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Abstract
It is proved that the class of c-closed distribution spaces contains extremal domains
and codomains to make convolution of distributions a well-defined bilinear mapping.
The distribution spaces are systematically endowed with topologies and bornologies
that make convolution hypocontinuous whenever defined. Largest modules and small-
est algebras for convolution semigroups are constructed along the same lines. The fact
that extremal domains and codomains for convolution exist within this class of spaces
is fundamentally related to quantale theory. The quantale theoretic residual formed
from two c-closed spaces is characterized as the largest c-closed subspace of the corre-
sponding space of convolutors. The theory is applied to obtain maximal distributional
domains for fractional integrals and derivatives, for fractional Laplacians, Riesz poten-
tials and for the Hilbert transform. Further, maximal joint domains for families of these
operators are obtained such that their composition laws are preserved.

Keywords Convolution · Spaces of distributions · Quantales · Fractional calculus

Mathematics Subject Classification 44A35 · 46F10 · 46A03 · 06F07 · 46F12 · 26A33

1 Introduction

A recurring problem in applications of distribution theory is to find an optimal domain
for a given convolution operator or semigroups of such [1,20,34,56]. Here, “optimal”
means as large as admissible for convolution of distributions [45,50,52,55]. In other
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words, optimal spaces are defined as the convolution duals (originally called “c-duals”
[24,58]) of a given set of distributions.

The main goal of this work is to develop a systematic method to construct opti-
mal domains and codomains of distributions. Our method applies to general sets or
semigroups of convolution operators.

Different from most investigations on this topic we study sets of function spaces
endowed with a composition of spaces that is naturally induced by convolution. The
emerging algebraic and order theoretic structures are investigated in detail, and they
reveal interesting links to quantale theory [47], [17, p. 114-116]. Subsequently, the
distribution spaces are endowed with topologies and bornologies in a uniform way,
which ensures continuity and boundedness properties of convolutions between these
spaces. The application of our general theory is exemplified for convolution operators
used in fractional calculus and for the Hilbert transform.

To explain the crosslinks with quantale theory recall first the general order theoretic
concept of Galois connections on power sets (also called “polarities”) [3, p. 122], [17,
p. 116-120]. According to [3, Thm.19 & Cor., p. 123] any symmetric binary relation
R ⊆ X × X on a set X induces a “symmetric Galois connection”

GR : P(X) → P(X), Y �→ GR(Y ) := {z ∈ X ; ∀y ∈ Y : yRz} (1.1)

and an associated closure operator HR := GR ◦ GR . Taking the set X := D ′ of
distributions and the relation yRz := “y and z are convolvable” furnishes convolu-
tion duals GR = (−)∗D ′ and perfections HR = (−)∗∗

D ′ [58, p. 20]. The elements of
(P(D ′))∗∗

D ′ = {U ⊆ D ′ ; (U )∗∗
D ′ = U }, the closure system associated to (−)∗∗

D ′ , are
called convolution perfect spaces. These spaces are linear by the definition of con-
volvability and (P(D ′))∗∗

D ′ constitutes a complete lattice [3].
The link between convolution perfect spaces and quantales emerges when studying

extremality of inclusions U ∗ V ⊆ W , where U , V ,W ⊆ D ′ are convolution perfect.
This becomes clear from our extremality Theorem 1.

Theorem 1 Let U, V and W be convolution perfect spaces such that convolution of
distributions is well-defined as a bilinear mapping ∗: U × V → W. Then, there
exists a largest convolution perfect space U ′ containing U and a smallest convolution
perfect space W ′ contained in W such that ∗: U ′ × V → W and ∗: U × V → W ′
are well-defined bilinear mappings in the same sense.

The second part of our extremality theorem is immediate from linearity properties of
convolution and the fact that convolution perfect spaces constitute a closure system.
Let ∗̃ denote the partially defined composition

U ∗̃ V := (U ∗ V )∗∗
D ′ (1.2)

of convolution perfect spaces U and V that is defined if and only if U und V are
convolvable elementwise. Clearly, the space U ∗̃ V is the unique solution for W ′ in
Theorem 1. This applies to convolution operators in the following way: Any set of
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distributions U ⊆ D ′ induces a bilinear mapping

∗: (U )∗D ′ × (U )∗∗
D ′ → (U )∗D ′ ∗̃ (U )∗∗

D ′ . (1.3)

The space (U )∗D ′ serves as the largest joint domain for convolution operators with
kernels from U and (U )∗∗

D ′ is the smallest convolution perfect space containing the
kernels. Note, thatwhen all convolution operators K with kernel u ∈ U are represented
by K (v) = u ∗ v = B(u, v) for all v ∈ (U )∗D ′ with some fixed bilinear convolution
mapping B between convolution perfect spaces, then U ∗̃ V is the smallest possible
codomain for this mapping B.

The partially defined operation (1.2) furnishes an algebraic and order theoretic
structure

(

(P(D ′))∗∗
D ′,⊆, ∗̃)

. This triple is identified as a “commutative quantale with
partially defined operation”, as explained in the following.

Up to formalities a commutative quantale [47,48] is a triple (Q,≤, •) with (Q,≤)

a complete lattice and (Q, •) a commutative semigroup such that

sup(A • b) = (sup A) • b for all A ⊆ Q, b ∈ Q. (1.4)

Now, consider for (Q,≤) the set of convolution perfect distribution spaces, ordered by
inclusion, enriched with the null vector space {0} and an artificially adjoined largest
element “∞”. Define • as the extension of ∗̃ to Q by {0} • U = {0} for U ∈ Q,
by U • V = ∞ for non-convolvable U , V ∈ Q \ {∞} and by U • ∞ = ∞ for
U ∈ Q \ {{0}}. It will be proved that this defines a quantale (Q,≤, •) and we will call
it the quantale associated to

(

(P(D ′))∗∗
D ′ ,⊆, ∗̃)

.
Commutative quantales (Q,≤, •) possess residuals (using the nomenclature from

[48, p. 922]) [47, p. 15]. The residual called “c by b” is defined as

c /• b := sup{a ∈ Q ; a • b ≤ c} for all b, c ∈ Q. (1.5)

The property (1.4) and the definition (1.5) result in the equivalence

a • b ≤ c ⇔ a ≤ c /• b for all a, b, c ∈ Q, (1.6)

see [47, p. 15], [17, Def. 3]. Because the quantale associated to
(

(P(D ′))∗∗
D ′ ,⊆, ∗̃)

possesses residuals it follows that the residual “W by V ”, given by the set

⋃
{

U ∈ (P(D ′))∗∗
D ′ ; U ∗ V exists and U ∗ V ⊆ W

}

, (1.7)

is a well-defined convolution perfect space if V ⊆ W and is empty otherwise. Here
V ⊆ W is equivalent to E ′ ∗̃ V ⊆ W , because E ′ is identified as the neutral element
for ∗̃. By construction, the space defined by (1.7) is the unique solution forU ′ in The-
orem 1. Wrapping up, Theorem 1 reflects the closure system property of convolution
perfect spaces and the quantale property (1.4) of the composition ∗̃ (more precisely,
of its extension • from above).
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Let us now outline the paper section by section, thereby introducing notations and
highlighting some important results. Beginning in Sect. 2 we introduce and study the
so called Φ-absolute value

|−|Φ : D ′ → C+, f �→ | f |Φ := sup{|φ ∗ f | ; φ ∈ Φ} for Φ ∈ B(D), (1.8)

where B(D) := {B ⊆ D ; B bounded}. Note, that |−|Φ is absolutely homogeneous
and subadditive, just like a seminorm. In Theorems 2 and 3, these functionals are used
to characterize mapping properties of convolution of distributions via convolution on
I+ := { f : R

d → R+ lower semicontinuous}.
The first part of Sect. 3 studies the quantale structure induced by convolution on

the set system IT, which consist of the cone ideals, i.e. non-empty additively closed
downsets I ⊆ I+, that are moderated, i.e.

TK I ⊆ I for all compact K ⊆ R
d . (1.9)

Here TK f := sup{Ty f ; y ∈ K } is the translation shell of f : R
d → R+ with Ty

denoting translation by y ∈ R
d . A composition q∗ is introduced on IT via

I q∗ J := (I ∗ J )� for I , J ∈ IT, (1.10)

where I ∗ J = { f ∗g ; f ∈ I , g ∈ J }with f ∗g declared pointwise by upper integrals
and where (H)� denotes the smallest cone ideal containing H ⊆ I+. Proposition 4
establishes that (IT,⊆,q∗) is a commutative quantale.

The second part of Sect. 3 transports the quantale structure to a class of distribution
spaces: To U ⊆ D ′ one associates the moderated cone ideal

I = |U |�B := ({|u|Φ ; u ∈ U , Φ ∈ B(D)})� . (1.11)

The regularization-solid closure ofU is defined as the set V ⊆ D ′ adjoint to the cone
ideal I = |U |�B with respect to the mapping |−|�B, in other words

V := {v ∈ D ′ ; ∀Φ ∈ B(D) : |v|Φ ∈ I }. (1.12)

Proposition 6 establishes a bijection between regularization-solid spaces and mod-
erated cone ideals I ⊆ I +

lb := { f ∈ I+ ; f locally bounded}, that is interpreted
via order theoretic adjoints. Further, Theorem 5 states that any convolution inclu-
sion of regularization-solid spaces is equivalent to the convolution inclusion of the
corresponding moderated cone ideals.

Section 4 is devoted to algebraic and order theoretic properties of convolution duals
by studying the quantale (IT,⊆,q∗). Proposition 9 yields a correspondence between
the convolution dual (−)∗D ′ and the duality operation

I �→ (I )∗T := I +
lb /∗T I , (1.13)
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where /∗T denotes residuals (1.5) formed in (IT,⊆,q∗). The correspondence is induced
by the bijection from Proposition 6, mentioned above. Defining

I∗∗
T := {I ∈ IT ; (I )∗∗

T = ((I )∗T)∗T = I } (1.14)

the convolution perfect distribution spaces are found to map bijectively to the non-
degenerate J ∈ I∗∗

T (this means J ∈ I∗∗
T with {0} = J ⊆ I +

lb ). With the composition
I ∗̃ J := (I ∗ J )∗∗

T for I , J ∈ I∗∗
T this gives rise to a Girard-quantale (I∗∗

T ,⊆, ∗̃) with
dualizing element I +

lb [47, Sec. 6]. Identifying the space I+ with ∞, it follows that
(I∗∗

T ,⊆, ∗̃) is isomorphic to the quantale associated to
(

(P(D ′))∗∗
D ′ ,⊆, ∗̃)

, defined
below Equation (1.4). These results are applied to maximal domains for composites
of convolution operators in Theorem 6.

