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Abstract. Time flow in dynamical systems is reconsidered in the ultralong time limit. The ul-

tralong time limit is a limit in which a discretized time flow is iterated infinitely often and the

discretization time step is infinite. The new limit is used to study induced flows in ergodic theory, in
particular for subsets of measure zero. Induced flows on subsets of measure zero require an infinite

renormalization of time in the ultralong time limit. It is found that induced flows are given generi-
cally by stable convolution semigroups and not by the conventional translation groups. This could

give new insight into the origin of macroscopic irreversibility. Moreover, the induced semigroups

are generated by fractional time derivatives of orders less than unity, and not by a first order time
derivative. Invariance under the induced semiflows therefore leads to a new form of stationarity,

called fractional stationarity. Fractionally stationary states are dissipative. Fractional stationarity

also provides the dynamical foundation for a previously proposed generalized equilibrium concept.
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1. Introduction

[549.1.1] A large number of authors have recently and in the past proposed to use fractional time
derivatives on heuristic or aesthetic grounds as phenomenological models for various natural

549
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[page 550, §0] processes [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. [550.0.1] Can such use
of fractional time derivatives in physics be justified from first principles ? [550.0.2] The traditional
answer to this question is a firm “No”, because fractional time derivatives, contrary to integer ones,
are nonlocal operators, and their use would contradict the deeply rooted principle of locality in physics
[17]. [550.0.3] The first indications that fractional time derivatives have a deeper and more fundamental
significance for physics than merely that of a convenient phenomenological modeling tool appeared in
recent work of the present author on the classification of phase transitions [18, 19, 20, 21].

[550.1.1] My objective in this paper is to further investigate the origin of fractional time derivatives
in physics, and to show that they appear generically in coarse grained descriptions of dynamical
behaviour in the ultra-long-time limit [21]. [550.1.2] I shall call into question the applicability of the
traditional concepts of stationarity and equilibrium in this limit. [550.1.3] The ultralong time limit is
a limit in which a discretized time evolution is iterated infinitely often and the discretzation time step
becomes simultaneously infinite.

[550.2.1] Dynamical descriptions of macroscopic (coarse grained) nonequilibrium phenomena typically
involve a reduction in the number of underlying microscopic dynamical degrees of freedom.[550.2.2]
This reduction or coarse graining amounts to a restriction of the microscopic dynamics to a subspace
(i.e. a subset of measure zero) of the microscopic phase space.[550.2.3] Simultaneously the character-
istic time scale of the reduced or coarse grained description is often so much longer than that of the
underlying microscopic dynamics, that it may be idealized as infinite.

[550.3.1] Given these general ideas the present paper employs concepts from abstract ergodic theory
to show that fractional time derivatives appear as the infinitesimal generators of reduced or coarse
grained dynamical desriptions in the ultralong time limit.[550.3.2] The results of the present paper
are direct consequences of a recent classification of phase transitions in statistical mechanics, and the
ultralong time limit is a version of the ensemble limit [18, 19].

2. Time Flow and Induced Transformations

[550.4.1] Let Γ be the phase or state space of a dynamical system, let G be a σ-algebra of measurable
subsets of Γ, and µ a measure on G such that µ(Γ) = 1.[550.4.2] The triple (Γ,G, µ) forms a probability
measure space.[550.4.3] In general the time evolution of the system is given as a flow (or semiflow)
on (Γ,G, µ), defined as a one-parameter family of maps T̃ t : Γ → Γ such that T̃ 0 = I is the identity,
T̃ s+t = T̃ sT̃ t for all t, s ∈ R and such that for every measurable function f the function f(T̃ tx) is
measurable on the direct product Γ× R.[550.4.4] For every G ∈ G also T̃G, T̃−1G ∈ G holds.[550.4.5]
The measure µ is called invariant under the flow T̃ t if µ(G) = µ(T̃ tG) = µ((T̃ t)−1G) for all t ∈
R, G ∈ G.[550.4.6] An invariant measure is called ergodic if it cannot be decomposed into a convex
combination of invariant measures, i.e. if µ = λµ1 + (1 − λ)µ2 with µ1, µ2 invariant and 0 ≤ λ ≤ 1
implies λ = 1, µ1 = µ or λ = 0, µ2 = µ.

