N and other molar quantities are
constant.

Thermodynamic equilibrium states of a system G will be
denoted as X (G). Let A = ⋃

G{X (G)} denote the set of all
equilibrium states of all thermodynamic systems. Note that
two arbitrary equilibrium states X1, X2 ∈ A need not be in
equilibrium with each other. The notation X1

E∼ X2 is intro-
duced to indicate the special case that X1 is in (complete)
equilibrium with X2. Transitivity of this relation is the zeroth
law of thermodynamics.
Zeroth Law (Transitivity of equilibrium). For any two
equilibrium states X1, X2 ∈ A there exists an experimental pro-

cedure to decide whether X1
E∼ X2 holds, or not. The relation

X1
E∼ X2 is an equivalence relation for X1, X2 ∈ A.

The zeroth law postulates that the set

E = {(X1, X2) ∈ A × A : X1
E∼ X2} (8)
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can be determined experimentally (Ref. [31], p. 2), and obeys
the properties

(X, X ) ∈ E, ∀ X ∈ A (9a)

(X1, X2) ∈ E ⇒ (X2, X1) ∈ E, ∀ X1, X2 ∈ A (9b)

(X1, X2) ∈ E ∧ (X2, X3) ∈ E ⇒ (X1, X3) ∈ E,

∀ X1, X2, X3 ∈ A (9c)

characterizing an equivalence relation. In complete (ther-
mal, mechanical, etc.) equilibrium the equivalence classes
are isotherms. Any mapping � : A → R, that is constant on
isotherms, is called an empirical temperature.

The remaining laws of thermodynamics and their conse-
quences are well known and can be found in [21,22,31]. They
need not be discussed or repeated here.

III. FOUNDATIONS OF STATISTICAL MECHANICS

A. Systems and subsystems

Statistical mechanical systems are systems composed of
a large (ideally infinite) number of microscopic subsystems
or degrees of freedom. Kubo [31] (p. 31) writes, “Systems
composed of only a small number of degrees of freedom
are not the object of thermodynamics.” Ruelle emphasizes in
point (b) on page 1 of [25], “The number of subsystems (of a
statistical mechanical system) is large” and on page 1 of [32]
even more clearly, “The formalism of equilibrium statistical
mechanics—which we shall call thermodynamic formalism—
has been developed since G.W. Gibbs to describe the properties
of certain physical systems. These are systems consisting of a
large number of subunits (typically 1027) like the molecules of
one liter of air or water.”1

Consider a thermodynamic system G ∈ R containing
N(G) moles of a substance with molar volume v(G). Suppose
that it is decomposable as

G =
N⋃

i=1

Gi (10)

into a large number N � 1 of similar or identical elementary
constituents, parts, or subsystems Gi ∈ R. The decomposi-
tion is largely arbitrary. It may even be time dependent. It is
subject to the condition that the amount of substance N(Gi ) in
subsystem Gi obeys

N(Gi ) ≈ N(G j ) ≈ 0 (11)

for all pairs i, j ∈ g = {1, . . . , N}. This hypothesis of com-
parable importance will be formalized in Sec. III E as the
principle of infinite divisibility. In physical chemistry N(Gi) ≈
1/NA is of the order of the inverse Avogadro constant.

If the subsystems Gi are chosen such that their mutual
overlap volume is small compared to their volume, then

1This view is currently being less emphasized. Contemporary
works on the foundations of nonequilibrium statistical mechanics or
thermodynamics often consider systems with few degrees of freedom
“but still in contact with a heat bath” with many degrees of freedom,
that “provides the source of stochastic dynamics” (see, e.g., [33]).

Eq. (11) implies N(G) ≈ NN(Gi ) = N/NA for all i.2 Ho-
mogeneity of the substance requires that the molar volume
v(Gi ) = v(G) is the same for all i. Equations (10) and (11)
imply scale separation. The linear extension of a system is
defined as L(G) := V (G)1/D. Then the ratio of microscopic
to macroscopic length scales (i.e., the scale separation factor)
obeys

L(G)

L(Gi)
≈ N1/D (12)

for all i. For chemical systems in D = 3 with N(G) ≈ 10 one
has N ≈ 1024 and the length scale separation is eight decades,
L(G) ≈ 108L(Gi).

Subsystems correspond to subsets H ⊂ G. Admissible sub-
systems are defined as subsets H ⊂ G that obey

V (Gi ∩ H)

V (Gi)
�= 1

2
(13)

for all i ∈ g. This condition ensures that every elementary
subsystem can be assigned unambiguously. Only admissible
subsystems are considered from here on. To each H ⊂ G
corresponds a subset h ⊂ g of indices defined as

h =
{

i ∈ g :
V (Gi ∩ H)

V (Gi)
>

1

2

}
. (14)

Two admissible subsystems H,H′ are called index equivalent
whenever h = h′. From here on only equivalence classes of
index equivalent admissible subsystems will be considered.
They will simply be referred to as subsystems.

B. States and observables

The set of states of an elementary subsystem Gi is denoted
as 	(Gi ) = 	i. It is generally assumed throughout that a field
F of numbers (F = R or F = C) operates on the set of states
from the left and from the right; i.e., it is assumed that there
exist appropriate maps F × 	i → 	i and 	i × F → 	i com-
patible with the additive and multiplicative group structure of
the number field F .

To cover as many systems as possible (classical, quantum,
continuous, discrete, particle, spin, etc.) the set of microstates
has to be defined in as general a way as possible. The state
space, configuration space, or set of microstates 	G , or briefly
	, of a statistical mechanical system G is defined as the set of
all mappings (see, e.g., Ref. [34], p. 59)

ωG : g →
⋃
i∈g

	i (15)

with ωG (i) ∈ 	i for all i ∈ g = {1, . . . , N}. The notation as a
product space

	G =
N∏

i=1

	i = 	1 × · · · × 	N (16)

will also be used. The state space of a subsystem is defined as
	H = ∏

i∈h 	i.

2An exact formula for N(G) can be derived from Eq. (5), and is
given in Eq. (A3) in Appendix A.
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The projection πH
H′ from a subsystem H ⊆ G to a subsys-

tem H′ ⊂ H ⊆ G with nonempty index subset h′ ⊂ h ⊆ g is
defined as the mapping

πH
H′ : 	H → 	H′

ωH �→ ωH′ = ωH|h′ (17)

that assigns to every map ωH in 	H its restriction to the
nonempty subset h′. The abbreviations πH = πG

H , πH
i = πH

Gi
,

and πi = πG
i are useful in the following. The projections obey

πH
H′′ = πH′

H′′ ◦ πH
H′ (18)

for h′′ ⊂ h′ ⊂ h.
The microstates ωGi ∈ 	i or ω

G
∈ 	

G
are often not

directly observable or measurable without uncertainty. A
probabilistic framework is needed. It is provided by a σ -
algebra Ai of subsets of 	i for each elementary part Gi. For
the full system the product σ -algebra

A = AG =
⊗
i∈g

Ai = A1 ⊗ · · · ⊗ AN (19)

is defined as the smallest σ -algebra with respect to which all
projections πi are (A ,Ai )-measurable (see [34, p. 60]).

Statistical mechanical states or mesostates are probability
measures μ

G
on the measurable space (	

G
,AG ). This idea

seems to go back to Boltzmann [35].
Often a natural a priori measure, denoted as μi = μGi , is

given on the elementary subsystems (	i,Ai ). If it is finite,
then it becomes an elementary mesostate when normalized.
Given such elementary a priori measures μi, the state space
becomes a measure space (	

G
,AG, μ

G
) where

μ
G

= μ1 ⊗ · · · ⊗ μN = μG1 ⊗ · · · ⊗ μGN (20)

is the product measure.
Statistical mechanical observables A are real valued and

measurable functions A : 	
G

→ R. As such they are random
variables on the probability space (	

G
,AG, μ

G
), once a

mesostate μ
G

is given. The most important example is the
energy H

G
defined below.

The image measure A(μ
G

) of μ
G

under the map A :
(	

G
,AG, μ

G
) → (R,B) defines the probability distribution

WA(x) of the random variable A. Here B denotes the σ -
algebra of Borel-sets in R. Explicitly,

WA(x) = μ
G
{A � x} = μ

G
({ω ∈ 	

G
: A(ω) � x}) (21)

is the probability distribution function of random variable A.
For A = H

G
, the probability distribution function WH

G
of the

energy will be called the energy distribution in the mesostate
μ

G
. The energy distribution is very important, because it

permits one to focus attention on the “mesoscopic” probability
space (R,B,WH

G
) instead of the more complicated micro-

scopic probability space (	
G
,AG, μ

G
).

Given any set of elementary mesostates μi, there exists a
family of independent random variables Ai and a probability
space such that for every i the probability distribution of Ai is
μi (Ref. [34], p. 66).

Let h ⊂ g = {1, . . . , N} be an index subset correspond-
ing to a subsystem (H,	H,AH). If the system G is in
the mesostate μ

G
then the subsystem H is in the projected

mesostate μH = πH(μ
G

). Here πH(μ
G

) denotes the image
measure of the measure μ

G
under the projection πH. Then

transitivity of image measures implies for A : 	H → R

WA◦πH
(x) = μ

G
({ωG ∈ 	

G
: A(πH(ωG )) � x})

= (πH(μ
G

)){ωH ∈ 	H : A(ωH) � x}. (22)

The well known transformation formula (Ref. [36], p. 125)∫
	H

A(ωH) d[πH(μ
G

)](ωH) =
∫

	
G

A(πH(ω)) dμ
G

(ω) (23)

for integration with respect to an image measure guarantees
the consistency condition

〈A〉μH
= 〈A〉πH◦μ

G
= 〈A ◦ πH〉μ

G
(24)

for the expectation values of observables A : 	H → R of the
subsystems. Equation (24) states that the expectation values
of subsystem observables A with respect to the projected
mesostate μH are the same as those of the “uplifted” observ-
ables A ◦ πH of the supersystem with respect to μ

G
.