The construction (1.2) by itself does not yield optimal modules and algebras asso-
ciated to semigroups of convolution operators, as has been observed for the Hilbert
transform in [20, p. 301]. Therefore, Sect. 5 studies universal constructions ofmaximal
modules and associated algebras. Let A ⊆ D ′ be totally convolvable, that is, every
p-tuple from A is convolvable. The space

(A)∗MD ′ := {m ∈ D ′ ; ∀a1, . . . , ap ∈ A, p ∈ N : a1 ∗ · · · ∗ ap ∗ m exists} (1.15)

and related constructions are studied in Sect. 5. This construction was introduced
and applied to the mathematical modeling of fractional relaxation as linear trans-
lation invariant systems involving fractional derivatives on distributional domains
in [31]. Theorem 7 establishes, that (A)∗MD ′ defines a convolution module over
(A)∗AD ′ := ((A)∗MD ′ )∗D ′ , improving an earlier result by the authors [31, Thm.8]. The
latter constitutes a perfect convolution algebra: A convolution perfect space A that
is totally convolvable and closed with respect to convolution. With Proposition 13 it
is obtained that perfect convolution algebras correspond to idempotent elements [47,
Def. 2.1.3] of (I∗∗

T ,⊆, ∗̃). The construction (1.15) is applied to the Hilbert transform
in Example 9.

InSect. 6 topological structures are introduced and investigated. Inspired byKöthes’
“normale Topologie” on perfect sequence spaces [33, §30] convolution perfect spaces
U will be endowed systematically with a weighted L1-type topology T∗(U ) and a
bornologyB∗(U ). For these definitionswe obtain two functional analytic results. The-
orem 8: Convolution between convolution perfect spaces is hypocontinuous whenever
well-defined in the algebraic sense. Theorem 9: For given convolution perfect spaces
V ⊆ W , the quantale theoretic residual “W by V ” from Equation (1.7) is equal to the
largest regularization-solid space contained in the space of convolutorsO ′

C (V ,W ) [2,
Def. 12]. The space O ′

C (V ,W ) corresponds to the continuous convolution operators
V → W .

Section 7 treats applications to causal fractional integrals and derivatives considered
as translation invariant convolution operators. Their domains are significantly extended
and the index laws are generalized to larger classes of distributions. Special cases of
these results were recently discussed in [31] and in [22]with reference to desiderata for
fractional integrals and derivatives. The negative fractional Laplacian (−Δ)α/2, α > 0
is discussed in Sect. 8.We prove that the operator (−Δ)α/2,α > 0 defines a continuous
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Table 1 Locations of the definition for uncommon mathematical symbols

Notations Location of definition

|u|Φ , TK f Definition 1 on page 7

I, IT, (−)�, (−)�T , q∗, /∗I, /∗T Definition 2 on page 11

I+
c , I+

b , I+
i,p , I

+
p , I+

*p, I
++ Example 1 on page 15

|−|�B, (−)
�
D ′ , (−)‚

D ′ Definition 3 on page 13

(−)∗T, (−)∗∗
T , I∗∗

T Definition 4 on page 16

(−)∗
D ′ , (−)∗∗

D ′ Definition 5 on page 17

(−)∗aI+ , (−)∗a
D ′ , (−)∗s

D ′ , (−)∗‚a
D ′ Definition 6 on page 19

(−)∗MT , (−)∗AT , (−)∗M
D ′ , (−)∗A

D ′ Definition 7 on page 20

T∗(U ), B∗(U ) Definition 8 on page 22

linear endomorphism ofD ′
α by applying themaximal domain operator. This result was

also stated in the recent “Handbook of Fractional Calculus with Applications” [34],
but the characterization of the distributional domain, which is provided therein, is not
accurate due to a subtle error in its functional analytic construction.

Some remarks on notation: We always treat distributions on R
d and suppress the

attribute (Rd) with the exception of Sect. 7 and the space of causal distributions
D ′+ = D ′+(R). The reader’s familiarity with notations for function spaces from [51],
such asE ′,D ,B etc. is assumed. The compact and bounded subsets of a locally convex
space E are denoted as K(E) and B(E). The abbreviation K := K(Rd) is used and
we write DK := {φ ∈ D ; suppφ ⊆ K } for K ⊆ R

d . Translation, reflection and the
support of a distribution u are denoted as Txu, ǔ and supp u respectively. The absolute
convex closure of a subset B of a linear space is denoted by acx B. Dual pairings
are denoted by 〈−,−〉. The shorthand { f = g} stands for {x ∈ R

d ; f (x) = g(x)}.
Because many uncommon or new notations are used in this work, we included Table 1
for convenient reference.

2 Generalized absolute values and convolution of distributions

This Section summarizes properties of generalized absolute values and translation
shells and then describes their application to convolution.

2.1 Basic properties of generalized absolute values and translation shells

Definition 1 Let u ∈ D ′ and Φ ∈ B(D). Define the Φ-absolute value of u as

|u|Φ(x) := sup{|φ ∗ u| ; φ ∈ Φ} for all x ∈ R
d . (2.1)
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Let f ∈ I+ and K ⊆ R
d . The K-translation shell of f is defined as

TK f (x) := sup{Ty f (x) ; y ∈ K } for all x ∈ R
d . (2.2)

The Φ-absolute value |u|Φ of a distribution u is a locally Lipschitz continuous
function R

d → R+. In particular |u|Φ ∈ I +
lb and |u|Φ is a regular distribution. Note,

that the mapping D ′ � u �→ |u|Φ ∈ I+ is absolutely homogeneous and subadditive,
just like a seminorm. Similar to the definition of the spaces D ′

L p the definition of
generalized absolute values depends on the Lie group structure of R

d . The fact that

TKΦ = {Txφ ; φ ∈ Φ, x ∈ K } ∈ B(D) for all K ∈ K, Φ ∈ B(D), (2.3)

makes generalized absolute values more convenient to use in connection with transla-
tion shell operators as compared to absolute values of regularizations. The latter could
be called “weak generalized absolute values”.

Formation of K -translation shells equals supremal convolution with the indicator
function 1K . Supremal convolution arises in the context of convolution operators of
measures on weighted spaces of continuous functions [30]. By virtue of [30, Prop. 3]
TKI+ ⊆ I+ and TKI

+
lb ⊆ I +

lb for all K ∈ K.
Let us summarize some readily verified relations. Generalized absolute values and

compact translation shells are connected by the relations

|u|(TKΦ) = TK (|u|Φ) for all u ∈ D ′, K ∈ K, Φ ∈ B(D) (2.4a)

and

| f |Φ ≤ sup{‖φ‖1 ; φ ∈ Φ} · T
(−⋃

suppΦ)
f for all f ∈ I +

lb , Φ ∈ B(D). (2.4b)

Moreover, for all K ∈ K with non-empty interior one finds φ ∈ DK such that

f ≤ |TK f |{φ} for all f ∈ I +
lb . (2.4c)

Generalized absolute values preserve supports up to compact sets, that is

supp|u|Φ ⊆ supp u −
⋃

suppΦ for all u ∈ D ′, Φ ∈ B(D). (2.5a)

Further, if f ∈ E is such that { f = 1} ⊇ supp u + (K ∪ {0}), then

|u|Φ = | f | · |u|Φ = | f · u|Φ. (2.5b)

For 1 ≤ p ≤ +∞ and u ∈ D ′ one readily derives from [51, Thm. XXV] that

u ∈ D ′
L p ⇔ |u|Φ ∈ L p for all Φ ∈ B(D). (2.6)
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Proposition 1 Let (θn) be an approximate unit and Φ ∈ B(D). Then

|(1 − θn)u|Φ n→∞−→ 0, |θnu|Φ n→∞−→ |u|Φ within L∞
loc for all u ∈ D ′, (2.7a)

and there exists Ψ ∈ B(D) such that

|(1 − θn)u|Φ ≤ |u|Ψ , |θnu|Φ ≤ |u|Ψ for all n ∈ N and u ∈ D ′. (2.7b)

Proof Let x ∈ R
d and u ∈ D ′. Then the functions from the set (1− θn)Tx Φ̌ converge

to zero uniformly withinD for n → ∞ and |(1− θn)u|Φ(x) is equal to sup{|〈u, (1−
θn)Tx φ̌〉| ; φ ∈ Φ} by transposition. It follows |(1 − θn)u|Φ(x) → 0 for n → ∞.
Further, |θnu|Φ → |u|Φ point-wise for n → ∞, because |−|Φ satisfies the inverse
triangle inequality. Replacing Φ by TKΦ and using (2.4a) yields (2.7a). Because the
set of functions B := {1 − Tx θ̌n,Tx θ̌n ; x ∈ R

d , n ∈ N} belongs to B(B), the set
of test functions Ψ := B · Φ belongs to B(D). Now, Equation (2.7b) follows by
construction of Ψ . ��
Proposition 2 The following three sets of functions D ′ → I+

{u �→ |u|Φ ; Φ ∈ B(D)} (2.8a)
{

u �→ 1K ∗ |u|φ ; φ ∈ D, K ∈ K
}

(2.8b)
{

u �→ TK (|u|φ) ; φ ∈ D, K ∈ K
}

(2.8c)

generate the same cone ideal of functions D ′ → I+.

Proof It is known that every finite Φ ⊆ D is contained in acx(Ψ ∗ Ψ ) for some other
finite Ψ ⊆ D [14]. An examination of the proof in [14] reveals, that every Φ ∈ B(D)

is contained in acx(Ψ ∗ Θ) for some Ψ ∈ B(D) and some finite Θ ⊆ D (see also
[12], where this is further generalized). Using this, one estimates

sup
φ∈Φ

|φ ∗ u| ≤ sup
ψ∈Ψ

∑

θ∈Θ

|ψ ∗ θ ∗ u| ≤
∑

θ∈Θ

(

sup
ψ∈Ψ

|ψ |
)

∗ |u|θ ≤ C
∑

θ∈Θ

TK |u|θ (2.9)

for someC < ∞ and K ∈ Kwith a finite sum on the right-hand side. For the converse,
note that C · TK θ ∈ B(D) and apply the relation (2.4a). ��
Proposition 3 Let Φ,Ψ ,Θ ∈ B(D). There exist Φ̃, Ψ̃ , Θ̃ ∈ B(D) such that

||u|Φ |Ψ ≤ |u|Θ̃ and |u|Θ ≤ ||u|Φ̃ |Ψ̃ for all u ∈ D ′. (2.10)

Proof Let u ∈ D ′. Let L ∈ K and ψ ∈ DL with
∫

ψ(x) dx = 1. Using (2.4c) and
(2.4a) one obtains

|u|Θ ≤ |TL(|u|Θ)|{ψ} = ||u|(TLΘ)|{ψ}.
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Define K and λ as in (2.4b). By virtue of (2.4b) and (2.4a) one obtains

||u|Φ |Ψ ≤ λ · TK (|u|Φ) = |u|λ·TKΦ.