[550.5.1] The flow T̃ t defines the time evolution of measures through T tµ(G) = µ(T̃ tG) as a map
T t : Γ′ → Γ′ on the space Γ′ of measures on Γ.[550.5.2] Defining as usual [22, 23] µ(G, t) = µ((T̃ t)−1G)
shows that

T tµ(G, t0) = µ(G, t0 − t) (1)

and thus the flow T t acts on measures as a right translation in time.[550.5.3] The existence of the
inverse (T t)−1 = T−t for a flow expresses microscopic reversibility.[550.5.4] The infinitesimal
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[page 551, §0] generator of T t is defined (assuming all the necessary structure for Γ′ and T t) as the strong
limit

A = lim
t→0+

T t − I

t
(2)

where I = T 0 denotes the identity, and one has A = −d/dt for right translations.[551.0.1] The
invariance of the measure µ can be expressed as Aµ = −dµ/dt = 0 and it implies that for given t0 ∈ R

T tµ(G, t0) = µ(G, t0) (3)

for all G ∈ G, t ∈ R.

[551.1.1] The continuous time evolution T̃ t with t ∈ R may be discretized into the discrete time
evolution T̃ k with k ∈ Z generated by the map T̃ = T̃∆t with discretization time step ∆t.[551.1.2]
Consider an arbitrary subset G ⊂ Γ corresponding to a physically interesting reduced or coarse grained
description of the original dynamical system.[551.1.3] Not all choices of G correspond to a physically
interesting situation, and the choice of G reflects physical modeling or insight.[551.1.4] A point x ∈ G

is called recurrent with respect to G if there exists a k ≥ 1 for which T̃ kx ∈ G.[551.1.5] The Poincarè
recurrence theorem asserts that if µ is invariant under T̃ and G ∈ G then almost every point of G is
recurrent with respect to G.[551.1.6] A set G ∈ G is called a µ-recurrent set if µ-almost every x ∈ G
is recurrent with respect to G.[551.1.7] By virtue of Poincarè’s recurrence theorem the transformation
T̃ defines an induced transformation S̃G on subsets G of positive measure, µ(G) > 0, through

S̃Gx(t0) = T̃ τG(x)x(t0) = x(t0 + τG(x)) (4)

for almost every x ∈ G.[551.1.8] The recurrence time τG(x) of the point x, defined as

τG(x) = ∆t min{k ≥ 1 : T̃ kx ∈ G}, (5)

is positive and finite for almost every point x ∈ G.[551.1.9] Because G has positive measure it becomes
a probability measure space with the induced measure ν = µ/µ(G).[551.1.10] If µ was invariant under
T̃ then ν is invariant under S̃G, and ergodicity of µ implies ergodicity also for ν [22].

[551.2.1] The induced transformation S̃G : G → G exists for µ-almost every x ∈ G with µ(G) > 0 by
virtue of the Poincare recurrence theorem.[551.2.2] To extend the definition to the case µ(G) = 0 let
(G, G, ν) denote a subspace G ⊂ Γ of measure µ(G) = 0 with σ-algebra G contained in G, G ⊂ G,
in the sense that B ∈ G for all B ∈ G.[551.2.3] µ(B) = 0 for all B ∈ G while ν(B) = ∞ for all sets
B ∈ G with µ(B) > 0.[551.2.4] Let 0 < ν(G) < ∞.[551.2.5] If G is ν-recurrent under T̃ in the sense
that ν-almost every point (rather than µ) is recurrent with respect to G then the recurrence time
τG(x) and the map S̃G are defined for ν-almost every point x ∈ G.[551.2.6] Throughout the following
it will be assumed that G is ν-recurrent under T̃ , and that ν(G \ S̃GG) = 0.[551.2.7] An example is
given by solidification where Γ represents the high temperature phase space, while G corresponds to
the phase space at low temperatures when a large number of nuclear translational degrees of freedom
is frozen out.