The thermodynamic (macro)states introduced above are
obtained from a mesostate by calculating the expectation val-
ues 〈A1〉(G), . . . , 〈Ak〉(G) where

〈Ai〉(G) =
∫

	
G

Ai(ω)dμ
G

(ω) (25)

with i = 1, . . . , k < ∞. In this way the thermodynamic
macrostates are functionals on the convex ring R in agree-
ment with Sec. II on thermodynamics. Note also that every
statistical mechanical observable gives rise to a stochastic
process indexed by the sets G ∈ R.

C. Microscopic energy

Energy plays a special role and it is an essential part of
the definition of a statistical mechanical system. It will be as-
sumed throughout this paper that energy is the only conserved
quantity of the underlying microscopic system.

A statistical mechanical system with N elementary
parts (Gi,	i,Ai ), i = 1, . . . , N , is defined as a quadruple
(G,	

G
,AG, H

G
) where G,	

G
,AG were defined above,

and

H
G

: 	
G

→ R

ωG �→ H
G

(ωG; N ) (26)

is a measurable function that assigns to every state ωG its
energy H

G
(ωG; N ). Infinite energies H

G
= ±∞ are allowed.3

3For classical systems examples are given in Sec. IV. For quan-
tum systems with N quantum particles the microstate ωG is the
many-particle wave function subject to the condition that it vanishes
whenever one of its arguments is not in G. The set 	

G
is the many-

particle Hilbert space with scalar product ( ·, · ), typically a Sobolev
space such as H1(RDN ) for nonrelativistic particles and H1/2(RDN )
in the relativistic case. The energy function H

G
is specified initially

as a quadratic form on 	
G

. If H
G

(ωG; N ) � C(ωG, ωG ) holds for
all ωG , there is a standard method (Ref. [37], p. 177, the Friedrichs
extension) of defining the corresponding Hamilton operator Ĥ

G
(N )
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Generally, the energy function has the form

H
G

(ωG; N ) = H
G

(ω1, . . . , ωN )

=
N∑

k=1

⎛⎜⎜⎝∑
i1∈g

· · ·
∑
ik∈g

i1<···<ik

H (k)
i1,...,ik

(
ωi1 , . . . , ωik

)⎞⎟⎟⎠ (27)

with k-body energies H (k)
i1,...,ik

: 	i1 × · · · × 	ik → R. Here the
notation ωGi = ωi was used for convenience. Given H

G
, the

energy of a subsystem H whose elementary parts are labeled
by h ⊂ g is defined as HH : 	H → R with

HH(ωH; |h|) = HH(πH(ωG ); |h|) (28)

=
|h|∑

k=1

⎛⎜⎜⎝∑
i1∈h

· · ·
∑
ik∈h

i1<···<ik

H (k)
i1,...,ik

(
ωi1 , . . . , ωik

)⎞⎟⎟⎠,

where the functions H (k)
i1,...,ik

: 	i1 × · · · × 	ik → R are pre-
cisely the same as in the definition of H

G
[see Eq. (27)]. Here

|h| is the number of elementary parts of H.
Consider two disjoint subsystems H1,H2 with

H1 ∩ H2 = ∅, labeled by disjoint index sets h1, h2 ⊂ g,
h1 ∩ h2 = ∅. The union H = H1 ∪ H2 is the compound
system composed of the two subsystems. The energy

HH1,H2 (ωH) = HH1,H2 (πH(ωG ))

= HH(πH(ωG )) − HH1

(
πH1 (ωG )

) − HH2

(
πH2 (ωG )

)
= HH(ωH) − HH1

(
ωH1

) − HH2

(
ωH2

)
(29)

is called the interaction energy between the two subsystems.
Two subsystems are called isolated if their interaction energy
is zero.

D. Stability

The lowest energy, defined as

H0
G

(N ) = inf
ωG∈	

G

H
G

(ωG; N ), (30)

is called the ground state energy. Often there exist states with
H

G
(ωG; N ) = −∞. In such cases a regularization procedure

is needed. Therefore, the condition

H0
G

(N ) > −∞ (31)

is assumed to hold for all N . The inequality (31) is known as
stability of the first kind [38].

Stability of the second kind demands

H0
G

(N ) � −BN (32)

for all N , where B is a constant independent of N . The second
condition of stability excludes, for example, all mathematical
models with gravitation [4].

such that H
G

(ωG; N ) = (ωG, Ĥ
G

(N )ωG ). In the following only
classical systems will be discussed.

Equilibrium statistical mechanics is currently restricted to
interactions that obey Eq. (32). In this paper interactions that
violate (32) will be admitted. Thereby statistical mechan-
ics becomes generalized and applicable to hitherto excluded
classes of unstable interactions.

Assuming that the ground state energy H0
G

(N ) is a measur-
able function of N it can be bounded for sufficiently large N
by a regularly varying function. To see this, let

σ ∗ = lim sup
N→∞

log
[−H0

G
(N )

]
log N

(33)

denote the (upper) order of the negative ground state energy
(Ref. [39], p. 73). The number

σ = max(1, σ ∗) (34)

characterizing the scaling of the ground state behavior of the
model will be called its stability index (or index of regular
variation) for the following reason. If it is finite, σ < ∞, there
exists a slowly varying function �(N ) such that

H0
G

(N ) � −Nσ �(N ) (35)

by virtue of Theorem 2.3.11 in Ref. [39] (p. 81). The ground
state energy is in general always bounded by a regularly
varying function and the special case σ = 1 and �(N ) = B
discussed traditionally corresponds to stability of the second
kind [Eq. (32)]. The inequality (35) introduces a classification
of stability criteria. It will be called fractional stability of
order (σ,�) or fractional stability of order σ whenever �

is a constant.
Examples for fractional stability of order σ > 1 occur

frequently for mathematical models of real matter. Classical
point particles with gravitation have σ = 2, nonrelativistic
bosons with Coulomb interactions have σ = 5/3, and nonrel-
ativistic bosons or fermions with gravitation have σ = 3. For
more examples see Ref. [4].

E. Laws of statistical mechanics

This section introduces a subclass of mesostates called
equilibrium states for macroscopic systems. A system is
called macroscopic if L(G)/L(Gi) ≈ N1/D � 1 and if G can
be decomposed into subsystems each of which again contains
a macroscopically large number of elementary subsystems.

Equilibrium states are defined as those mesostates that
fulfill three fundamental postulates formulated below. These
postulates are introduced here as fundamental laws of statisti-
cal mechanics.

The three laws formalize the experimental fact that it
is possible to divide a macroscopic equilibrium system
into macroscopic equilibrium subsystems without disturbing
thermal equilibrium. This experimental procedure is called
equilibrium preserving insertion or removal of macroscopic
constraints or walls. As an example consider the slow adia-
batic insertion of a planar wall into a gas container in a way
that does not perturb the pressure and temperature of the gas.

First Law of Statistical Mechanics (Divisibility of equi-
librium states). Consider a macroscopic subsystem (H,	H,

AH, HH), H ⊂ G, obtained by equilibrium preserving iso-
lation using macroscopic walls from a macroscopic system
(G,	

G
,AG, H

G
). Here HH is related to H

G
through Eq. (28),
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and the interaction energy HH,K = 0, defined in Eq. (29),
vanishes for all subsystemsK such thatK ∩ H = ∅. If μ

G
is an

equilibrium state of (G,	
G
,AG, H

G
), then, for every choice

of macroscopic wall, the projected mesostate μH = πH(μ
G

)
is an equilibrium state for the subsystem (H,	H,AH, HH).

Note that this law excludes Maxwell’s demon, because it
excludes subsystems defined by microscopic conditions. Mi-
croscopic walls are excluded because they would permit the
construction of nonequilibrium states from equilibrium states
by equilibrium preserving insertion or removal, which would
be self-contradictory. (An example would be microscopic
walls that separate the subset of particles with velocities in
a given interval from the rest.)

Second Law of Statistical Mechanics (Extensivity of
energy). Consider an isolated subsystem as in the first law
of statistical mechanics. Then, for every choice of isolating
macroscopic wall, there exists a positive number a > 0 such
that

a HH
d= H

G
(36)

holds; i.e., the equilibrium energy distributions are of the same
type.

The notation X
d= Y is used for equality in distribution of

the two random variables X,Y . It stands for PX (x) = PY (x)
at all points of continuity of the two (cumulative) probabil-
ity distribution functions PX , PY . Thus, Eq. (36) means that
WH

G
(E ) = WHH

(E/a) where

WH
G

(E ) = μ
G
{ωG ∈ 	

G
: H

G
(ωG ) � E}, (37)

WHH
(E ) = μ

G
{ωG ∈ 	

G
: HH(πH(ωG )) � E}

= μH{ωH ∈ 	H : HH(ωH) � E} (38)

are the equilibrium energy distributions. The mapping SF :
R → R+ assigns to each subsystem H ⊂ G its scale factor
from Eq. (36). It will be called the scale factor functional.

Basic Postulate (Existence of walls). The scale factor
functional SF is surjective.
This assumption plays a similar role as the basic postulate
of walls in thermodynamics. Physically this mathematical
assumption means that the systems and subsystems have to be
macroscopic, so that for every a > 0 there exist macroscopic
walls that allow to isolate a macroscopic subsystem with scale
factor a in Eq. (36).

Third Law of Statistical Mechanics (Independence of
isolated systems). Isolated systems are stochastically inde-
pendent. In particular, their energies are independent random
variables.

IV. CLASSICAL MODEL SYSTEMS

Before exploring the consequences of the three general
laws in Sec. III E it is useful to recall two standard model
systems to which the formalism will later be applied.