Thus Φ̃ := TLΘ , Ψ̃ := {ψ} and Θ̃ := λ · TKΦ satisfy (2.10). ��

2.2 Characterization of convolution in terms of generalized absolute values

In the following we recall some properties of convolution ∗ on the set I+ of lower
semicontinuous functions R

d → R+. For definitions and properties of convolution of
distributions we refer to [13,27,39,42,43,46,52,59,60]. In particular, for convolution
of p-tuples see [27,43,46,52,60]. The most common definition for convolvability of
p-tuples seems to be condition (a) in Theorem 2 below.

The convolution f ∗ g of f , g ∈ I+ is defined by the formula

( f ∗ g)(x) :=
∫

f (x − y)g(y) dy for all x ∈ R
d , (2.11)

via an upper integral [5]. Byvirtue of Fubini’s Theorem for lower semicontinuous func-
tions [19, p. 55 (a)], one obtains that (I+, ∗) is a semigroup. Further, ∗ is homogeneous
with respect to R+-scalar multiplication, additive, isotone, reflection invariant and
commutes argumentwise with translations. Conveniently, convolution onI+ does not
require a convolvability condition for well behavedness. Isotony implies the inequality

TK+L( f ∗ g) ≤ TK f ∗ TLg for all f , g ∈ I+, K , L ⊆ R
d , (2.12)

where TK f := sup{Tx f ; x ∈ K } as in Definition 1. The inequality (2.12) with
compact K , L is fundamental for the quantale structures studied in Sect. 3.

Theorem 2 Let u1, . . . , u p ∈ D ′, p ∈ N. The following are equivalent:

(a) The inclusion θΔp(u1 ⊗ · · · ⊗ u p) ∈ D ′
L1(R

dp) holds for all θ ∈ D .

(b) The inclusion |u1|Φ ∗ · · · ∗ |u p|Φ ∈ I +
lb holds for all Φ ∈ B(D).

(c) The convolution |u1|{φ1} ∗ · · · ∗ |u p|{φp} is finite-valued for all φ1, . . . , φp ∈ D .

Proof It suffices to give a proof for p = 2, the generalization to p ∈ N is straightfor-
ward. Denote u = u1 and v = u2. Due to (2.6) condition (a) implies

∀θ ∈ D, Φ ∈ B(D(R2d)) : ∣

∣θΔ · (u ⊗ v)
∣

∣

Φ
∈ L1(R2d). (2.13)

Using Equations (2.5a) and (2.5b), and the fact that θΔ has uniformly bounded deriva-
tives for θ ∈ D , this is found to be equivalent to

∀θ ∈ D, Φ ∈ B(D(R2d)) : ∣

∣θΔ
∣

∣ · |u ⊗ v|Φ ∈ L1(R2d). (2.14)
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According to [54, Theorem 51.7], Φ ∈ B(D(R2d)) can be replaced by Ψ ⊗ Ψ with
Ψ ∈ B(D) in (2.14). Using |u ⊗ v|Ψ ⊗Ψ = |u|Ψ ⊗ |v|Ψ it follows that

∀θ ∈ D, Ψ ∈ B(D) :
∫

|θ(x + y)| |u|Ψ (x)|v|Ψ (y) d(x, y) < ∞ (2.15)

is equivalent to (2.14). The integral in (2.15) is rewritten as

∫

|θ(x + y)| |u|Ψ (x)|v|Ψ (y) d(x, y) =
∫

|θ(x)|(|u|Ψ ∗ |v|Ψ )(x) dx (2.16)

and therefore (2.15) is equivalent to |u|Ψ ∗ |v|Ψ ∈ L1
loc for all Ψ ∈ B(D). Due to

Equations (2.4a) and (2.12), this entails |u|Ψ ∗ |v|Ψ ∈ L∞
loc for all Ψ ∈ B(D), which

is Condition (b). For trivial reasons “(b) ⇒ (c)”.
Note, that (c) is equivalent to (ψ ∗ u) · (φ ∗ v̌) ∈ L1 for ψ, φ ∈ D when p = 2.

Therefore “(c) ⇒ (a)” is a corollary of [52, Thm.2]. ��
Theorem 3 Let Φ ∈ B(D) and p ∈ N. There exists Ψ ∈ B(D) such that

|u1 ∗ · · · ∗ u p|Φ ≤ |u1|Ψ ∗ · · · ∗ |u p|Ψ (2.17)

for all convolvable tuples (u1, . . . , u p) with u1, . . . , u p ∈ D ′.

Proof Assume p = 2. Let u, v ∈ D ′ convolvable and Ψ ∈ B(D) such that Φ ⊆
acx(Ψ ∗ Ψ ) (see proof of Proposition 2). Using [46, Prop. 1] one estimates

|u ∗ v|Φ ≤ |u ∗ v|Ψ ∗Ψ ≤ sup
ψ1,ψ2∈Ψ

|(ψ1 ∗ u) ∗ (ψ2 ∗ v)| ≤ |u|Ψ ∗ |v|Ψ . (2.18)

��
In the remaining part of this section we demonstrate a possible utilization of gen-

eralized absolute values by giving another proof for the associativity properties of
convolution that were obtained in [27,52,60].

Lemma 1 Let u1, . . . , u p ∈ D ′, p ∈ N with (u1, . . . , u p) convolvable and (φn) an
approximate unit. Let Φ ∈ B(D). There exists Θ ∈ B(D) such that

|u1 ∗ · · · ∗ u p − φnu1 ∗ · · · ∗ φnu p|Φ ≤ |u1|Θ ∗ · · · ∗ |u p|Θ (2.19a)

for all n ∈ N. Moreover,

|u1 ∗ · · · ∗ u p − φnu1 ∗ · · · ∗ φnu p|Φ n→∞−→ 0 (2.19b)

uniformly on compact sets.

Proof Assume p = 2. Let Ψ ∈ B(D) such that (2.17) holds and set

Θ := √
2 ·

{

(Txφn)Tyψ, (1 − Txφn)Tyψ ; n ∈ N, ψ ∈ Ψ , x ∈ R
d , y ∈ K

}

.
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Clearly, Θ ∈ B(D). Using Equation (2.17) one estimates

|u1 ∗ u2 − (φnu1) ∗ (φnu2)|Φ ≤ |(1 − φn)u1|Ψ ∗ |u2|Ψ + |u1|Ψ ∗ |(1 − φn)u2|Ψ
≤ |u1|Θ ∗ |u2|Θ.

Lebesgue’s Theorem of dominated convergence and Proposition 1 yield (2.19b). The
generalization to general p ∈ N is straightforward. ��
Corollary 1 Under the assumptions of Lemma 1 the sequence φnu1 ∗ · · · ∗ φnu p con-
verges to u1 ∗ · · · ∗ u p for n → ∞ with respect to the strong topology of D ′.

Theorem 4 Let u0, u1, . . . , u p ∈ D ′, p ∈ N. Convolvability of all the three tuples
(u0, u1, . . . , u p), (u1, . . . , u p) and (u0, u1 ∗ · · · ∗ u p) implies

u0 ∗ u1 ∗ · · · ∗ u p = u0 ∗ (

u1 ∗ · · · ∗ u p
)

. (2.20)

In addition, if the tuple (u0, u1, . . . , u p) is convolvable and u0 = 0, then the tuples
(u1, . . . , u p) and (u0, u1 ∗ · · · ∗ u p) are convolvable as well.

Proof It holds˚p
l=0(φnul) = φnu0∗(˚p

k=1φnuk) by associativity of (E ′, ∗) [54, Thm.
27.7]. Using Lemma 1 multiple times, and then Corollary 1, yields that this equation
holds in the limit. Now, assume u0 = 0 and let Φ ∈ B(D) with |u0|Φ = 0. If at
least one of the tuples (u1, . . . , u p) and (u0, u1 ∗ · · · ∗ u p) is non-convolvable then
Theorem 3, Theorem 2 and the associative law for (I+, ∗) imply that (u0, u1, . . . , u p)

is non-convolvable as well. ��
Corollary 2 Convolvable p-tuples of non-zero distributions can be arbitrarily rewrit-
ten by introducing parentheses without changing the result.

Corollary 3 Let u1, . . . , u p ∈ D ′, v1, . . . , vp ∈ E ′, p ∈ N. If (u1, . . . , u p) is convolv-
able then (v1 ∗ u1, . . . , vp ∗ u p) is convolvable and

(

u1 ∗ · · · ∗ u p
) ∗ (

v1 ∗ · · · ∗ vp
) = (u1 ∗ v1) ∗ · · · ∗ (

u p ∗ vp
)

. (2.21)

Proof Use “(a)⇔ (c)” from Theorem 2, f ∗I +
lb ⊆ I +

lb for all f ∈ I +
lb with compact

support and Corollary 2. ��

3 Regularization-solid spaces andmoderated cone ideals

This section first describes the convolution quantale structure on the set system of
moderated cone ideals IT. Then regularization-solid distribution spaces are introduced
using generalized absolute values. Convolution inclusions between such spaces are
then characterized by the convolution inclusions of the corresponding moderated cone
ideals via Proposition 6 and Theorem 5.
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3.1 The convolution quantale of moderated cone ideals

Definition 2 A non-empty subset I ⊆ I+ will be called cone ideal if

h ≤ λ sup{ f , g} ⇒ h ∈ I for all h ∈ I+, λ ∈ R+ and f , g ∈ I . (3.1)

A cone ideal I ⊆ I+ is called moderated if

TK f ∈ I for all f ∈ I , K ∈ K. (3.2)

The set system of (moderated) cone ideals and the corresponding closure operator are
denoted by I (IT) and (−)� ((−)�T ). One defines the binary operation

I q∗ J := (I ∗ J )� for all I , J ∈ I. (3.3)

The residual operator of (I,⊆,q∗) and (IT,⊆,q∗) is denoted by /∗I and /∗T, respectively.
Equations (3.6) below extend /∗I and /∗T to arbitrary subsets ofI+. Ideals I ∈ IT are
called non-degenerate if I +

c ⊆ I ⊆ I +
lb , where

I +
c := { f ∈ I +

lb ; supp f compact}. (3.4)

Remark 1 1. Cone ideals are precisely the non-empty additively closed down sets of
I+. The set systems I and IT are closure systems over I+. The set system IT is
a complete sublattice of I.

2. The closure operators (−)� and (−)�T can be described explicitly as

(I )� = { f ∈ I+ ; ∃G ⊆ I finite, λ ∈ R+ : f ≤ λ · supG} , (3.5a)

= {

f ∈ I+ ; ∃g1, . . . , gn ∈ I , n ∈ N0 : f ≤ ∑n
k=1 gk

}

, (3.5b)

(I )�T = ({

TK f ; f ∈ I , K ∈ K
})�

, (3.5c)

for I ⊆ I +
lb . Here “sup” denotes the pointwise supremum of sets of functions in

I+. Note, that TK (sup F) = sup{TK f : f ∈ F} for F ⊆ I+ and K ∈ K, because
suprema over two independent variables commute.