[551.3.1] The pointwise definition of S̃G can be extended to a transformation on measures by averaging
over the recurrence times.[551.3.2] This extension was first given in [21].[551.3.3] Let

Gk = {x ∈ G : τ(x) = k∆t} (6)

be the set of points whose recurrence time is k∆t.[551.3.4] The number

p(k) =
ν(Gk)
ν(G)

(7)
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[page 552, §0] is the probability to find a recurrence time k∆t with k ∈ N.[552.0.1] The numbers p(k) define
a discrete (lattice) probability density p(k)δ(t − k∆t) concentrated on the arithmetic progression
k∆t, k ∈ N.[552.0.2] The induced transformation SG acting on a measure % on G is defined as the
mathematical expectation

SG%(B, t0) = 〈T τG%(B, t0)〉 =
∞∑

k=1

%(B, t0 − k∆t)p(k) (8)

where B ⊂ G, and T t was given in (1).[552.0.3] This defines a transformation SG : G′ → G′ on the
space G′ of measures on G.[552.0.4] The next section discusses the iterated transformation SN

G and
the long time limit N →∞.

3. Averaged Induced Dynamics in the Ultralong Time Limit

[552.1.1] The induced transformations S̃G and SG were defined for discrete time, and it is of inter-
est to remove the discretization to obtain the induced dynamics in continuous time. [552.1.2] The
conventional view on discrete vs. continuous time in ergodic theory assumes 0 < ∆t < ∞ for the
discretization time step, and holds that “there is no essential difference between discrete-time and
continuous-time systems”[24],page 51. 1 [552.1.3] Obviously, this equivalence between discrete and
continuous time breaks down for induced dynamics because the continuous flow of time within G
is interrupted by time periods of fluctuating length during which the trajectory wanders outside G.
[552.1.4] These interruptions produce a discontinuous (fluctuating) flow of time.

[552.2.1] There are three possibilities for removing the discretization using a long time limit. [552.2.2]

Only one of these employs the conventional assumption 0 < ∆t < ∞ (or ∆t = 1). [552.2.3] The
two other alternatives are ∆t → 0 and ∆t → ∞. [552.2.4] The first alternative considers the limit
lim∆t→0,k→∞ S̃k∆t in which the discretization step becomes small. [552.2.5] This possibility may be
called the short-long-time limit or continuous time limit, and it was discussed in [21]. [552.2.6] The
second alternative is to consider the limit lim∆t→∞,k→∞ S̃k∆t in which the discretization step diverges
∆t → ∞. [552.2.7] This will be considered in this paper, and it is called the long-long-time limit or
the ultralong-time limit. [552.2.8] These limits are analogous to the ensemble limit [18, 19, 20, 21].

[552.3.1] According to its definition (8) the induced time transformation SG acts as a convolution
operator in time

SG%(B) = %(B) ∗ p. (9)

[552.3.2] Applying the transformation N times yields

SN
G %(B) = (SN−1

G %(B)) ∗ p = %(B) ∗ p ∗ ... ∗ p︸ ︷︷ ︸
N factors

= %(B) ∗ pN (10)

1It is argued that one can always write t ∈ R as t = ε + n∆t where ε = t−n∆t is small and n = [t/∆t] is the largest

integer not larger than t/∆t. As long as 0 < ∆t < ∞ the continuous long time limit limt→∞ eT t corresponds to the

discrete long time limit limk→∞ eT k∆t.
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[page 553, §0] where the last equation defines the N -fold convolution pN (k). [553.0.1] If p∞ = limN→∞ pN

exists this defines also SN
G in the N →∞ long time limit.