A. Classical point particles

The most important application of the statistical formal-
ism is classical Newtonian mechanics of point particles. The
elementary subsystems Gi(t ) in Newtonian mechanics are
called particles and they change with time t ∈ R. The regions

Gi(t ) ∈ R can be chosen arbitrarily subject to the restriction
that their volumes are equal:

|Gi| ≈ |G|
N

(39)

[cf. Eq. (11)]. For point particles one imagines that the mass
mi is concentrated at position ri(t ) ∈ Gi(t ). The positions ri(t )
and momenta pi(t ) are solutions of Hamilton’s equations. If
the momenta are denoted with pi(t ), then (i = 1, . . . , N)

ωi(t ) = (pi(t ), ri(t )), (40a)

	i = RD × RD = R2D, (40b)

Ai = BD ⊗ BD, (40c)

dμi =
D∏

k=1

dpik

p�
i

drik

r�
i

= dpidri

hD
c

, (40d)

where BD is the Borel σ -algebra in D dimensions. The mea-
sure dμi is the Liouville measure on the one-particle phase
space 	i nondimensionalized with the units of length r� and
momentum p�. The dimensional constant defined as

hc =
(

N∏
i=1

r�
i p�

i

) 1
N

(41)

has dimensions of action. A general N-body energy function
for N classical point particles of mass mi can be written as

H
G

(ω; N ) =
N∑

k=1

⎛⎜⎜⎝∑
i1∈g

· · ·
∑
ik∈g

i1<···<ik

H (k)
i1,...,ik

(
ωi1 , . . . , ωik

)⎞⎟⎟⎠
= H

G
(p1, . . . , pN , r1, . . . , rN )

=
N∑

i=1

p2
i

2mi
+

N∑
i=1

�(1)(ri ) +
N∑

i=1

N∑
j=1
j>i

�(2)(ri, r j )

+
N∑

i=1

N∑
j=1
j>i

N∑
l=1
l> j

�(3)(ri, r j, rl ) + · · ·

+ �(N )(r1, . . . , rN )

=
N∑

i=1

p2
i

2mi
+ �tot(r1, . . . , rN ), (42)

where �(k)(ri1 , . . . , rik ) is the hierarchy of k-body potentials.
The last equality defines �tot(r1, . . . , rN ), the total potential
energy. The special case with �(k)(r1, . . . , rk ) = 0 for all
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k � 3,

H
G

(p1, . . . , pN , r1, . . . , rN )

=
N∑

i=1

p2
i

2mi
+

N∑
i=1

�(1)(ri ) +
N∑

i=1

N∑
j=1
j>i

�(2)(ri, r j ), (43)

and �(2)(ri, r j ) = �(2)(ri − r j ) is in practice most important.
Apparently, many basic interactions in physics are two-body
interactions of this type.

B. Classical lattice spin systems

In modern statistical mechanics classical lattice spin sys-
tems (and lattice gases) have acquired a central position due to
the Heisenberg model [40] and its importance for critical phe-
nomena, solid state physics, and Euclidean field theories [41].
For classical lattice spin systems the elementary subsystems
Gi may be taken as the unit cells of a D-dimensional lattice.
The state of each subsystem Gi is an n-component classical
“spin” vector representing, e.g., the order parameter in critical
phenomena. One has

ωi = (
ω

(1)
i , . . . , ω

(n)
i

)
, (44)

	i = Rn, (45)

Ai = Bn, (46)

where Bn is the Borel σ -algebra in Rn. The a priori measure
dμi is defined as a spherically symmetric finite measure

dμi(ωi ) = g
(
ω2

i

)
dωi, (47)

where ω2
i = ωi · ωi = ∑

ω
( j)
i

2
is the scalar product and dωi is

the Lebesgue measure on Rn. The most important example is
the so called ϕ4 model given by

g(ω2) = exp

[
− g4

4
ω4 − g2

2
ω2

]
(48)

with g4 � 0. It includes many important special cases. The
exactly solvable Gaussian model is the special case g4 = 0.
The n-vector model given by

g(ω2) = δ(ω2 − 1) (49)

is obtained in the limit g4 → ∞ with g2 = −g4. Special cases
of the n-vector model are the D-dimensional Ising model with
n = 1, the XY model with n = 2, and the Heisenberg model
with n = 3. The energy function for all these models is usually
defined as

H
G

(ω) = −
N∑

i=1

Jiωi −
N∑

i=1

N∑
j=1
j>i

Ji jωi · ω j, (50)

where Ji ∈ Rn and Ji j � 0 are one- and two-spin coupling
parameters. On a D-dimensional lattice the coupling constants
Ji j = 0 vanish whenever i and j are not nearest neighbors.

V. EQUILIBRIUM ENERGY DISTRIBUTIONS

This section shows that the three basic laws of statistical
mechanics introduced above determine the equilibrium energy

distributions of statistical mechanical systems up to location
and scale factors. The abbreviation

H̃
G

= H
G

− H0
G

(51)

denotes energies shifted by the ground state energy.

A. Stability

Consider two macroscopic subsystems (Hi,	Hi ,

AHi , HHi ) with i = 1, 2 both obtained by equilibrium
preserving isolation from the same macroscopic system
(G,	

G
,AG, H

G
). Let H1 ∪ H2 = H ⊂ G. Then (H,	H,

AH, HH) is a third macroscopic subsystem. Its shifted energy
function H̃H = HH − H0

H is

H̃H = H̃H1 + H̃H2 (52)

because H1 and H2 are, by construction, isolated from each
other, and H0

H = H0
H1

+ H0
H2

. Let the system G be in some
equilibrium state denoted as μH

G
to indicate its dependence

on H
G

. By the First Law of Statistical Mechanics the im-
age measures are again equilibrium measures. Equation (52)
contains three random variables on three different probability
spaces. Using the projections πH, πHi it becomes

H̃H ◦ πH = H̃H1 ◦ πH1 + H̃H2 ◦ πH2 , (53)

an equation for random variables on the same probability
space (	

G
,A

G
, μH

G
).

Let a1, a2 > 0 be two given positive numbers. Because
the scale factor functional SF is surjective there exist two
subsystems H1,H2 isolated by macroscopic walls such that
relation (36) holds for each of them. Using (36) and (52) there
exists a positive number a > 0 such that

1

a1
H̃

G
+ 1

a2
H̃

G

d= H̃H1 + H̃H2 = H̃H
d= 1

a
H̃

G
(54)

holds. In other words, for any two positive numbers a1, a2 > 0
there exists a third number a > 0 such that

1

a1
H̃

G
+ 1

a2
H̃

G

d= 1

a
H̃

G
(55a)

holds. The systems H1,H2 are isolated and, hence, by the
Third Law of Statistical Mechanics the random variables
H̃H1 , H̃H2 are independent. Thus, for any a1, a2 > 0 there
exists a constant a > 0 such that

WH̃
G

(a1E ) ∗ WH̃
G

(a2E ) = WH̃
G

(aE ) (55b)

holds for the distribution function WH̃
G

(E ) of the random

variable H̃
G

. Here ∗ denotes the convolution of distribution
functions. A distribution function WH̃ obeying Eq. (55a) or
Eq. (55b) is called strictly stable or stable in the strict sense
[42]. As a consequence of Eqs. (55) the following theorem
holds true.

Theorem V.1. There exists a number α with 0 < α � 2
such that the constant a in Eqs. (55) is related through

a = (
a−α

1 + a−α
2

)−1/α
(56)

to the constants a1, a2 in Eqs. (55).
The proof follows immediately from Ref. [42] (p. 172,

Theorem 3). The number α is called the characteristic expo-
nent or index of stability.
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B. Functional form

Equations (55) determine not only the constant a but also
the functional form of WH̃

G
. To see this note that the random

variables in Eqs. (55) are all non-negative, because the ground
state energy was subtracted. Hence, the distribution WH̃

G
(E )

is concentrated on the interval [0,∞] and vanishes for x < 0.
Let

w(u) = 〈
exp(−uH̃

G
)
〉 =

∫ ∞

−∞
exp(−uE ) dWH̃

G
(E )

=
∫ ∞

0
exp(−uE )w(E ) dE (57)

denote the Laplace-transformed energy distribution, where
w(E ) = dWH̃

G
(E )/dE is the density function, if it exists.

Laplace transformation of Eq. (55b) gives the functional equa-
tion

w

(
u

a1

)
w

(
u

a2

)
= w

(
u

a

)
(58)

to be satisfied by w(E ). Introducing b1 = aα
1 and b2 = aα

2 and
using Eq. (56) this becomes

w
(
ub−1/α

1

)
w

(
ub−1/α

2

) = w
(
u(b1 + b2)−1/α

)
. (59)

Defining the function f (x) = log[w(ux−1/α )] shows that f (x)
satisfies the Cauchy functional equation

f (x) + f (y) = f (x + y). (60)

The only measurable solution of this equation is the linear
map f (x) = B′′x with constant B′′. From this solution one
obtains by inverting the transformations the result

w(u) = exp(B′uα ), (61)

where B′ is a new constant involving B′′. The function w(u)
has to be the Laplace transform of a probability distribution,
and this restricts its parameters via the following well known
theorem (see [42]).

Theorem V.2. A function w(u) on [0,∞] is the Laplace
transform of a probability distribution W (E ) on [0,∞] if and
only if w(0) = 1 and it has derivatives of all orders obeying

(−1)n dnw

dun
� 0 (62)

for all n and u > 0.
Functions obeying Eq. (62) are called completely monotone

[42]. The function w(u) in Eq. (61) is completely monotone if
and only if 0 < α � 1 and B′ � 0, as may be verified by cal-
culating its derivatives. Therefore, introducing B = −B′ � 0,
the Laplace transform of the equilibrium energy distribution
has the form

w(u) = exp(−Buα ) =
∞∑

k=0

(−1)kBkuαk

k!
, (63)

where B � 0 and 0 < α � 1. Inverting the Laplace transform
shows that in the sense of distributions

w(E ; α, B) =
∞∑

k=0

(−1)kBk

k!
δ(αk)(E ) (64)

holds, where δ(α) denotes the fractional derivative of order α

of the Dirac δ-function [43]. The distribution δ(α)(E ) is de-
fined as δ(α)(E ) = E−α−1/�(−α) for E > 0 and δ(α)(E ) = 0
for E � 0. This gives the series expansion

w(E ; α, B) =
∞∑

k=1

(−1)kBkE−αk−1

�(k + 1)�(−αk)
(65)

valid for E > 0. The important scaling relation

w(E ; α, B) = B−1/αw(EB−1/α; α, 1) (66)

follows immediately. It shows that the parameter B determines
the energy scale and should therefore have dimensions of
[Energy]α . The same result can be obtained using Mellin
transforms as is shown in Appendix C. The derivation above
results in the following theorem.