3. Equation (3.2) is a typical mild assumption for weight function systems to obtain
well behaved weighted (ultra-)distibution spaces and relates to the condition [wM]
for weight function systems from [11].

Proposition 4 The triple (I,⊆,q∗) is a commutative quantale. The triple (IT,⊆,q∗) is
a subquantale of (I,⊆,q∗) in the sense of [47, Def. 3.1.3]. The residuals formed in
(I,⊆,q∗) can be described by the formula

I /∗I J = {h ∈ I+ ; ∀g ∈ J : g ∗ h ∈ I }. (3.6a)

Residuals formed in (IT,⊆,q∗) can be described by the formula

I /∗T J = {h ∈ I+ ; ∀ g ∈ J , K ∈ K : TK g ∗ TK h ∈ I }. (3.6b)
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The quantale (IT,⊆,q∗) is unitary with unit I +
c , that is

I +
c q∗ I = I for all I ∈ IT. (3.7)

Further, it holds

I q∗ J ⊇ I + J for all I , J ∈ IT with I , J ⊇ I +
c . (3.8)

Proof Using isotony and additivity of convolution one obtains the inclusion

(I )� ∗ (J )� ⊆ (I ∗ J )� for all I , J ⊆ I+. (3.9)

Equation (3.9) and the fact that ∗ is associative and respects unions as an operation on
P(I+) [47, Exa. (10), p. 18] imply the quantale property (1.4), by virtue of [47, Thm.
3.3.1]. Equation (2.12) and Remark 1 entail that IT is a subquantale. The Equations
(3.6) are immediate from the definitions.

For unitarity of (I∗∗
T ,⊆,q∗), let 0 = f ∈ I +

c , I ∈ IT, K := supp f and λ :=
∫

f (x) dx . Using the inequalities (2.4) one estimates

( f /λ) ∗ g ≤ TK g ≤ ( f /λ) ∗ TK−K g for all g ∈ I , (3.10)

which implies
(

I +
c ∗ I

)� = I . Now, for I , J ∈ IT with I , J ⊇ I +
c the inclusion

(3.8) follows from (3.7), because q∗ is monotone and because I + J is equal to the
supremum of I and J formed in IT. ��

3.2 Regularization-solid distribution spaces and convolution inclusions

Definition 3 The moderated cone ideal associated to U ⊆ D ′ is defined as

|U |�B :=
{

f ∈ I+ ; ∃V ⊆ U finite, Ψ ∈ B(D) : f ≤ sup
v∈V

|v|Ψ
}

, (3.11a)

and the regularization-solid set of distributions associated to I ⊆ I+ is

(I )�D ′ := {u ∈ D ′ ; ∀Φ ∈ B(D) ∃ f ∈ I : |u|Φ ≤ f }. (3.11b)

The regularization-solid closure is the composite operator

(−)‚D ′ := (|−|�B)
�
D ′ (3.12)

and its fixed points are called regularization-solid distribution spaces.

Remark 2 Due to Proposition 2 one has

(I )�D ′ = {u ∈ D ′ ; ∀φ ∈ D : |φ ∗ u| ∈ I } (3.13)
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for every cone ideal I ⊆ I+ that satisfies 1K ∗ I ⊆ I for all K ∈ K, which holds for
all I ∈ IT in particular. This yields another proof for Equation (2.6).

Proposition 5 It holds ||U |�B|�B = |U |�B and |U |�B ⊆ (U )‚D ′ for all U ⊆ D ′.

Proof These are direct consequences of Proposition 3. ��
By an adjoint pair we will refer to a tuple ( f , g) of isotone mappings f : X → Y

and g : Y → X between to ordered sets X and Y such that f (x) ≤ y if and only if
x ≤ g(y) for all x ∈ X and y ∈ Y (this is called “Galois connection” in [10, 7.23],
[17]). The range of f is the associated kernel system (also called “interior system”)
in Y and the range of g is the associated closure system in X . Kernel systems are the
closure systems with respect to the reversed order.

Proposition 6 One has an adjoint pair

|−|�B : P(D ′) → I, U �→ |U |�B, (−)
�
D ′ : I → P(D ′), I �→ (I )�D ′ . (3.14)

The associated kernel system in I is equal to IT ∩ P(I +
lb ).

Proof Clearly, the criteria (Gal1) and (Gal2) from [10, 7.26] are satisfied, implying
adjointness. Equation (2.4a) implies |U |�B ∈ IT for all U ⊆ D ′ and it remains to
prove I = |(I )�D ′ |�B for I ∈ IT with I ⊆ I +

lb . Here, adjointness implies “⊆” and the
reverse inclusion follows from (2.4b). ��
Corollary 4 The assignment U �→ (U )‚D ′ defines a closure operator on P(D ′) and
U �→ |U |�B defines an order isomorphism from the set system of regularization-solid
distribution spaces to the set system IT ∩ P(I +

lb ), which constitutes a kernel system
in I with kernel operator I �→ |(I )�D ′ |�B.

Proof These are standard order theoretic conclusions found in [10, 7.27]. ��
Corollary 5 It holds |I |�B = I for all I ∈ IT with I ⊆ I +

lb .

Lemma 2 Let p ∈ N. Convolution, regularization-solid closures and associated mod-
erated cone ideals satisfy the compatibility relations

|I1 ∗ · · · ∗ Ip|�B = I1 q∗ · · · q∗ Ip for all Ik ∈ IT ∩ P(I +
lb ), (3.15a)

|(U1)
‚
D ′ ∗ · · · ∗ (Up)

‚
D ′ |�B = |U1|�B q∗ · · · q∗ |Up|�B for allUk ⊆ D ′. (3.15b)

Proof Assume p = 2, let I , J ∈ IT andU , V ⊆ D ′. The inequalities (2.4c) and (2.12)
yield |I ∗ J |�B ⊇ I ∗ J . Conversely, Theorem 3 and Corollary 5 yield |I ∗ J |�B ⊆
|I |�B q∗ |J |�B = I q∗ J and that |(U )‚D ′ ∗ (V )‚D ′ |�B ⊆ |U |�B q∗ |V |�B. The proof is
completed by using the inclusions |I ∗ J |�B ∈ IT, (U )‚D ′ ⊇ |U |�B, (V )‚D ′ ⊇ |V |�B
and applying the definition of q∗. ��
Theorem 5 Let U , V ,W be regularization-solid distribution spaces with correspond-
ing moderated cone ideals I , J , K (in the sense of Proposition 6). Then

(U , V ) is convolvable and U ∗ V ⊆ W ⇔ I ∗ J ⊆ K . (3.16)
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Proof Theorem 2 and Theorem 3 imply “⇐”. In order to prove “⇒”, assumeU ∗V ⊆
W with the left-hand side well defined. Proposition 5 yields I ⊆ U and J ⊆ V and
thus I ∗ J ⊆ W . Applying |−|�B on both sides of the inclusion I ∗ J ⊆ W and using
Lemma 2 yields I ∗ J ⊆ I q∗ J = |I ∗ J |�B ⊆ K . ��
Example 1 Consider the moderated cone ideals

I +
c := { f ∈ I +

lb ; supp f compact}, (3.17a)

I ++ := { f ∈ I +
lb (R) ; inf supp f > −∞}, (3.17b)

I +
i,p := { f ∈ I +

lb ; ∀K ∈ K : TK f ∈ L p}. (3.17c)

Clearly, D ′ = (I +
lb )

�
D ′ . Using (2.5a) it is readily seen that E ′ = (I +

c )
�
D ′ and

D ′+ = (I ++ )
�
D ′ . Conversely, Proposition 6 implies |E ′|�B = I +

c , |D ′|�B = I +
lb

and |D ′+|�B = I ++ . Equation (2.6) implies D ′
L p = (L p ∩ I +

lb )
�
D ′ for p ∈ [1,+∞].

Conversely, however, |D ′
L p |�B = I +

i,p � L p ∩I +
lb . Using Theorem 5 the well known

inclusions E ′ ∗ E ′ ⊆ E ′, E ′ ∗ D ′ ⊆ D ′, D ′+ ∗ D ′+ ⊆ D ′+ and D ′
L p ∗ D ′

Lq ⊆ D ′
Lr

for 1/p + 1/q = 1+ 1/r can be derived from those for the corresponding ideals. For
example, I +

i,p ∗ I +
i,q ⊆ I +

i,r follows from Youngs’ inequality and Equation (2.12).

Example 2 With the notations from Example 1 it holds

I +
i,p /∗T I +

i,p = I +
i,1 for all 1 ≤ p ≤ ∞. (3.18)

This is clear for p = ∞ because constant functions belong to I +
i,∞. For p < ∞ one

uses [36, Thm. 3.6.1] with G = Z
d , the inequality TQ f ∗ TQg ≥ T2Q( f ∗ g) and

the equivalence f ∈ �p,+(Zd) ⇔ TQ f ∈ I +
i,p(R

d). Here Q = [−1, 1]d and f is

extended to a function R
d → R+ by zero.

Example 3 The slowly increasing and rapidly decreasing lower semicontinuous func-
tions P and P∗ are moderated cone ideals. The corresponding regularization-solid
spaces are the tempered distributionsS ′ = (P)

�
D ′ and the convolutorsO ′

C = (P∗)�D ′ .
The space of very rapidly decreasing distributions O ′

M is not regularization-solid,
because P∗ ⊆ O ′

M , but O ′
M � O ′

C .

Example 4 Let A ⊆ R
d×d be positive definite and p ∈ R+. Consider the function

gA,p(x) := exp((xt Ax)p). It holds
({gA,p}

)� ∈ IT if only if p ≤ 1/2. For p = 1

one calculates
({gA,1}

)�
T = ({gA,1 · gλ I ,1/2 ; λ ∈ R+})� where I ∈ R

d×d denotes
the unit matrix. Note, that adjoining infinitesimal translates of gA,1 does not suffice to
turn

({gA,p}
)� into a moderated cone ideal because

(

gA,1 · P)�
�

({gA,1}
)�
T .

4 Duals and perfections with respect to convolution

Convolution duals and perfections are investigated and interpreted with reference to
quantale theory. Theorem 6 provides a systematic method to define the domain of
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composed convolution operators A ◦ B such that the composition law A(B(x)) =
(A ◦ B)(x) holds for all x from the domain of A ◦ B. Here, the convolution kernel of
A ◦ B is the convolution of the kernels of A and B.