[553.1.1] To determine whether a limiting density p∞ exists, note that the N -fold convolution pN (k) =
p(k) ∗ ... ∗ p(k) gives the probability density pN (k) =Prob{TN = k∆t} of the random variable TN =
τ1+...+τN representing the sum of N independent and identically distributed random recurrence times
τj with common lattice distribution p(k) = p1(k). [553.1.2] A necessary and sufficient condition for the
existence of a limiting density p∞ for suitably renormalized recurrence times is that the discrete lattice
probability density p(k) belongs to the domain of attraction of a stable density [25, 26]. [553.1.3] Then,
because ∆t is defined as the maximal value such that all the τi are concentrated on the arithmetic
progression k∆t, it follows that for a suitable choice of renormalization constants CN , DN

lim
N→∞

sup
k

∣∣∣∣DN

∆t
pN (k)− h

(
k∆t− CN

DN
; $, ζ, C, D

)∣∣∣∣ = 0 (11)

where h(x; $, ζ, C,D) is a limiting stable density whose parameters obey 0 < $ ≤ 2, −1 ≤ ζ ≤ 1,
−∞ < C < ∞, and D ≥ 0 [25, 26, 27]. [553.1.4] If D = 0 then the limiting distribution is degenerate,
h(x; $, ζ, C, 0) = δ(x− C) for all values of $, ζ.

[553.2.1] The positivity of the recurrence times τi ≥ 0 for all i ∈ N implies that the renormalized
recurrence times TN are bounded below, and this gives rise to the constraint P∞(t) = 0 for t ≤ C
on the possible limiting distributions. [553.2.2] The limiting stable distributions compatible with this
constraint are given by those with parameters 0 < $ ≤ 1 and ζ = −1. [553.2.3] For 0 < $ < 1 the
limiting densities may be abbreviated as

h(x; $,−1, C,D) =
1

D1/$
h$

(
t− C

D1/$

)
(12)

which expresses the well known scaling relations for stable distributions [25, 26, 18, 20]. [553.2.4] The
scaling function h$(x) can be expressed explicitly as

h$(x) =
1

x$
H10

11

(
1
x

∣∣∣∣ (0, 1)
(0, 1/$)

)
(13)

in terms of general H-functions whose definition may be found in [28] or [18, 20]. [553.2.5] For $ = 1
one finds

h1(x) = lim
$→1−

h$(x) = δ(x− 1) (14)

the Dirac distribution concentrated at x = 1 as the limiting density. [553.2.6] If the limit exists and is
nondegenerate, i.e D 6= 0, the renormalization constants DN must have the form

DN = (NΛ(N))1/$X (15)

where Λ(N) is a slowly varying function [26], defined by the condition that

lim
x→∞

Λ(bx)
Λ(x)

= 1 (16)

for all b > 0.

[553.3.1] Using equations (11) and (12) one has for N →∞

pN (k) ≈ ∆t

DN
h

(
k∆t− CN

DN
; $,−1, C,D

)
=

∆t

DND1/$
h$

(
k∆t

DND1/$

)
(17)
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[page 554, §0] where the centering constants have been chosen conveniently as CN = −CDN . [554.0.1]

From this it is clear that the traditional long time limit N →∞ keeping 0 < ∆t < ∞ finite produces
lim N→∞

0<∆t<∞
k∆t/(DNΛ(N))1/$ = 0 for k finite, and thus lim N→∞

0<∆t<∞
pN (k) = 0, unless D = 0. [554.0.2]

Therefore the conventional long time limit produces a degenerate limiting distribution if it exists.
[554.0.3] The ultralong time limit on the other hand allows ∆t to become infinite. [554.0.4] If ∆t
diverges such that

lim
N→∞
∆t→∞

k∆t

DN
= t (18)

exists, then this defines a renormalized ultralong continuous time, 0 < t < ∞. [554.0.5] In this case D >
0 contrary to the conventional limit. [554.0.6] It follows that lim N→∞