Theorem V.3. Consider a macroscopic statistical mechan-
ical system (G,	

G
,AG, H

G
) with stable or fractionally

stable energy function H
G

. If the system is in an equilibrium
state μH

G
then the probability density of shifted energies of

the system itself and all its subsystems has the form

w(E ; α, B) = 1

αE
H10

11

(
B1/α

E

∣∣∣∣(0, 1)
(0, 1/α)

)

=
∞∑

k=1

(−1)kBkE−αk−1

�(k + 1)�(−αk)
, (67)

where 0 < α < 1 and B � 0. This is a one-sided stable density
with characteristic exponent α.

To simplify notation the one-sided stable densities of index
α will be abbreviated as

hα (x) = 1

αx
H10

11

(
1

x

∣∣∣∣(0, 1)
(0, 1/α)

)

=
∞∑

k=1

(−1)kx−αk−1

�(k + 1)�(−αk)
(68)

so that w(E ; α, 1) = hα (E ) in Eq. (66). Note that this function
appears also in the kernel of fractional time evolution opera-
tors [12,30,44,45]. The (cumulative) probability distribution
is the primitive function

Hα (x) =
∫ x

hα (y)dy =
∞∑

k=0

(−1)kx−αk

�(k + 1)�(−αk + 1)
. (69)

The characteristic exponent α and the energy scale parameter
B are determined by the energy function of the system. This
will be seen in the next section.

C. Parameter identification

The previous sections have shown that postulating three
general laws of statistical mechanics in Sec. III E implies the
functional form for the equilibrium energy distribution given
in Eq. (67). Combining Eqs. (21), (67), and (69) gives the
scaling law

WH
G

(E ; α, B) = μ
G

({ω ∈ 	
G

: H
G

(ω) � E})

=
∫ E

−∞
w(x; α, B)dx = Hα

(
E

B1/α

)
, (70)
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where the value of the two real parameters α, B depends on
the Hamilton function H

G
. These numerical parameters are

restricted by the inequalities 0 < α � 1 and B � 0. To find
the relations α = α(H

G
) and B = B(H

G
) of these parameters

with H
G

, observe that the argument x = E/B1/α of Hα (x) in
Eq. (70) must be dimensionless so that B1/α � 0 must have
dimensions of energy. This suggests to identify the energy
B1/α with the suitably shifted and rescaled microscopic energy

B1/α ←→ aH
[
H

G
(aωω) − H0

G

] = aHH̃
G

(aωω) � 0, (71)

where aH, aω > 0 are rescaling factors and A ←→ B means
that quantity A is to be identified with B. The rescaling factors
depend on N , α, and D. Extensivity of energy, understood as
linearity in the mole number N, then requires σα = 1 or

α = 1

σ
(72)

as the central result. Equations (70)–(72) provide the fun-
damental connection between statistical mechanics and the
underlying microscopic dynamics governed by H

G
.

The rescaling aωω of the microstates reflects scale sep-
aration between microscopic (mechanical) and macroscopic
(thermodynamical) descriptions. The thermodynamic limit
N → ∞ is a scaling limit. The precise meaning of aωω and
the choice of rescaling factors depends on the decomposition
of the system, on the nature of the microstates, on the under-
lying mechanics (dynamics), and on the type of scaling limit.

For the purposes of this paper a rescaling of energy is not
needed, and aH = 1 is assumed throughout. In general energy
rescaling might be unavoidable. The subtraction of H0

G
in

Eq. (71) is crucial for the identification. In stable systems the
ground state energy is just an additive constant which does
not influence the thermodynamic behavior. In the following
the dependence of the energy function H

G
on the stability

parameter α (or σ ) will be indicated as HG,α by an additional
index when needed.

VI. EQUILIBRIUM ENSEMBLES

A. Equilibrium measure and density of states

The basic result (70) for equilibrium energy distributions
on (R,B) combined with the parameter identifications (71)
and (72) suggests the identification of equilibrium measures
on (	

G
,AG ). The measure given by Hα on (R,B) is abso-

lutely continuous with respect to Lebesgue measure and its
density function hα (x) is non-negative. For fixed N the shift
H0
G,α

(N ) and the rescaling parameters aω(N ) are also fixed.
These quantities may in general depend also on α, D and other
parameters of the system. Combining Eqs. (70), (71), and (69)
implies that

0 � Hα

(
E

˜HG,α (aωω; N )

)

=
∫ E

−∞
hα

(
x

˜HG,α (aωω; N )

)
dx

˜HG,α (aωω; N )
� 1 (73)

holds true for every microstate ω ∈ 	
G

. The integral is
the probability that a statistical mechanical system with
microscopic energy function HG,α is macroscopically in equi-

librium and has macroscopic energy less than or equal to E ,
if it is in a given microstate ω. This probability, given
by Eq. (73), suggests to use the measure w(E ; α, B)dE in
Eq. (70) as guidance to identify the equilibrium measure of
a statistical mechanical system with macroscopic energy E .
The idea is to replace B in w(E ; α, B)dE with Eq. (71) and
dE with dμ

G
(ω) to obtain w(E ; α, Hα (ω))dμ

G
(ω). This then

suggests to define the equilibrium measure μHG,α
( · ; E ,G, N )

of a statistical mechanical system G with microscopic energy
function HG,α , macroscopic energy E , volume V = |G|, and
number of subsystems N on the measurable space (	

G
,AG )

of microstates by

μHG,α
(X ; E ,G, N ) =

∫
X

1

Hα (ω)
hα

[
E

Hα (ω)

]
dμ

G
(ω) (74)

for all sets X ∈ AG , where the abbreviated notation4

Hα (ω) = ˜HG,α (aωω; N )

= HG,α[aω(N )ω; N] − H0
G,α (N ) (75)

has been used. Equation (74) defines a measure on (	
G
,AG ),

because the integrand is a non-negative measurable function
(Ref. [36], p. 109). In general, the given a priori measure
μ

G
does not have to be a probability measure, but is here

always assumed to be a σ -finite measure. Then the Radon-
Nikodym theorem implies that the equilibrium measure μH

G

is absolutely continuous with respect to the a priori measure
μ

G
(Ref. [36], p. 116). For X = 	

G
the measure of the full

space μHG,α
(	

G
; E ,G, N ) is the density of states.

B. Microcanonical ensemble

For μHG,α
(	

G
; E ,G, N ) < ∞ the generalized micro-

canonical ensemble (or generalized microcanonical meso-
state) for stable (α = 1) as well as unstable (0 < α < 1)
systems is defined as the probability measure

ρS(X ; E ,G, N ; HG,α ) = μHG,α
(X ; E ,G, N )

μHG,α
(	

G
; E ,G, N )

(76)

for all X ∈ AG on the measurable space (	
G
,AG ) of micro-

scopic states. It gives the probability to find the system G
in equilibrium in a microstate ω ∈ X ⊂ 	

G
with energy E .

The generalized microcanonical partition sum is defined as
the (indefinite) integral (primitive function)

ZS(E ,G, N ; HG,α ) =
∫

μHG,α
(	

G
; E ,G, N ) dE (77)

=
∫∫

	
G

1

Hα (ω)
hα

[
E

Hα (ω)

]
dμ

G
(ω)dE

of the density of states, so that

μHG,α
(	

G
; E ,G, N ) = d

dE
ZS(E ,G, N ; HG,α ) (78)

holds. This allows to calculate microcanonical expectation
values as

〈A(ω)〉α = �E
∂

∂E

∫
	

G

A(ω)dρS(ω; E ,G, N ; HG,α ), (79)

4Note that Hα in Eq. (75) differs from Hα in Eqs. (69) and (73).
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where �E is the thickness of the energy shell. Under appro-
priate conditions this yields the extended equipartition law〈

ωi
∂H

G
(ω)

∂ω j

〉
α

= δi j

{
d

dE
log [ZS(E ,G, N ; HG,α )]

}−1

(80)

of energy, provided the generalized virial is well defined.
The argument G in the function ZS stands for the depen-

dence on volume V = |G| and other macroscopic geometric
parameters. The dependence on H

G
stands for extensive pa-

rameters appearing in the Hamilton function. For general
systems other parameters such as electric and magnetic polar-
izations, displacements, etc., might appear in the microscopic
energy function.

For α → 1 Eq. (63) gives h1(x) = δ(x − 1) and the result
in Eq. (70) becomes

ZS(E ,G, N ; H
G

)

=
∫

	
G

δ
(
E − H

G
(aωω) + H0

G

)
dμ

G
(ω) (81)

for systems with stable interactions (α = 1). Except for a fac-
tor N! Eq. (81) resembles the usual microcanonical ensemble

ZS(E ,G, N ; H
G

) = 1

N!