4.1 Convolution perfect moderated cone ideals as a Girard quantale

Definition 4 Let I ⊆ I+. Define the operators

(I )∗T := {g ∈ I+ ; ∀ f ∈ I , K ∈ K : TK f ∗ TK g ∈ I +
lb }, (4.1a)

(I )∗∗
T := ((I )∗T)∗T, (4.1b)

and denote the set I∗∗
T := {I ∈ IT ; (I )∗∗

T = I }.
Remark 3 Convolution duals can be interpreted as residuals formed in the quantale
(IT,⊆,q∗). Comparing Equations (4.1a) and (3.6) one notices

(I )∗T = I +
lb /∗T I for all I ⊆ I+. (4.2)

Proposition 7 Let I , J ∈ IT and K ⊆ I+. Then

I ∗ J ⊆ K ⇒ I ∗ (K )∗T ⊆ (J )∗T. (4.3)

Proof Let f ∈ I , h′ ∈ (K )∗T and g ∈ J . It suffices to prove ( f ∗h′)∗g ∈ I +
lb because

(K )∗T ∈ IT. Associativity and commutativity imply ( f ∗ h′) ∗ g = ( f ∗ g) ∗ h′. By
assumption f ∗ g ∈ K and thus ( f ∗ g) ∗ h′ ∈ I +

lb . ��
Corollary 6 For moderated cone ideals I , J , K such that I ∗ J ⊆ K it follows

(I )∗∗
T ∗ (K )∗T ⊆ (J )∗T, (I )∗∗

T ∗ (J )∗∗
T ⊆ (K )∗∗

T . (4.4a)

Inserting K = (I ∗ J )� one obtains

(I )∗∗
T ∗ (I ∗ J )∗T ⊆ (J )∗T, (I )∗∗

T ∗ (J )∗∗
T ⊆ (I ∗ J )∗∗

T . (4.4b)

Remark 4 Corollary 6 implies that
(

(IT)∗∗
T ,⊆, ∗̃)

with

I ∗̃ J := (I q∗ J )∗∗
T = (I ∗ J )∗∗

T (4.5)

is a quotient quantale of (IT,⊆,q∗) [47, Def. 3.1.1 & p.32] and a Girard quantale with
dualizing element I +

lb [47, Sec. 6]. See also [15, Thm. 2.6.13].

Proposition 8 It holds K /∗T J = (J ∗ (K )∗T)∗T for all K ∈ I∗∗
T and J ∈ IT.

Proof First note, that K /∗T J = (K /∗T J )∗∗
T holds due to Equation (4.4b). The propo-

sition then follows by calculating, for all I ∈ IT, that
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I ⊆ K /∗T J ⇔ (I )∗∗
T ⊆ K /∗T J ⇔ (I )∗∗

T ∗ J ⊆ K
⇔ J ∗ (K )∗T ⊆ (I )∗T ⇔ (I )∗∗

T ⊆ (J ∗ (K )∗T)∗T ⇔ I ⊆ (J ∗ (K )∗T)∗T.

Here it was used that (−)∗∗
T is a closure operator, Equations (1.6) and (4.4a) and that

(−)∗T is a Galois connection. ��

4.2 Implications for convolution duals and perfections of distributions

Definition 5 The convolution dual and perfection of U ⊆ D ′ are defined as

(U )∗D ′ := {v ∈ D ′ ; ∀ u ∈ U : (u, v) convolvable}, (U )∗∗
D ′ := ((U )∗D ′)∗D ′ . (4.6)

Spaces U such that (U )∗∗
D ′ = U are called convolution perfect.

ThemappingP(D ′) � U �→ (U )∗D ′ reverses inclusions andU ⊆ ((U )∗D ′)∗D ′ holds.
Thus (−)∗D ′ is a Galois connection on P(D ′) with (−)∗∗

D ′ the associated closure [58,
p. 20]. The same holds for (−)∗T and (−)∗∗

T . Convolution duals of classical distribution
spaces were calculated in [58, Thm. 5].

Lemma 3 The convolution dual satisfies

(U )∗D ′ = ((|U |�B)∗T)
�
D ′ for allU ⊆ D ′. (4.7)

Proof Let v ∈ D ′. One derives the chain of equivalences

v ∈ (U )∗D ′
(i)⇔ ∀Φ ∈ B(D), u ∈ U : |v|Φ ∗ |u|Φ ∈ I +

lb
(i i)⇔

∀Φ ∈ B(D), f ∈ |U |�B : |v|Φ ∗ f ∈ I +
lb

(i i i)⇔
∀Φ ∈ B(D) : |v|Φ ∈ (|U |�B)∗T ⇔ v ∈ ((|U |�B)∗T)

�
D ′

by using Definitions 3 and 5 , and (i) Theorem 2; (ii) additivity and monotonicity of
convolution; (iii) Equation (2.4a) and |U |�B ∈ IT. ��
Proposition 9 The convolution dual operators (−)∗T and (−)∗D ′ correspond to each
other in the sense that

((I )�D ′)
∗
D ′ = ((I )∗T)

�
D ′ for all non-degenerate I ∈ IT, (4.8a)

(|U |�B)∗T = |(U )∗D ′ |�B for all U ⊆ D ′ with U � {0}. (4.8b)

The space (U )∗D ′ is regularization-solid for all U ⊆ D ′ and

(U )∗D ′ = ((U )∗D ′)‚D ′ = ((U )‚D ′)∗D ′ . (4.9)

Proof Equation (4.8a) follows from Equation (4.7) by inserting U = (I )�D ′ and using
I = |(I )�D ′ |�B for I ∈ IT, which holds by Corollary 4. Equation (4.8b) follows by
applying |−|�B on both sides of Equation (4.7) and using (|U |�B)∗T = |((|U |�B)∗T)

�
D ′ |�B

for U ⊆ D ′, U � {0}, which holds by Corollary 4.
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Equation (4.7) implies that (U )∗D ′ is regularization-solid for any U ⊆ D ′. Using
this fact and Equations (4.8) yields

(U )∗D ′ = ((U )∗D ′)‚D ′ = (|(U )∗D ′ |�B)
�
D ′ = ((|U |�B)

�
D ′)

∗
D ′ = ((U )‚D ′)∗D ′ . (4.10)

��
Proposition 10 Let U , V ,W ⊆ D ′ be regularization-solid and V = {0}. Then:

(U , V ) is convolvable
and U ∗ V ⊆ W

⇒
(

U , (W )∗D ′
)

is convolvable
and U ∗ (W )∗D ′ ⊆ (V )∗D ′ .

(4.11)

Proof Let I , J , K be the moderated cone ideals corresponding to U , V ,W . By The-
orem 5, the left-hand side of (4.11) is equivalent to the left-hand side of (4.3) and
the right-hand side of (4.3) follows from Proposition 7. It holds J = {0} and thus
(J )∗T ⊆ I +

lb . Theorem 5, Theorem 2 and Proposition 9 imply the right-hand side of
(4.11). ��
Theorem 6 Let U , V ⊆ D ′ be regularization-solid and non-zero with (U , V ) con-
volvable. Then ((U ∗ V )∗D ′,U ) and ((U ∗ V )∗D ′ , V ) are convolvable and

(U ∗ V )∗D ′ ⊆ (U )∗D ′ ∩ (V )∗D ′,
(U ∗ V )∗D ′ ∗U ⊆ (V )∗D ′ ,
(U ∗ V )∗D ′ ∗ V ⊆ (U )∗D ′ .

(4.12a)

Moreover, for u ∈ U, v ∈ V and w ∈ (U ∗ V )∗D ′ , one has the associative law

(u ∗ v) ∗ w = u ∗ (v ∗ w) = v ∗ (u ∗ w). (4.12b)

Proof Equation (4.12a) follows fromCorollary 6 and Proposition 4 applied in the light
of Theorem 5 and Proposition 9. The inclusions (4.12a) imply that triples (u, v, w) in
(4.12b) are convolvable. Thus, Theorem 4 implies (4.12b). ��
Example 5 The most illustrative example of a non-perfect regularization-solid distri-
bution space is the space Ḃ′ = (I +

v )
�
D ′ of distributions vanishing at infinity. The

convolution perfection of Ḃ′ is the space B′ = (I +
b )

�
D ′ of uniformly bounded dis-

tributions [58, Theorem 5].

Example 6 An important example of weighted distribution spaces are spaces of power-
logarithmic growth in dimension d ∈ N. Define the sets

Pμ;k :=
{

f ∈ I+(Rd) ; ∃C > 0 : f ≤ C · wμ,k

}

, (4.13a)

wμ,k(x) := (1 + |x |)μ(log(e + |x |))k for x ∈ R
d , (4.13b)

and the functions of μ-power growth Pμ := Pμ;0. As sets, the associated distribution
spaces and their convolution duals coincide with the spaces

D ′
L∞,−μ,−k = (Pμ;k)‚D ′ , D ′

L1,μ,k = ((Pμ;k)∗T)‚D ′ , (4.14)
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that were studied in [1,20,44,57]. For μ ∈ (−∞,∞] we define further

P<μ :=
⋃

ν<μ

Pμ, Pμ;∞ :=
⋃

k∈N0

Pμ;k, (4.15a)

P := P<∞, Q := P<−d , R := P−d;∞. (4.15b)

When d = 1 the notation

I+ := I ∩ I ++ (4.16)

will be used. All the defined sets belong to IT. It can be calculated that

Pμ;k
q∗ Pν;l = Pμ+ν+d;k+l for all μ, ν > −d, k, l ∈ N0, (4.17a)

Pμ;k
q∗ P−d;l = Pμ;k+l+1 for all μ ≥ −d, k, l ∈ N0, (4.17b)

Pμ;k
q∗ Pν;l = Pμ;k for all ν < −d, k, l ∈ N0,

{

μ > ν or
μ = ν, k ≥ l.

(4.17c)

whenever μ + ν < −d and Pμ;k ∗ Pν;l = ({+∞})� otherwise. The relations (4.17)
hold for all μ, ν ∈ R with d = 1 when Pμ;k is replaced by Pμ;k

+ . As many of the
relations (4.17) were proved previously in [4,8,41], [9, Lemma 2.2] [1, Lemma 2.8]
and [18, VIII.8] we omit the calculations.

5 Largest distributional modules for convolution semigroups

Operators that generate algebras and modules of distributions, (−)∗‚aD ′ , (−)∗AD ′ and
(−)∗MD ′ , are introduced and investigated parallel to their counterparts (−)∗aI+ , (−)∗AT
and (−)∗MT . Theorem7 characterizes (A)∗MD ′ as convolutionmodule over the associative
algebra (A)∗AD ′ for given totally convolvable A ⊆ D ′.

5.1 Regularization-solid algebras andmodules

Definition 6 1. Let I ⊆ I+. The smallest cone ideal J that satisfies the inclusions
J ∗ J ⊆ J and I ⊆ J is denoted by (I )∗aI+ .