∫
	

G

δ(E − H
G

(ω)) dμ
G

(ω) (82)

if aω = 1, which is generally accepted for α = 1.
Most authors [19,20,27,46,47] assume extensivity (i.e., the

Minus-First Law) for entropy itself (instead of for entropy
differences as stressed in [48]) and postulate S = kB log ZS for
finite systems. In this work the connection between statistical
mechanics and equilibrium thermodynamics is formulated as

u = NA lim
E ,N→∞

E

N
, (83a)

s(u, v; α) = kBNA lim
E ,|G|,N→∞

log ZS(E ,G, N ; HG,α )

N
, (83b)

in the thermodynamic limit E , |G|, N → ∞ with finite E/N ,
|G|/N and suitable restrictions on the shape of G. Here s
is molar entropy, u is molar internal energy, and v is mo-
lar volume. Equations (83) hold for all 0 < α � 1, the case
α = 1 covering stable interactions. The thermodynamic limit
is needed, if one wants the different ensembles to yield the
same result.

C. Canonical ensemble

The microcanonical ensemble applies to isolated systems,
the canonical ensemble to systems G in contact with a
heat reservoir GT at reservoir temperature T. Treating the
combined system G ∪ GT microcanonically with Hamilton
function HG∪GT ,α the energy HG,α of the (now sub)system G
becomes a random variable. Integration over all states 	GT

of the reservoir or Laplace transformation of Eq. (74)
yields

μHG,α
(X ; T,G, N )=

∫ ∞

0
e−βEμHG,α

(X ; E ,G, N ) dE , (84)

β = 1

kBT
(85)

for every set X ∈ AG . To evaluate Eq. (84) in applications the
formula∫ ∞

0
e−uxhα (x)dx =

∫ ∞

0
e−ux 1

αx
H10

11

(
1

x

∣∣∣∣(0, 1)
(0, 1/α)

)
dx

= exp(−uα ) (86)

is useful. It is readily obtained either from Eq. (61) or from the
series expansions. Inserting Eq. (74) into Eq. (84) and using
this formula gives

μHG,α
(X ; T,G, N ) =

∫
X

exp {−[βHα (ω)]α}dμ
G

(ω) (87)

for all sets X ∈ AG . The generalized canonical ensemble (or
generalized canonical mesostate) for stable (α = 1) as well
as unstable (0 < α < 1) systems is defined as the probability
measure

ρF(X ; T,G, N ; HG,α ) = μHG,α
(X ; T,G, N )

μHG,α
(	

G
; T,G, N )

(88)

for all X ∈ AG on the measurable space (	
G
,AG ) of micro-

scopic states. The normalization factor

ZF(T,G, N ; HG,α ) = μHG,α
(	

G
; T,G, N ) (89)

=
∫

	
G

exp[−(β˜HG,α (aωω))α]dμ
G

(ω)

is the generalized canonical partition sum. For stable interac-
tions with α = 1 and aω = 1 this becomes

ZF(T,G, N ; H
G

) =
∫

	
G

exp[−βH̃
G

(ω)]dμ
G

(ω), (90)

the canonical Boltzmann-Gibbs measure apart from a prefac-
tor due to the energy shift. The connection with thermody-
namics is now given as

f(T, v; α) = −kBNAT lim
|G|,N→∞

log ZF(T,G, N ; HG,α )

N
(91)

in the thermodynamic limit |G|, N → ∞ with |G|/N fixed
and suitable restrictions on the shape of G. Here f is the molar
Helmholtz free energy and v is the molar volume.

D. Grandcanonical ensemble

Grandcanonically the system G is coupled to a heat reser-
voir GT at temperature T and an N-reservoir Gμ at chemical
potential μ. The combined system G ∪ GT ∪ Gμ is discussed
in the canonical ensemble. The grandcanonical partition sum
becomes

Z�(T,G, μ; HG,α ) =
∞∑

N=1

eβμN ZF(T,G, N ; HG,α ) (92)

and the thermodynamic limit has to be taken as an infinite
volume limit |G| → ∞. With suitable restrictions on G it
yields the pressure

p(T, μ; α) = kBT lim
|G|→∞

log Z�(T,G, μ; HG,α )

|G| (93)

as function of temperature T and chemical potential μ.
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E. T-p ensemble

In the T-p ensemble the system is coupled to a vol-
ume reservoir. The partition function of the T-p ensemble is
computed as the Laplace transform with respect to volume
V = |G|

ZG(T, p, N ; HG,α ) =
∫ ∞

0
e−βp|G|ZF(T, |G|, N ; HG,α )d|G|

(94)

of the canonical partition function. The molar Gibbs potential

g(T, p; α) = −kBNAT lim
N→∞

log ZG(T, p, N ; HG,α )

N
(95)

is then obtained in the thermodynamic limit.

VII. APPLICATION TO IDEAL GASES

Ideal gases and their thermodynamic limit are fundamental
for statistical mechanics, because heat reservoirs are infinite
ideal gases. The relationship between statistical mechanics
and thermodynamics given in Eqs. (83) or (91) is usually
established for the Hamilton function of the ideal gas, and then
extrapolated to other cases.

A. Microscopic states and energies

In thermodynamics the monatomic ideal gas is defined by
the ideal gas laws

pv = kBNAT, (96a)

u = 3
2 kBNAT, (96b)

where p is pressure, v is molar volume, T is temperature, NA

is Avogadro’s constant, and kB is Boltzmann’s constant.
In statistical mechanics the ideal gas is defined as a system

of N � 1 noninteracting point particles (subsystems). It is
fundamental to derive the ideal gas laws from this model.
Point particles are called noninteracting when there are no
forces between them. Noninteracting does not imply that all
potential energies vanish, but only that potential gradients
vanish. The generalized ideal gas models are defined by

�(k)
(
ri1 , . . . , rik

) = �
(k)
0

χ
G

(
ri1

) · · · χ
G

(
rik

) (97)

in Eq. (42), where �
(k)
0 , k = 1, . . . , N are constants. The indi-

cator function χ
G

(r) of the set G ⊂ RD restricts the particles
to the region G by means of an infinite potential energy
penalty.

For simplicity only the special case where �
(k)
0 = 0 for

all k except k = K with K � [N/2] is considered. Here [x]
denotes the largest integer smaller than x. The choice �

(k)
0 = 0

for 0 � k < K is made, mainly because it simplifies subse-
quent expressions. The final result remains unchanged in the
more general case. The energy function of K-body ideal gases

is then the sum of the total kinetic and potential energy

HG,K (p1, . . . , pN , r1, . . . , rN ) =
N∑

i=1

p2
i

2mi
+ �tot(r1, . . . , rN )

�tot =
N∑

i1=1

N∑
i2=1

i2>i1

· · ·
N∑

iK =1
iK >iK−1

�
(K )
0

χ
G

(
ri1

) · · · χ
G

(
riK

) (98)

and reduces to the standard ideal gas for �
(K )
0 = 0. It defines

a system of particles that do not exert forces on each other.
The ground state has pi = 0 and ri ∈ G for all i. The

ground state energy

H0
G,K

(30)=
(

N

K

)
�

(K )
0

= �
(K )
0

K!
N (N − 1)(N − 2) · · · (N − K + 1) (99)

implies σ = K from Eq. (34).

B. Rescaling factors

To compute the partition sums a rescaling of states as
in Eq. (71) is needed for correct Boltzmann counting and
extensivity in the thermodynamic limit. The rescaling of po-
sitions and momenta with the number N of elementary parts
reflects separation of scales (change of resolution) between
the underlying microscopic system and the macroscopic ther-
modynamic system. If �

(K )
0 < 0 is negative, then the potential

energy diverges as ∼ − Nσ to −∞ in the limit N → ∞. If
the total energy is fixed, this implies that the kinetic energy
diverges as ∼Nσ , and hence the velocities |vi| scale as ∼Nx

with x = (σ − 1)/2. The state rescaling in Eq. (71) is

aωωi = (appi, arri ) (100)

with aω = aω(N, α, D), where the rescaling factors for posi-
tion ar and momentum ap are chosen as

ar = [�(N + 1)]
1

DN ∼ N
1
D , (101a)

ap =
[
�

(
DN
2α

+ 1
)

�
(

DN
2 + 1

)] 1
DN

∼ N
(σ−1)

2 . (101b)

The rescaling of position ensures correct Boltzmann counting,
while the rescaling of momentum ensures existence of the
thermodynamic limit.

C. Microcanonical partition sum

The microcanonical partition sum in Eq. (77), or the den-
sity of states μHG,α

(	
G

; E ,G, N ), for the generalized ideal
gas models defined in Eq. (98) have to be computed from en-
sembles with stability index α = 1/K with K ∈ N. Inserting
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Eq. (98) gives

μHG,α
(	

G
; E ,G, N ) =

∫
	

G

1[
HG,K (aωω) − H0

G

]hα

(
E[

HG,K (aωω) − H0
G

])
dμ

G
(ω)

=
∫
RD

· · ·
∫
RD

1

HG,K (app1, . . . , arrN ) − H0
G

h1/K

(
E

HG,K (app1, . . . , arrN ) − H0
G

)
dp1 · · · dpN dr1 · · · drN

hDN
c

=
N∏

i=1

(2mi )
D/2

∫
RD

· · ·
∫
RD

1

HG,K (p1, . . . , rN ) − H0
G

h1/K

(
E

HG,K (p1, . . . , rN ) − H0
G

)
dp1 · · · drN

(aparhc)DN

= |G|N MN

(aparhc)DN

∫
RD

· · ·
∫
RD

1∑N
1 p2

i

h1/K

(
E∑N
1 p2

i

)
dp1 · · · dpN , (102)

where Eqs. (72), (100), and (99) were used. In the last equality the integrations over all ri were performed by noting that
h1/K (0) = 0 and H

G
(p1, . . . , rN ) = ∞ for any ri /∈ G. With MN = ∏N

i=1(2mi )D/2 and Eq. (68) the integrations over pi become

μHG,α
(	

G
; E ,G, N ) = K|G|N MN

(aparhc)DN

∫ ∞

−∞
· · ·

∫ ∞

−∞

1

E
H10

11

(∑DN
j=1 x2

j

E

∣∣∣∣(0, 1)
(0, K )