2. Let A ⊆ D ′. The set A is called totally convolvable if for all p ∈ N all tuples
(a1, . . . , ap) with a1, . . . , ap ∈ A are convolvable. If, in addition, A ∗ A ⊆ A
(and δ ∈ A) then A is called a convolution semigroup (monoid). Linear convolu-
tion monoids are called convolution algebras. The smallest convolution semigroup
and regularization-solid convolution algebra containing A are denoted (A)∗sD ′ and
(A)∗‚aD ′ , respectively.

Proposition 11 1. For I ∈ IT it holds (I )∗aI+ ∈ IT.

2. A set A ⊆ D ′ is totally convolvable iff (|A|�B)∗aI+ ⊆ I +
lb .
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3. If A ⊆ D ′ is totally convolvable then the same holds for (A)‚D ′ . Moreover, (A)∗sD ′ ,
((A)‚D ′)∗sD ′ and (A)∗‚aD ′ exist and

(A)∗‚aD ′ = (((A)‚D ′)∗sD ′)‚D ′ . (5.1)

4. The operators (−)∗‚aD ′ and (−)∗aI+ correspond to each other via

|(A)∗‚aD ′ |�B = (|A|�B)∗aI+ for all totally convolvable A ⊆ D ′, (5.2a)

((I )�D ′)
∗‚a
D ′ = ((I )∗aI+)

�
D ′ for all I ∈ IT with (I )∗aI+ ⊆ I +

lb . (5.2b)

Proof Part 1 follows from Equation (2.12) and Part 2 from Theorem 2.
Part 3: Part 2 and the equation |(A)‚D ′ |�B = |A|�B, furnished by Proposition 6, imply

that (A)‚D ′ is totally convolvable. Now, the existence of (A)∗sD ′ and ((A)‚D ′)∗sD ′ is clear.
Once it is proved that (((A)‚D ′)∗sD ′)‚D ′ is a regularization-solid convolution algebra
containing A it is clear that this is the smallest such set of distributions, proving
Equation (5.1). Now, Lemma 2 implies

|(A)‚D ′ ∗ p-times· · · ∗ (A)‚D ′ |�B = |A|�B q∗ p-times· · · q∗ |A|�B for all p ∈ N. (5.3)

Forming the supremum over p ∈ Nwithin the complete lattice IT results in (|A|�B)∗aI+
on the right-hand side. The supremum on the left-hand side can be moved inside of
|−|�B turning into a union of sets, due to Proposition 6 and [10, Prop. 7.31]. Thus, the
left-hand side becomes |((A)‚D ′)∗sD ′ |�B. Further,

(((A)‚D ′)∗sD ′)‚D ′ = ((|A|�B)∗aI+)
�
D ′ (5.4)

follows fromProposition 6. Finally, Theorem5 applied to (5.4) yields that the left-hand
side is a convolution algebra.

Part 4: Inserting (5.1) in (5.4), applying |−|�B, and usingCorollary 4 yields Equation
(5.2a). Let I ∈ IT with (I )∗aI+ ∈ I +

lb and A := (I )�D ′ . By Part 2 A is totally

convolvable. Now insert A = (I )�D ′ into (5.2a) and apply the operator (−)
�
D ′ on both

sides. Because (A)∗‚aD ′ = ((I )�D ′)∗‚aD ′ is regularization-solid and (I )∗aI+ ∈ IT, another
application of Corollary 4 yields (5.2b). ��

5.2 Convolution perfect algebras andmodules

Definition 7 Let I ⊆ I+. Define the operators

(I )∗MT := ((I )∗aI+)∗T, (I )∗AT := ((I )∗MT )∗T. (5.5)

The maximal convolution module for totally convolvable A ⊆ D ′ is defined as

(A)∗MD ′ := {

m ∈ D ′ ; ∀a1, . . . , ap ∈ A, p ∈ N : a1 ∗ . . . ∗ ap ∗ m exists
}

. (5.6a)
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The convolution perfect algebra generated by A is defined as

(A)∗AD ′ := ((A)∗MD ′ )∗D ′ . (5.6b)

Proposition 12 Let A ⊆ D ′ be totally convolvable. Then:

(A)∗MD ′ = ((A)∗‚aD ′ )∗D ′ , A ⊆ (A)∗AD ′ = ((A)∗‚aD ′ )∗∗
D ′ . (5.7)

Proof Let B := (A)∗‚aD ′ and 0 = m ∈ D ′. Using the inclusion |B|�B ∗ · · · ∗ |B|�B ⊆ B
and Theorem 2 the statement “(b1, . . . , bp,m) is convolvable for all b1, . . . , bp ∈ B,
p ∈ N” is seen to be equivalent to “(b,m) is convolvable for all b ∈ B”. This
equivalence means just that (B)∗D ′ = (B)∗MD ′ . Using the latter equation, one obtains

(B)∗AD ′ = ((B)∗MD ′ )∗D ′ = ((B)∗D ′)∗D ′ = (B)∗∗
D ′

which completes the proof. ��
Proposition 13 The operators (−)∗MT and (−)∗AT are related to (−)∗MD ′ and (−)∗AD ′ ,
respectively, analogously to Equations (4.8) and (5.2).

Proof This follows from Propositions 9 and 11 . ��
Theorem 7 Let A ⊆ D ′ be totally convolvable. Then (A)∗AD ′ is totally convolvable as
well and convolution defines bilinear operations

∗: (A)∗AD ′ × (A)∗AD ′ → (A)∗AD ′ , ∗: (A)∗AD ′ × (A)∗MD ′ → (A)∗MD ′ (5.8)

that are associative. That is, for all a, b, c ∈ (A)∗AD ′ and m ∈ (A)∗MD ′ we have

a ∗ (b ∗ c) = (a ∗ b) ∗ c, a ∗ (b ∗ m) = (a ∗ b) ∗ m. (5.9)

Proof Let B := (A)∗‚aD ′ . By Theorem 2, the pair (B, (A)∗MD ′ ) is convolvable and
(A)∗MD ′ = (B)∗MD ′ . Therefore B instead of A can be considered. Let b1, . . . , bp, b ∈ B,
p ∈ N, b1 = 0 and letm ∈ (B)∗MD ′ . By definition of (−)∗MD ′ the tuple (b1, . . . , bp, b,m)

is convolvable. Using Theorem 4 one concludes that the tuple (b1, . . . , bp, b ∗ m) is
convolvable as well. This proves B ∗ (B)∗MD ′ ⊆ (B)∗MD ′ . Using Proposition 10 with
U ,W = (B)∗MD ′ , V = B and Proposition 11 one obtains

(B)∗MD ′ ∗ (B)∗AD ′ = (B)∗MD ′ ∗ ((B)∗MD ′ )∗D ′ ⊆ (B)∗D ′ = (B)∗MD ′ . (5.10)

Applying Proposition 10 to (5.10) one obtains (B)∗AD ′ ∗ (B)∗AD ′ ⊆ (B)∗AD ′ .
Having proved well definedness of (5.8), the associative laws (5.9) are immediate

from Theorem 4 and the definitions of (A)∗AD ′ and (A)∗MD ′ . ��
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Example 7 The pairs (E ′,D ′), (D ′
L1 ,B

′), (O ′
C ,S ′), (D ′+,D ′+) and (D ′−,D ′−) are

classical examples of the form ((U )∗AD ′ , (U )∗MD ′ ). The spaces S ′+ and (S ′+)∗D ′ arise
naturally in causal fractional calculus on the real line, see Sect. 7. It is well known
that S ′+ is a convolution algebra of distributions [55]. The space (S ′+)∗D ′ consists of
distributions vanishing rapidly for t → −∞.

Example 8 Continuing Example 6 consider an arbitrary sum (supremum of ideals)
∑P formed from a subset P of {Pν;l

+ ; ν ∈ R, l ∈ N0}. Equations (4.17) imply that

of such sums precisely the sets P−μ
+ , P<−μ

+ , P−μ;k
+ , P−μ;∞

+ , P+, Q+ and R+, where
μ ∈ (1,+∞) and k ∈ N0, are closed with respect to convolution. Similar statements
are true for the sets Pμ,k . Due to Proposition 11, the corresponding regularization-solid
distribution spaces are regularization-solid convolution algebras.

6 Hypocontinuity with respect to a weighted L1-type topology

Topologies and bornologies are now introduced on every convolution perfect distri-
bution space using generalized absolute values and convolution. Hypocontinuity [26,
Ch.4, §7] and boundedness [25, 1:2] of convolution are established in Theorem 8 for
these topologies and bornologies. A residual formed in (I∗∗

T ,⊆, ∗̃) is characterized as
the largest regularization-solid space contained in the corresponding space of convo-
lutors in Theorem 9. The Hilbert transform on D ′

L p is a convolutor not contained in
this subspace, see Example 9.

Recall, that the space of convolutors O ′
C (V ,W ) from V to W consists of the

distributions u with the property that the mapping D � φ �→ u ∗ φ extends to a
continuous linear mapping V → W , see [2, Def. 12]. Here V and W are normal
distribution spaces in the sense of [26, p. 319].

Definition 8 Let U be a convolution perfect distribution space. The locally convex
topology T∗(U ) is generated by the seminorms

u �→ (|u|Φ ∗ |v|Φ)(0) =
∫

|u|Φ(x)|v|Φ(−x) dx, Φ ∈ B(D), v ∈ (U )∗D ′ .

(6.1a)

The bornology B∗(U ) is defined as the set of subsets B ⊆ U such that

sup{|b|Φ ; b ∈ B} ∈ U for all Φ ∈ B(D). (6.1b)

Remark 5 The inclusion (U ,T∗(U ),B∗(U )) → (V ,T∗(V ),B∗(V )) is continuous
and bounded for convolution perfect U ⊆ V due to (U )∗D ′ ⊇ (V )∗D ′ .

Remark 6 The topology T∗(D ′) coincides with the strong topology on D ′ due to
I +

c = |(D ′)∗D ′ |�B and Proposition 2.

Remark 7 Any convolution perfect space U ⊆ D ′ defines a normal space of distribu-
tions U = (U ,T∗(U )): Clearly, the space E ′

K is continuously included in U for any
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compact K ⊆ R
d , and thus, E ′ is continuously included in U by [26, Thm.1, p. 321].

Proposition 1 and Lebesgue’s theorem of dominated convergence yield that E ′, and
thus D , is dense in U . Remarks 5 and 6 yield that U is continuously included in D ′.

Remark 8 The seminorm in (6.1a) is equal to supK∈K
∫

K |u|Φ(x)|v|Φ(−x) dx and
therefore Remark 6 implies that any T∗(U )-neighborhood is D ′-closed. By virtue of
[28, Thm.3.2.4] it follows, that any T∗(U )-Cauchy-filter that has a D ′-limit, has the
same T∗(U )-limit.