)
dx1 · · · dxDN

(F2)= K|G|N MN

E (aparhc)DN

DNπDN/2

�
(

DN
2 + 1

) ∫ ∞

0
H10

11

(
y2

E

∣∣∣∣(0, 1)
(0, K )

)
yDN−1dy

= |G|N MN

E (aparhc)DN

KDNπDN/2

2�
(

DN
2 + 1

) ∫ ∞

0
H10

11

(
y

E

∣∣∣∣(0, 1)
(0, K )

)
y(DN/2)−1dy

(F3)= |G|N MN

E (aparhc)DN

KDN (πE )DN/2

2�
(

DN
2 + 1

) �
(

KDN
2

)
�

(
DN
2

)
=

N∏
i=1

√
mD

i

|G|N (2πE )DN/2

(hcapar )DN

�
(

DN
2α

+ 1
)

�
(

DN
2 + 1

)
�

(
DN
2

) 1

E
, (103)

where |G| = V (G) is the volume of G. Here Eqs. (F2) and (F3) have been used as indicated. The abbreviation MN was
resubstituted in the last step. For a monatomic ideal gas with mi = m the exact final result is obtained by integration with
respect to E as

ZS(E ,G, N ;HG,α ) =
∫

μHG,α
(	

G
; E ,G, N ) dE = |G|N

(araphc)DN

(2πmE )DN/2

�
(

DN
2 + 1

) �
(

DN
2α

+ 1
)

�
(

DN
2 + 1

) . (104)

Inserting the rescaling factors from Eq. (101) and identifying hc = h with Planck’s constant reproduces the ideal gas result

ZS(E ,G, N ;HG,α ) = |G|N
hDN N!

(2πmE )DN/2

�
(

DN
2 + 1

) (105)

independent of the index of stability α = 1/K for all K ∈ N. Inserting the result ZS into Eq. (83) gives the molar entropy of the
ideal gas [19] and by differentiation the ideal gas laws (96).

D. Canonical partition sum

The canonical partition function is computed from Eq. (89) with α = 1/K as

ZF(T,G, N ; HG,1/α ) =
∫
RD

· · ·
∫
RD

exp
{−[

β
(
HG,1/α (app1, . . . , arrN ) − H0

G,1/α

)]α}dp1 · · · drN

hDN
c

= |G|N
(araphc)DN

∫
RD

· · ·
∫
RD

exp

{
−

[
β

2m

N∑
i=1

p2
i

]α}
dp1 · · · dpN

= |G|N
(araphc)DN

2π
DN
2

�
(

DN
2

) ∫ ∞

0
exp

{
−

(
β

2m
t2

)α}
tDN−1 dt

= 1

α

|G|N
(r�ar )DN

(
2πmkBT

a2
p p�2

) DN
2

�
(

DN
2α

)
�

(
DN
2

) , (106)
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where the integrals (F1) and (F2) have been used, and Eq. (41)
in the last step. Inserting the rescaling factors from Eq. (101)
and identifying hc = r� p� = h with Planck’s constant gives

ZF(T,G, N ; HG,1/α ) = |G|N
N!

(
2πmkBT

h2

) DN
2

, (107)

the canonical partition sum of the ideal gas independent of K .
The thermodynamic potentials follow from Eq. (91).

VIII. APPLICATION TO SPIN SYSTEMS

A. Infinite range Ising model

A textbook example for unstable interactions in lattice spin
systems is the infinite range Ising model with strong coupling.
It arises from Eq. (50) by setting

n = 1, Ji j = Js, and Ji = h (108)

for all i, j = 1, . . . , N ∈ N. The double summation in
Eq. (50) extends over all N (N − 1)/2 pairs of spins. The
energy function is then

H
G

(ω) = −Js

N∑
i=1

N∑
j=1
j>i

ωiω j − h
N∑

i=1

ωi, (109)

where every Ising spin ωi = ±1 interacts with all other spins
with a coupling constant Js > 0. In addition an external field
h ∈ R acts on every spin.

The weak coupling variant of Eq. (109), the so called
Curie-Weiss-Ising model, is an exactly soluble textbook
paradigm for the mean-field universality class. It is obtained
by replacing Js with Jw/N in Eq. (109) so that the first term
increases as N instead of as N2. The Gibbs free energy per
spin of the weak coupling model reads

g(T, h) = kBT

[
log

(
1 + m

2

) 1+m
2

+ log

(
1 − m

2

) 1−m
2

]

− Jw

2
m2 − hm, (110)

where the solution of the celebrated mean-field equation

m = tanh

(
Jwm + h

kBT

)
(111)

gives m = m(T, h) (see Refs. [26,41]). Mean-field critical
behavior is expected to apply above the upper critical dimen-
sion of realistic models with short range interactions. This is
consistent with the observation that interactions with infinite
range are related to the D → ∞ limit [26,41] of short range
models.

The state space 	
G

will here be denoted as 	N , because it
is discrete and G plays no role. In fact

	N = {ω = (ω1, . . . , ωN ) : ωi = ±1, i = 1, . . . , N} (112)

is the set of 2N corners of the N-dimensional hypercube. Let
N−(ω) and N+(ω) denote the number of negative and positive
spins in state ω with

N = N+(ω) + N−(ω) (113)

for all ω ∈ 	N , and let M : 	N → {−N, . . . , N}

M(ω) :=
N∑

i=1

ωi = N+(ω) − N−(ω) (114)

denote the total magnetization of the state ω. Then

M + N = 2N+, (115a)

M − N = −2N−, (115b)

and the observation

M(ω)2 =
(

N∑
i=1

ωi

)2

= N + 2
N∑

i=1
i> j

N∑
j=1

ωiω j (116)

allows to express the energy from Eq. (109),

HN (ω) = −Js

N∑
i=1

N∑
j=1
j>i

ωiω j − h
N∑

i=1

ωi

= HN (M(ω)) = −Js

2
(M2 − N ) − hM, (117)

as a function of total magnetization M = −N, . . . , N . The
ratio

m := M

N
= 1 − 2N−

N
= 2N+

N
− 1 (118)

is the magnetization per spin. Here and below, the notation HN

is used instead of H
G

, because all spins couple to all spins, and
the domain plays no role.

For h > 0 the ground state is ω0 = (+1, . . . ,+1), for
h < 0 it is ω0 = (−1, . . . ,−1) [49]. For h = 0 there are two
states ω0 = (±1, . . . ,±1) of lowest energy. The ground state
magnetizations are MN (ω0) = ±N . The ground state energy
is

H0
N = −Js

2
(N2 − N ) − h sgn(h) N (119)

for all Js > 0, h ∈ R, N ∈ N. Equation (34) shows that the
index of stability is σ = 1/α = 2.

B. Rescaling factors

Contrary to the case of the ideal gas, the system is discrete
and has only a finite number of states at fixed N . Therefore,
no rescaling is needed and

aω = 1 (120)

is used for the rescaling factors. It will be seen that the gener-
alized ensembles lead to existence of the thermodynamic limit
and extensive thermodynamic potentials, although the energy
diverges as N2. In conventional Boltzmann-Gibbs theory exis-
tence of the thermodynamic limit N → ∞ requires rescaling
the strength J/N of the coupling constant [26,41].

C. Microcanonical partition sum

The natural variables in Eq. (117) are the magnetization
M and the magnetic field h (see [26]). While M is extensive,
h is intensive. The microcanonical partition sum in Eq. (77)
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becomes with α = 1/2

ZS(E , h, N ; HN ) = ZS(E , h, N ) (121)

=
∑

ω∈	N

1

HN (ω) − H0
N

h1/2

(
E

HN (ω) − H0
N

)
,

where the summation runs over all 2N spin configurations. The
result

h1/2(x) = x−3/2

√
4π

e−1/(4x) (122)

is obtained from Eq. (68). With this Eq. (121) becomes

ZS(E , h, N ) =
∑

ω∈	N

√
HN (ω) − H0

N

4πE3

× exp

(
− (HN (ω) − H0)

4E

)

=
N∑

N+=1

(
N

N+

)√
HN (N+) − H0

N

4πE3

× exp

(
−

(
HN (N+) − H0

N

)
4E

)
(123)

when the summation over the 2N spin configurations is written
as a summation over the possible values for the number of
positive spins. Because of HN (N+ = 0) = H0 the term for
N+ = 0 vanishes and the summation starts at N+ = 1.

The energy shifted by H0
N becomes

H̃N = HN − H0
N

= −Js

2
(M2 − N ) − hM + Js

2
(N2 − N ) ± hN

= −N2 Js

2
(m2 − 1) − hN (m ∓ 1), (124)

where the upper sign applies for h > 0, the lower for h < 0.
Inserting this into Eq. (123) leads to

ZS(E , h, N ) =
N∑

N+=1

(
N

N+

)
(125)

×
√

N2

4πE3

(
−Js

2
(m2 − 1) − h

N
(m ∓ 1)

)

× exp

[
N2

4E

(
Js

2
(m2 − 1) + h

N
(m ∓ 1)

)]
,

where m = (2N+/N ) − 1. For N, E → ∞ one finds using the
approximations from Appendix D

ZS(E , h, N ) ≈
N∑

N+=1

exp

{
−N

[(
1 + m

2

)
log

(
1 + m

2

)
(126)

+
(

1 − m

2

)
log

(
1 − m

2

)
+ Js

8e
(1 − m2)

]}
,

where e = E/N is the energy per spin. This finding suggests
that the thermodynamic limit exists. For large N the sum is

dominated by the term for which(
1 + m

2

)
log

(
1 + m

2

)
+

(
1 − m

2

)
log

(
1 − m

2

)
+ Js

8e
(1 − m2) (127)

is smallest. The saddle point condition reads

artanh(m) − Jsm

4e
= 0 (128a)

or

m = tanh

(
Jsm

4e

)
, (128b)

where Appendix E has been used. The second derivative of
the expression (127), given as

1

1 − m2
− Js

4e
> 0, (129)

is positive because

1

m
artanh(m) <

1

1 − m2
(130)

holds for −1 � m � 1, m �= 0. Thus the solution of Eq. (128)
determines the value N+ = N (m + 1)/2 that dominates the
summation in Eq. (126).

D. Microcanonical entropy per spin

The thermodynamic limit N → ∞, E → ∞ is taken such
that the energy per spin E/N = e exists. Using Eq. (D4) the
entropy per spin becomes in this limit

s(e, h) = kB lim
N→∞
E→∞
E/N=e

1

N
log ZS(E , h, N ) (131)

= − kB

[(
1 + m

2

)
log

(
1 + m

2

)
+

(
1 − m

2

)
log

(
1 − m

2

)
+ Js

8e
(1 − m2)

]
with m = m(e, h) = m(e) given by the solution of Eqs. (128).

For e > Js/4 the solution of Eqs. (128) is m = 0 and the
entropy is concave. One finds

s(e, h) = kB log 2 − kBJs

8e
(132)

for e > Js/4 and all h. At e = Js/4 the solution m becomes
unstable and at this point one has

s(e, h)|e=Js/4 = kB log 2 − kB

2
, (133a)

∂s(e, h)

∂e

∣∣∣∣
e=Js/4

= 1

T
= 2kB

Js
. (133b)

For e < Js/4 the entropy is convex and the specific heat is
negative.

The concave hull is given by the straight line

s(e, h) = kB2(log 2)2

Js
e (134)
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connecting the point (s, e)=(0, 0) to the point (s, e)=(sc, ec)
where

ec = Js

4 log 2
, (135a)

sc = kB
log 2

2
. (135b)

The slope

1

Tc
= sc

ec
= kB

Js
2(log 2)2 (136)

of the flat section determines the critical temperature Tc of a
first order phase transition. The latent heat per spin given by

�Q = Tcsc = Js

4 log 2
≈ 0.36Js (137)

is significant. Summarizing

s(e, h) =
{

kB log 2 − kBJs
8e for e � ec, h ∈ R

e kB (log 2)2

Js
for e � ec, h ∈ R

(138)

is the entropy per spin in equilibrium.

E. Gibbs free energy per spin

The microcanonical temperature is defined by the relation

∂s
∂e

∣∣∣∣
h

= 1

T
(139)

which leads to

1

T
= −kB artanh(m)

∂m

∂e

∣∣∣∣
h

+ kBJsm

4e
∂m

∂e

∣∣∣∣
h

+ kBJs(1 − m2)

8e2
. (140)

The first two terms on the right hand side cancel by virtue of
Eq. (128a). The resulting relation

kBTJs(1 − m2) = 8e2 (141)

is solved for e and inserted into Eqs. (128) to give the condi-
tion

m = tanh

(
m

√
βJs

2(1 − m2)

)
(142)

that the equation of state m(T, h) has to fulfill.
Equation (142) has up to five solutions. The number of

solutions is controlled by the slope at m = 0 of the argument
inside tanh(x). For

d

dm

√
βJsm2

2(1 − m2)

∣∣∣∣∣
m=0

=
√

βJs

2
> 1, (143)

i.e., for kBT < Js/2 there exist only two solutions m = ±1.
For kBT > Js/2 there exist five solutions, two of which are
unstable. The three stable solutions are

m(T, h) =
{±1 for all T > 0

0 for all T > Js/(4kB).
(144)

Solving Eq. (142) gives m = m(T, h) and

s(T, h) = − kB

[(
1 + m

2

)
log

(
1 + m

2

)

+
(

1 − m

2

)
log

(
1 − m

2

)
+

√
βJs

8
(1 − m2)

]

=
⎧⎨⎩

0 for T < Tc

kB log 2 − kB

√
Js

8kBT
for T > Tc,

(145)

where in the last equation it was used that m = 0 for
T > Tc and m = ±1 for T < Tc are the only stable solutions
of Eq. (142).

The heat capacity per spin is

ch(T, h) =T
∂s
∂T

∣∣∣∣
h

=
⎧⎨⎩

0 for T < Tc, h ∈ R
kB

4

√
Js

2kBT
for T > Tc, h ∈ R.

(146)

At Tc this gives

ch(Tc, h) = kB

4
log 2. (147)

Relation (141) shows

e(T, h) =

⎧⎪⎨⎪⎩
0 for T < Tc√

JskBT
8

for T > Tc.
(148)

Now the thermodynamic definition

g(T, h) = e(T, h) − Ts(T, h) (149)

gives

g(T, h) =

⎧⎪⎨⎪⎩
0 for T < Tc√

Js

2
kBT − kBT log 2 for T > Tc.

(150)

F. Canonical partition sum

To check the consistency of the general formalism it is im-
portant to rederive the same results directly from the canonical
ensemble. For σ = 1/α = 2 the canonical partition sum in
Eq. (89) is written as

ZF(T, h, N ) =
∑

ω∈	N

e−
√

β(HN (ω)−H0
N )

=
N∑

N+=1

(
N

N+

)
e−

√
β(HN (N+ )−H0

N ), (151)
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a sum over N+. Then

ZF(T, h, N ) =
N∑

N+=1

(
N

N+

)

× exp

{
−

√
N2β

(
−Js

2
(m2 −1

)
− h

N
(m ∓ 1)

)}
(152)

is the analog of Eq. (125) in the microcanonical computation.
For N → ∞ one finds

ZF(T, h, N ) ≈
N∑

N+=1

exp

{
− N

[(
1 + m

2

)
log

(
1 + m

2

)

+
(

1 − m

2

)
log

(
1 − m

2

)
+

√
βJs

2
(1 − m2)

]}
(153)

and the largest summand is determined from the saddle point
condition

artanh(m) − βJsm/2√
βJs(1 − m2)/2

= 0 (154)

which is the same as Eq. (142). The thermodynamic limit
N → ∞ exists and the Gibbs free energy becomes

g(T, h) = − kBT lim
N→∞

1

N
log ZF(T, h, N )

= kBT
(

1 + m

2

)
log

(
1 + m

2

)
+ kBT

(
1 − m

2

)
log

(
1 − m

2

)

+
√

kBTJs

2
(1 − m2), (155)

where m = m(T, h) is the solution of Eq. (142). Inserting
the stable solutions m = 0,±1 from Eq. (144) recovers the
specific Gibbs free energy from Eq. (150).

G. Discussion

In conventional Boltzmann-Gibbs theory the thermody-
namic limit for the strong coupling model (109) does not exist.
Although the energy in Eq. (109) increases as N2, the calcu-
lations above establish existence of the thermodynamic limit.
This result demonstrates that the generalized microcanonical
and canonical ensembles are suitable to include systems with
unstable interactions into the realm of applicability of equilib-
rium thermodynamics and statistical mechanics.

Physically, in the strong coupling mean-field theory (109)
the exchange interaction energy varies as ∼N2, while the
contribution from the external field varies only as ∼N . In the
thermodynamic limit the field h becomes irrelevant for the
thermodynamic behavior of the strong coupling model. As a
result the magnetization per spin m = m(e, h) = m(e) given
by the solution of Eqs. (128) does not depend on h, and hence
also the entropy per spin s = s(e, h) = s(e) in Eqs. (138)
does not depend on the field h. The thermodynamic behavior
is dominated purely by the exchange coupling.

The N2 dominance of the exchange interaction energy over
the field energy gives rise to a novel type of first order col-
lapse transition into the ground state [7]. Its most remarkable
feature is the absence of thermodynamic fluctuations in the
low energy resp. low temperature phase. Below the critical
temperature

kBTc = Js

2(log 2)2
≈ 1.04Js (156)

the equilibrium state of the system is its ground state. The
equilibrium enthalpy per spin, the equilibrium entropy per
spin, the equilibrium Gibbs free energy per spin, and the
equilibrium heat capacity per spin all vanish below Tc. The
set of equilibrium spin configurations below Tc consists only
of the ground state, a most unusual result.

At T = ∞ the system is in a state with m = 0. If energy
is extracted to reach ec or the system is cooled down to Tc,
then its equilibrium magnetization per spin m(ec, h) = 0 as
well as m(Tc, h) = 0 still vanish at the critical point. The
barrier to the low temperature phase is huge. The metastable
extension of the high temperature phase with m = 0 into the
low energy phase becomes unstable only at e = Js/4 < ec (in
the microcanonical calculation) resp. at T = Js/(4kB) < Tc

(in the canonical calculation). At this point the system must
collapse into the ground state by jumping over a temperature
resp. an energy gap. At a temperature Ts defined by

kBTs = Js

8(log 2)2
≈ 0.26Js (157)

the metastable extension of the entropy per spin becomes
zero, and it is negative for T < Ts. At this same temperature
the metastable extension of the high temperature branch of
the Gibbs potential G in Eq. (150) has a maximum. The
metastable branch of the Gibbs potential for T < Tc ends at
T = 0. Its end point is a critical point representing an unusual
T = 0 phase transition. The phase transition has generalized
Ehrenfest order 1/2 in the generalized Ehrenfest classification
[10,18]. Such transitions were called anequilibrium transitions
in [12].

The ground state with m = ±1 and without any fluctua-
tions is very stable. This is seen from the fact that it remains a
metastable solution of Eq. (142) for all temperatures T > Tc.

The phase transition in the strong coupling model differs
significantly from the result (110) for the weak coupling
model [26,41]. In conventional Boltzmann-Gibbs theory the
existence of the thermodynamic limit requires to replace Js

in Eq. (109) with Jw = Js/N (Ref. [26], Eq. (6.52)). The
exchange coupling strength then tends to zero in the N → ∞
limit, so that the interaction energy is of the same order ∼N as
the field energy. The thermodynamic potentials for the strong
coupling model were compared to the weak coupling model
in [6,7]. The results above are identical up to a trivial energy
shift of Js/2 to those in [6,7].