Theorem 8 LetU, V andW beconvolution perfect distribution spaces andassume that
(U , V ) is convolvable and U ∗ V ⊆ W. Then, convolution defines a hypocontinuous
and bounded bilinear mapping

(U ,T∗(U ),B∗(U )) × (V ,T∗(V ),B∗(V )) → (W ,T∗(W ),B∗(W )). (6.2)

Proof Let I := |U |�B, J := |V |�B and K := |W |�B. Theorem 5 and Corollary 6 yield
the inclusion (I )∗∗

T ∗ (J )∗∗
T ⊆ (K )∗∗

T . Then, an application of Theorem 3 yields the
inclusion B∗(U ) ∗ B∗(V ) ⊆ B∗(W ), that is, (6.2) is bounded.

Let B ∈ B∗(U ), v ∈ V , w′ ∈ (W )∗D ′ and Φ ∈ B(D). Theorem 3 yields

sup{(|b ∗ v|Φ ∗ |w′|Φ)(0) ; b ∈ B} ≤ (|v|Ψ ∗ sup{|b|Ψ ; b ∈ B} ∗ |w′|Φ
)

(0) (6.3)

with Ψ ∈ B(D) independent of B, v and w′. Corollary 6 implies

sup{|b|Ψ ; b ∈ B} ∗ |w′|Φ ∈ (I )∗∗
T ∗ (K )∗T ⊆ (J )∗T. (6.4)

Thus (6.3) implies hypocontinuity. ��
In the following, when a particular bornology [25, 1:1] is specified on the spaces V ,

W thenO ′
C (V ,W ) is endowedwith the topology of uniform convergence with respect

to the bornology on V [28, Sec. 8.4]. The bornology on O ′
C (V ,W ) is defined as the

sets of mappings L ⊆ O ′
C (V ,W ) such that L(B) is bounded in W for any bounded

B ⊆ V . In the followingwewill occassionallywriteU instead of (U ,T∗(U ),B∗(U )),
when the meaning is clear.

Lemma 4 Let u, v ∈ D ′ be convolvable and Φ ∈ B(D). There exist ũ ∈ |{u}|�B,
ṽ ∈ |{v}|�B and Ψ ∈ B(D) such that |u|Φ ∗ |v|Φ ≤ |ũ ∗ ṽ|Ψ .

Proof Using (2.4c), (2.12) and (2.4a) one obtains

|u|Φ ∗ |v|Φ = |T2Q(|u|Φ ∗ |v|Φ)|Ψ ≤ |TQ(|u|Φ) ∗ TQ(|v|Φ)|Ψ = |ũ ∗ ṽ|Ψ (6.5)

for ũ := |u|TQΦ and ṽ := |v|TQΦ with Q = [−1, 1]d and Ψ := {ψ} with ψ ∈ DQ

such that
∫

ψ(x) dx = 1. ��
Lemma 5 Let V ,W be convolution perfect distribution spaces with V ⊆ W and
let u ∈ O ′

C (V ,W ), where V ,W are endowed with the topologies from (6.1a). The
continuous extension Cu : V → W of the mapping D � φ �→ u ∗ φ ∈ W is given by
convolution of distributions Cu(v) = u ∗ v.
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Proof Let u ∈ D ′ such thatD � φ �→ u ∗ φ ∈ W is T∗(V )-T∗(W )-continuous. Then
v �→ Cu(v) is continuous as a mapping E ′ → D ′ by Remarks 5, 6 and 7. Because
D is dense in E ′ and convolution of distributions is hypocontinuous as a mapping
D ′ × E ′ → D ′ it follows that Cu(v) = u ∗ v for all v ∈ E ′.

Now, let (φn) be an approximate unit and v ∈ V . Proposition 1 and Lebesgue’s
theorem of dominated convergence imply that (φnv) converges in V . Thus,Cu(φnv) =
u ∗ (φnv) is a T∗(W )-Cauchy-filter that converges in D ′ by continuity, completeness
and Remarks 5 and 6. Then [39, Thm. 7.1] implies that (u, v) is convolvable and that
limn→∞ Cu(φnv) = u ∗ v within D ′. According to Remark 8, this implies Cu(v) =
u ∗ v for all v ∈ V . ��
Theorem 9 Let V ,W ⊆ D ′ be convolution perfect with V ⊆ W. Then

(U ,T∗(U ),B∗(U )) → O ′
C

(

(V ,T∗(V ),B∗(V )), (W ,T∗(W ),B∗(W ))
)

(6.6a)

with the arrow “→” indicating a bounded and continuous inclusion and with the
convolution perfect distribution space U specified as

U = (|W |�B /∗T |V |�B)
�
D ′ . (6.6b)

The space U is characterized as the largest regularization-solid space of distributions
that is contained in O ′

C (V ,W ).

Proof Proposition 4 and Corollary 4 allow to apply Equation (1.6) to Equation (6.6b)
to obtain |U |�B ∗ |V |�B ⊆ |W |�B. Then Theorem 5 yields that (U , V ) is convolvable
with U ∗ V ⊆ W and Theorem 8 yields the continuous and bounded inclusion U →
O ′

C (V ,W ) from (6.6a).
Now, let v ∈ V , Φ ∈ B(D) and u ∈ D ′ with |{u}|�B ⊆ O ′

C (V ,W ). Lemma 4
yields ũ ∈ |{u}|�B, ṽ ∈ V and Ψ ∈ B(D) with Φ ⊆ Ψ and |ũ ∗ ṽ|Ψ ≥ |u|Φ ∗ |v|Φ .
By Lemma 5 (ũ, ṽ) is convolvable and ũ ∗ ṽ ∈ W . Thus, Theorem 2 yields

|u|Φ ∗ |v|Φ ∗ |w′|Φ ≤ |ũ ∗ ṽ|Ψ ∗ |w′|Ψ ∈ I +
lb for all w′ ∈ (W )∗D ′ . (6.7)

Finally, Equation (6.7) and Proposition 8 imply

|u|Φ ∈ (|V |�B ∗ (|W |�B)∗T)∗T = |W |�B /∗T |V |�B. (6.8)
��

Example 9 The Hilbert transform H : u �→ PV(1/x) ∗ u is a convolutor of D ′
L p (R)

for all 1 < p < ∞ [42, p. 356], [29]. One calculates that

|{PV(1/x)}|�B = ({w−1})� � I +
i,1, (6.9)

with the weights wp and wp;k as defined in Example 6. Using Proposition 11, Propo-
sition 13 and Equations (4.17) one obtains

(PV(1/x))∗MD ′ =
{

u ∈ D ′(R); ∀k ∈ N, φ ∈ D :
∫ |(u ∗ φ)(x)|

w1;−k(x)
dx < ∞

}

. (6.10)
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Note, that (PV(1/x))∗D ′ � (PV(1/x))∗MD ′ , as observed in [20, Remark (3)].
According to Equations (6.9) and (3.18) the distribution PV(1/x) is not contained

in the largest regularization-solid subspace of the space of convolutors O ′
C (D ′

L p ),
compare Theorem 9. On the other hand, (6.10) entails

(PV(1/x))∗MD ′ ⊇
⋃

p>1

D ′
L p . (6.11)

Theorem 7 guarantees that H(H f ) = −π2 f holds for all f ∈ (PV(1/x))∗MD ′ .

7 Distributional causal fractional calculus on the real line

The machinery developed so far is now applied to the causal fractional integration
and differentiation operators. We determine their largest natural domains, generalize
the index laws and determine spaces on which semigroups of these operators operate
continuously and linearly. Following Schwartz [51] the fractional integrals Iα+ and
derivatives Dα+ with α ∈ C are defined as convolution operators [21, Sec.9]

Iα+ u := Yα ∗ u for u ∈ D ′+, (7.1a)

Dα+ u := Y−α ∗ u for u ∈ D ′+, (7.1b)

with kernel

Yα(t) := (t)α−1+
�(α)

=
{

tα−1/�(α) for t > 0,

0 for t ≤ 0,
(7.2a)

Yα := Dm Yα+m (7.2b)

for !α > −m and m ∈ N0. The distributions {Yα ; α ∈ C} form a convolution group,
more precisely

Yα ∗ Yβ = Yα+β for all α, β ∈ C. (7.3)

The operators Iα+ and Dα+ are continuous and linear on the space of causal distributions

D ′+. Equation (7.3) entails the index law Iα+(Iβ+ u) = Iα+β
+ u for all u ∈ D ′+ and

α, β ∈ C. Enlarged domains to be obtained now are described using the spaces Pμ;k
+

from Example 6 on page 18.

7.1 Largest distributional domains and index laws

Calculating the generalized absolute values of the distributions Yα one obtains

|Yα|�B =
{

P!α−1+ if α ∈ C \ −N0,

I +
c if m ∈ N0.

(7.4a)
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Using the convolution dual operator (−)∗D ′ we specify the domain of Iα+ as

Dom Iα+ := (Yα)∗D ′ =
{

((P!α−1+ )∗T)
�
D ′ if α ∈ C \ −N0,

D ′ if α ∈ −N0.
(7.4b)

Using Remark 2 the domain of Iα+ with α ∈ C \ −N0 can also be written as

Dom Iα+ =
{

u ∈ D ′ ; ∀φ ∈ D :
∫ −1

−∞
|(φ ∗ u)(t)| · |t |!α−1 dt < ∞

}

. (7.5)

Remark 7 and Theorem 8 guarantee that Iα+ coincides with the unique continuous
extension from D to Dom Iα+.

Remark 9 Equation (7.4) clearly extends Schwartz’ definition of Iα+. Further, its exten-
sion contains exponentially weighted spaces of distributions [35] and the test function
space G+ from [49, p. 146-147]. For !α < 0 the domain (7.4) contains the distri-
butional analogues for differentiable functions suitable for Marchaud’s approach of
fractional differentiation [49, p. 109].

Theorem 10 Let α, β ∈ H := {z ∈ C ; !z > 0}. The following equations hold true
with all expressions well defined in the sense of (7.4)

Iα+(Iβ+ u) = Iβ+(Iα+ u) = Iα+β
+ u for all u ∈ Dom Iα+β

+ , (7.6a)

Dα+(Dβ
+ u) = Dβ

+(Dα+ u) = Dα+β
+ u for all u ∈ DomDα+ ∩ DomDβ

+, (7.6b)

Iα+(Dβ
+ u) = Dβ

+(Iα+ u) = Iα−β
+ u for all u ∈ Dom Iα+. (7.6c)

This includes the special case

Iα+(Dm u) = Dm(Iα+ u) = Iα−m+ u for all α ∈ C, m ∈ N0, u ∈ Dom Iα+. (7.6d)

Proof The proof is an application of Theorem 6. Equation (7.6a) follows using
U := (P!α−1+ )

�
D ′ and V := (P!β−1

+ )
�
D ′ which results in (U )∗D ′ = Dom Iα+,

(V )∗D ′ = Dom Iβ+ and (U ∗ V )∗D ′ = Dom Iα+β
+ according to equations (7.4), (4.17a)

and Theorem 5. The proofs for the remaining equations are similar. ��

Remark 10 The conditions on u in Theorem 10 have a similar form as the index laws
for fractional powers of generators of semigroups [16, Thm.5.32], [32, Prop. 5.2]. See
[7,21,38] for more references on this topic. Using the theory developed in the present
work has the advantage that one obtains simple and explicit formulas for the domains.

Remark 11 Interpreting Iα+ as an improper integral leads to different sufficient condi-
tions for the index law, see Theorem 1.3 and Remark 1.4 in [37].
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7.2 Largest distributional domains for endomorphic operation

In order to realize the operators Iα+ as convolution endomorphisms of distribution
spaces we apply the operator (−)∗MD ′ . Using Equations (4.17) one obtains

Endom Iα+ := (Yα)∗MD ′ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(P+)∗D ′ if α ∈ H,

(R+)∗D ′ if α ∈ iR \ {0},
(P!α−1+ )∗D ′ if α ∈ −(H \ N0),

D ′ if α ∈ −N0.

(7.7)

One observes, that DomDα+ = EndomDα+ iff α ∈ {0} ∪ H. Applying the operator
(−)∗AD ′ induces natural semigroups of operators Dα+ as described in the following: Let
I denote the closure operator associated to the closure system

I(C) := {∅} ∪ {(H+p) ∪ N0 ; p ≥ 0} ∪ {(H+p) ∪ N0 ; p ≥ 0} ∪ {C}. (7.8a)

Using Equations (4.17) we calculate that

({Y−α ; α ∈ A})∗AD ′ ∩ {Y−α ; α ∈ I (A)} = {Y−α ; α ∈ I (A)} (7.8b)

for all A ⊆ C. This means that the closure operator I on C generates those subsemi-
groups of {Yα ; α ∈ C}, that are maximal with respect to total convolvability on some
joint domain space from the class of convolution perfect distribution spaces.

Theorem 11 Let p > 0. The convolution semigroup X operates continuously and
linearly on the distribution space Y by convolution of distributions for

X = {Y−α ; α ∈ H + p}, Y = (P−p−1
+ )∗D ′ , (7.9a)

X = {Y−α ; α ∈ H + p}, Y = (P<−p−1
+ )∗D ′ , (7.9b)

X = {Y−α ; α ∈ H}, Y = (R+)∗D ′ , (7.9c)

X = {Y−α ; α ∈ H}, Y = (Q+)∗D ′ . (7.9d)

The convolution group X operates bijectively and continuously on Y for

X = {Yα ; α ∈ C}, Y = (P+)∗D ′ , (7.9e)

X = {Yα ; α ∈ iR}, Y = (R+)∗D ′ . (7.9f)

In all cases compact sets of indices α map to equicontinuous sets of operators.

Proof This is proved similar to Theorem 10 using (7.8), Theorems 7 and 8 . ��
Example 10 The convolution dual ({exp(ix2)})∗D ′ = S ′ was calculated in [56, Satz 4].
Due to Yα ∈ S ′ this implies the existence of Iα+ exp(ix2) for all α ∈ C. Theorem 11

yields in addition, that Iα+ exp(ix2) ∈ Dom Iβ+ and Iα+β
+ exp(ix2) = Iβ+(Iα+ exp(ix2))

for all α, β ∈ C because exp(ix2) ∈ O ′
C ⊆ (P+)∗D ′ .
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Remark 12 The above results can be placed into the context of the desiderata for
fractional calculus proposed in [23].

a) For the group {Yα ; α ∈ C} the domain (P+)∗D ′ = G (b) = G (c) satisfies the
desiderata (a)-(c) by virtue of Theorem 11. Theorem 8 yields that the desiderata
(d)-(f) are satisfied as well with G (d) = (P+)∗D ′ .

b) For the semigroup cases (7.9a)-(7.9d) Theorem 11 shows that desideratum (b) in
[23] is satisfied for fractional derivatives instead of integrals. However, apart from
desideratum (c) also desideratum (d) can never hold for the semigroup case (Q+)∗D ′
in (7.9d), not even if H were replaced with H∪{0}. The reason is, that 1 ∈ (Q+)∗D ′
and Remark (3) in [43, p. 327] implies Y−α ∗ 1 = 0 for all !α > 0.

c) The case (7.9f) in Theorem 11 establishes a kind of (purely imaginary) “fractional
calculus of order zero” in the sense that !α = 0 for all operators in the desiderata
of [23].

8 Distributional domains for fractional laplacians

In the following we consider the fractional (negative) Laplacian (−Δ)α/2 on R
d with

general α ∈ C. The operator (−Δ)α/2 can be defined as

(−Δ)α/2 : Dom(−Δ)α/2 → D ′, u �→ R−α ∗ u, (8.1)

with the domain Dom(−Δ)α/2 := (R−α)∗D ′ and the Riesz kernel Rα [42, p. 369], [34],
which is given by the density

Rα = Γ ((d − α)/2)

πd/22αΓ (α/2)
· |x |α−d for all α ∈ H \ (d + 2N0). (8.2)

The mapping α �→ Rα is extended to all of C by taking the finite part of the mero-
morphic extension of (8.2). Using [42, p. 369] the generalized absolute values of Rα

are calculated as

|Rα|�B =

⎧

⎪

⎨

⎪

⎩

P!α−d for all α ∈ C \ (−2N0 ∪ (d + 2N0)),

P!α−d,1 for all α ∈ d + 2N0,

I +
c for all α ∈ −2N0,

(8.3)

with the notations from Equation (4.13a). Because Rα and Rβ are convolvable if and
only if !(α + β) < d, the convolution kernel Rα gives rise to an endomorphism on
a regularization-solid distribution space if and only if !α ≤ 0. For such α, Equa-
tions (4.17b) and (4.17c) furnish

Endom(−Δ)α/2 := (R−α)∗MD ′ =

⎧

⎪

⎨

⎪

⎩

Dom(−Δ)α/2 if α ∈ H \ 2N0,

(R)∗D ′ if α ∈ i(R \ {0}),
D ′ if α ∈ 2N0.

(8.4)
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Remark 13 Consider the special case d = 1.

a) Then, if !α > −1, the operator (−Δ)α/2 can be factorized into causal and anti-
causal fractional derivatives R−α = Y−α/2 ∗ Y̌−α/2 due to the differentiation rule
from [43] and Equation (1.5.7) from [45] (see also [49, §12]). Further, using The-
orem 6 and the relation Pq

+ q∗ Pq
− = Pq for q < −1 one finds, for !α > 0, the

factorization theorem

(−Δ)2αu = Dα+(Dα− u) = Dα−(Dα+ u) (8.5)

for all u ∈ DomDα+ ∩DomDα−, where DomDα+ ∩DomDα− = Dom(−Δ)α if α /∈
Z. Thus, the factorization (8.5) is valid only on a strict subdomain of the fractional
Laplacian. This domain contains the joint domain

⋂{D ′
α ; !α > 0} = (Q)∗D ′ of

all fractional Laplacians with !α > 0. In particular (Q)∗D ′ � B′ = D ′
L∞ .

b) The set of distributions F := {Yα, Y̌α, Rα, PV(1/x) ; !α ≤ 0} is totally con-
volvable according to Example 2, Equations (7.4a), (8.3), (4.17b) and (4.17c). The
algebra of convolution operators (F)∗aD ′ generated by this set contains Riesz-Feller
derivatives and generalized Hilbert transforms [6,40]. According to Theorem 7
and eqs. (7.7), (6.10) and (8.4) this algebra operates on (R)∗D ′ by convolution. In
contrast to the above (R)∗D ′ � B′.

Remark 14 For α > 0, α /∈ 2N the endomorphic domain of (−Δ)α/2 reads

Endom(−Δ)α/2 = D ′
α := (P−d−α)∗D ′

=
{

u ∈ D ′ ; ∀φ ∈ D :
∫ |(φ ∗ u)(x)|

wd+α(x)
dx < ∞

}

(8.6a)

with the weight

wd+α(x) = (1 + x2)d+α for x ∈ R
d . (8.6b)

Note, that D ′
α = D ′

L1,α
. Thus, (−Δ)α/2 is a continuous linear endomorphism of

(D ′
α,T∗(D ′

α)). The space D ′
α was envisaged in [34,53] as the dual space of

Dα :=
{

f ∈ E ; ∀β ∈ N
d
0 : sup ∥

∥(∂β f ) · wd+α

∥

∥∞ < ∞
}

(8.7)

endowed with the seminorms f �→ ‖(∂β f ) · wd+α‖∞ and β ∈ N
d
0 . The dual of Dα

is not contained in D ′, contrary to the statements in [34] and [53, Sect. 2.1], because
D is not dense in Dα . However, the oversight can be repaired by using the set of
seminorms f �→ ‖(∂β f ) · wd+α · g‖∞ with g ∈ C0 and β ∈ N

d
0 instead, similar to

[44, Prop. 1.3.1.]. With this topology the dual space of Dα is indeed given by D ′
α as

defined in (8.6a). For α ∈ (0, 2) the same argument as in [34] proves that (−Δ)α/2

defines a continuous linear endomorphismofDα with respect to themodified topology.
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Remark 15 Using Theorem 6 and (4.17c), as in the proof of Theorem 10, it follows
that the convolution operators (−Δ)α/2 and (−Δ)−α/2, !α ≥ 0, can be composed
both ways when restricted to u ∈ Dom(−Δ)−α/2, and then obey

(−Δ)α/2
[

(−Δ)−α/2u
]

= (−Δ)−α/2
[

(−Δ)α/2u
]

= u. (8.8)

Thus, one obtains an inversion theorem for Riesz potentials free from the restriction
α < d that applies for L p-spaces, compare [49, Thm.26.3].

Remark 16 The Riesz potentials Rα with α ∈ H\(d+2N0) can be turned into a group
with α ∈ C, if they are defined as operators on the dual space Φ ′ of the Lizorkin space
[49, (25.16)]

Φ :=
{

f ∈ S (Rd) ; ∀β ∈ N
d
0 : (

∂βF f
)

(0) = 0
}

(8.9)

whereF denotes the Fourier transform on the Schwartz space. However, the elements
of Φ ′ can not be interpreted as distributions because Φ ∩D = {0}. This follows from
the Wiener-Paley Theorem and the Taylor formula for multivariate power series.

Remarks 15 and 16 combined with D ′
α ⊆ S ′ lead us to conjecture that there exist

random variables w ∈ D ′
α and a measure on D ′

α such that for all g ∈ S the dual
pairing 〈(−Δ)−α/2w, g〉 is a centered Gaussian with variance ‖g‖2

L2(Rd )
. If true, the

conjecture would render the traditional construction of multidimensional fractional
Brownian fields more direct.
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