In the strong coupling model the (T, h)-phase diagram
shows a line of first order phase transitions given by the
equation T = Tc. This line extends from h = −∞ to h = +∞
without ending in any critical point. This resembles the coex-
istence line of fluid-solid transitions and supports the view that
the transition belongs to another hitherto unknown mean-field
universality class.
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IX. SUMMARY

Extensivity and existence of the thermodynamic limit in
equilibrium statistical mechanics have for a long time re-
stricted its applicability to systems with stable interactions.
The extension to unstable interactions introduced in this work
lifts this classic restriction.

Traditional statistical mechanics rests on the fundamen-
tal Boltzmann-Gibbs postulate. “The fundamental postulate
of statistical mechanics asserts that systems with a large
number of particles in thermodynamical equilibrium are de-
scribed by Gibbs distributions. The question of distinguishing
the class of Gibbs distributions by means of some a priori
physically natural conditions is extremely important for the
mathematical foundations of statistical mechanics” (Ref. [50],
p. 405).

This paper has identified three a priori physically natural
conditions that distinguish the class of Gibbs distributions.
These conditions are (1) divisibility of equilibrium states,
(2) extensivity of energy, and (3) independence of isolated
systems. These conditions were identified from considering
extensivity and stability to be important pillars in the founda-
tions of statistical physics.

The class of distributions distinguished by these three con-
ditions is a one parameter family of distributions characterized
by an index of stability σ . The classical Gibbs distributions for
stable and tempered interactions are contained as the special
case σ = 1. In addition the extended class contains distribu-
tions for unstable interactions where σ �= 1.

The one parameter family of distributions leads to a one
parameter family of generalized ensembles for stable and
unstable systems. These were introduced in Sec. VI. The
generalized ensembles were subsequently tested in two cases:
first, for ideal gases with constant K-body potentials where
the stability index is σ = K , and second, for the infinite range
Ising model (Curie-Weiss-Ising model) with strong coupling
where the stability index is σ = 2. The results confirm the
applicability of the generalized ensembles to unstable interac-
tions.

For ideal gases, the generalized unstable ensembles repro-
duce the thermodynamic potentials of the ideal gas for all
values of σ = K ∈ N. While this result was to be expected
on physical grounds, the result is unexpected insofar as the
thermodynamic limit now depends on the value of σ . The ther-
modynamic limit is treated as a scaling limit in which position
and momentum are rescaled in the Hamilton function.

In the case of the mean-field Ising model with strong
coupling, the thermodynamic potentials differ markedly from
the weak coupling universality class. An unusual first order
collapse transition into a fluctuation free ground state is found
indicating the existence of another mean-field universality
class. While this result had been obtained earlier [6] based
on the author’s theory of phase transitions and the ensemble
limit [15], the result was doubted [51], because it had not been
derived directly from the fundamental postulate of statistical
mechanics. Section VIII now closes this gap and provides
such a derivation. The results also exhibit a phase transition
of generalized Ehrenfest order 1/2 albeit in the metastable
high temperature branch of the Gibbs potential in Eq. (150).
It is a critical point at zero temperature. Phase transitions of

order less than unity were predicted and named anequilibrium
transitions in [12].

In summary, the results of this work enlarge the foun-
dations of statistical mechanics. These extended foundations
permit the calculation of thermodynamic potentials for stable
as well as unstable systems in a thermodynamic scaling limit.
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APPENDIX A: PROBABILITY MEASURES

A probability measure assigns a probability to a (random)
event. More precisely, let 	 be a nonempty set interpreted
as the set of elementary observations or elementary events.
A general nonelementary event is then a subset of 	. Let
P (	) denote the set of all subsets of 	 (the power set of 	).
Probabilities of general events can be defined in a consistent
way only on certain classes A of subsets of 	. Such classes
are specified by the following three conditions:

(i) 	 ∈ A .
(ii) With every set in A , also its complement is in A .
(iii) The countable union of sets in A is in A .

A class A of subsets of 	 fulfilling these three con-
ditions is called a σ -algebra. Let A ⊂ P (	) and let
μ : A → [0,∞] be a set function with μ(∅) = 0. The set
function μ is called σ -additive if

μ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

μ(Ai ) (A1)

holds for any choice of countably many disjoint sets Ai ∈ A
with

⋃∞
i=1 Ai ∈ A . A σ -additive set function is called a mea-

sure. A measure is called a probability measure if μ(	) = 1.
A pair (	,A ) consisting of a nonempty set 	 and a σ -

algebra A ⊂ P (	) is called a measurable space. A triple
(	,A , μ) consisting of a nonempty set 	, a σ -algebra A ⊂
P (	), and a measure μ is called a measure space. If μ is a
probability measure it is called a probability space.

An additive set function μ [see Eq. (5)] is called a content
on A . Examples for a content are the volume |G| = V (G) and
the amount of substance N(G) of a thermodynamic system
G ⊆ RD. In that case 	 = RD. A content on A is called finite
if μ(A) < ∞ for every A ∈ A . A content on A is called σ -
finite if there exists a sequence of sets A1, A2, . . . ∈ A such
that

	 =
∞⋃

i=1

Ai (A2)

and μ(Ai ) < ∞ for all i ∈ N. For every content μ Eq. (5)
implies the inclusion-exclusion formula [52]. It is written here
in the notation of Sec. III for the amount of substance as

N(G) =
∑

h∈P(N )

(−1)|h|−1 N

(⋂
i∈h

Gi

)
, (A3)
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where P (N ) is shorthand for P ({1, . . . , N}) and |h| is the
cardinality of h ∈ P (N ).

APPENDIX B: CONVEX RING

The convex ring is defined as the set of finite unions of
convex and compact sets [53]

R =
{
G ⊂ RD : G =

n⋃
i=1

Ki with n < ∞ and

Ki ⊂ RD convex and compact

}
. (B1)

Note that G1,G2∈R implies G1∪G2∈R and G1∩G2∈R.
The convex ring R contains also nonconvex sets. In fact, R is
a dense subset of the metric space C of all compact subsets of
RD [53]. The distance between two sets in C is defined by

d (G1,G2) = max

{
sup
x∈G1

inf
y∈G2

|x − y|, sup
x∈G2

inf
y∈G1

|x − y|
}

(B2)

for G1,G2 ∈ C \ {∅} and by d (∅,∅) = 0 and d (G,∅) =
d (∅,G) = ∞ for the empty set and G ∈ C \ {∅}. It defines
the (Hausdorff) metric on C .

APPENDIX C: FUNCTIONAL FORM
OF ENERGY DISTRIBUTION

Another method to identify w(E ) as a special function is
based on the relation

M { f (x)}(s) = M {L { f (x)}(u)}(1 − s)

�(1 − s)
(C1)

between the Laplace transform and the Mellin transform

M { f (x)}(s) =
∫ ∞

0
xs−1 f (t ) dx (C2)

of a function f (x). Using the Mellin transform [54]

M
{
e−Bxα }

(s) = �(s/α)

αBs/α
(C3)

valid for α > 0 and Res > 0 it follows that

M {w(u; α, B)}(s) = 1

αB(1−s)/α

�((1 − s)/α)

�(1 − s)
. (C4)

The general relation M {x−1 f (x−1)}(s) = M { f (x)}(1 − s)
then implies

M {E−1w(E−1; α, B)}(s) = 1

αBs/α

�(s/α)

�(s)
(C5)

which leads to

E−1w(E−1; α, B) = 1

α
H10

11

(
B1/αE

∣∣∣∣(0, 1)
(0, 1/α)

)
(C6)

by identification with H functions [45]. Using the series ex-
pansion (Ref. [45], p. 125, Eq. (180))

H10
11

(
x

∣∣∣∣(0, 1)
(0, 1/α)

)
= α

∞∑
k=0

(−1)k xαk

k! �(−αk)
(C7)

and noting that the first term in this series vanishes reproduces
the result of Eq. (65).

APPENDIX D: STIRLING’S FORMULA

Stirling’s formula from Ref. [55] (p. 78, formula 6.1.37) is

�(z) ≈ e−zzz− 1
2 (2π )

1
2

(
1 + 1

12z
+ 1

288z2
− · · ·

)
(D1)

for z → ∞ in | arg z| < π , or with n! = �(n + 1) = n�(n)

n! ≈ e−nnn
√

2πn (D2)

for n → ∞. For n → ∞, k → ∞ with k/n → c = const(
n

k

)
= n!

k!(n − k)!

≈
√

n

2πk(n − k)
nnk−k (n − k)k−n

= 1√
2πn

(
k

n

)−k− 1
2
(

1 − k

n

)k−n− 1
2

= 1√
2πn

(
k

n

)−n( k
n + 1

2n )(
1 − k

n

)−n(1− k
n + 1

2n )

(D3)

follows from Stirling’s formula (D2). Thus

log

(
n

k

)
≈ −n[c log c + (1 − c) log(1 − c)] (D4)

for n → ∞, k → ∞ with k/n → c = const.

APPENDIX E: AUXILIARY CALCULATION

∂

∂m

[(
1 + m

2

)
log

(
1 + m

2

)
+

(
1 − m

2

)
log

(
1 − m

2

)]

=1

2

[
log

(
1 + m

2

)
+ 1

]
− 1

2

[
log

(
1 − m

2

)
+ 1

]

=1

2
log

(
1 + m

1 − m

)
= artanh(m). (E1)

APPENDIX F: SOME INTEGRALS

∫ ∞

0
xβ−1e−Cxα

dx = 1

α
C−β/α�

(
β

α

)
, (F1)

∫
· · ·

∫
f
(√

x2
1 + · · · + x2

n

)
dx1 · · · dxn

= nπn/2

�
(

n
2 + 1

) ∫ ∞

0
f (r)rn−1dr, (F2)

∫ ∞

0
xz−1H10

11

(
cx

∣∣∣∣ (0, 1)
(0, 1/α)

)
dx = c−z �(z/α)

�(z)
. (F3)
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