∆t→∞
kpN (k) = th$(t/D1/$)/D1/$

and thus from eq. (10) that

St∗

$ %(B, t∗0) =

∞∫
0

%(B, t∗0 − t)h$

(
t

t∗

)
dt

t∗

=
1
t∗

∞∫
0

T t%(B, t∗0)h$(t/t∗)ds (19)

where the ultralong time parameter t∗ was identified as

t∗ = D1/$ > 0. (20)

[554.0.7] The identification of t∗ is justified for two reasons. [554.0.8] On the one hand D ∝ 〈|τ −
τ ′|σ〉$/σ for all σ < $, where 〈...〉 is the expectation with respect to the limiting distribution, and
τ, τ ′ are two independent random recurrence times. [554.0.9] This shows that D1/$ has dimensions of
time. [554.0.10] Secondly for $ = 1 it follows from (14) that

St∗

1 %(B, t∗0) =

∞∫
−∞

%(B, t∗0 − t)δ
(

t

t∗
− 1

)
dt

t∗
= %(B, t∗0 − t∗) = T t∗%(B, t∗0) (21)

which again identifies t∗ = D1/$ as an ultralong time parameter. [554.0.11] Note that the results (19)
and (21) imply macroscopic (=ultralong time) irreversibility by virtue of (20) even if the underlying
time evolution T̃ t resp. [554.0.12] T t was reversible. [554.0.13] Perhaps this could provide new insight
into the longstanding irreversibility paradox. [554.0.14] The fundamental convolution semigroup (19)
was first obtained in [18, 19] and [21].

4. Fractional Stationarity

[554.1.1] This section investigates the condition of invariance or stationarity for the induced ultralong
time dynamics St∗

$ . [554.1.2] Invariance of a measure ν on G under the induced dynamics St∗

$ is defined
as usual (see (3)) by requiring that

St∗

$ ν(B, t∗0) = ν(B, t∗0) (22)

for t > 0 and B ⊂ G. [554.1.3] For 0 < $ < 1 (22) may be called the condition of fractional invariance
or fractional stationarity. [554.1.4] Using (2) the invariance condition becomes

A$ν(B, t) = 0 (23)
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[page 555, §0] for t > 0 where A$ is the infinitesimal generator of the semigroup St∗

$ . [555.0.1] For $ = 1
the relation (21) implies A1ν(B, t) = −dν(B, t)/dt = 0, and thus in this case invariant measures
conserve volumes in phase space as usual. [555.0.2] A very different situation arises for $ < 1.

[555.1.1] For 0 < $ < 1 the infinitesimal generators of the stable convolution semigroup St∗

$ are
obtained [26] by evaluating the generalized function s−$−1

+ [29] on the time translation group T s

A$%(t) = c+

∞∫
0

s−$−1(T s − T 0) ds %(t) = c+

∞∫
0

s−$−1
+ T s ds %(t) (24)

where c+ > 0 is a constant. [555.1.2] Comparing (24) with the Balakrishnan algorithm [30, 31, 32] for
fractional powers of the generator of a semigroup T t

(−A)α%(t) = lim
t→0+

(
I − T t

t

)α

%

=
1

Γ(−α)

∞∫
0

s−α−1(I − T s)%(t)ds (25)

shows that if A = −d/dt denotes the infinitesimal generator of the original time evolution T t then
A$ = (−A)$ is the infinitesimal generator of the induced time evolution St∗

$ . [555.1.3] For 0 < $ < 1
the generators A$ for St∗

$ are fractional time derivatives [15, 31, 29]. [555.1.4] The differential form
(23) of the fractional invariance condition for ν becomes

d$

dt$
ν(B, t) = 0 (26)

for t > 0 which was first derived in [18, 19]. [555.1.5] Its solution is

ν(B, t) = C0t
$−1 (27)

for t > 0 with C0 a constant. [555.1.6] This shows that ν(B) for a fractional stationary dynamical
state is not constant. [555.1.7] Fractional stationarity or fractional invariance of a measure ν implies
that phase space volumes ν(B) shrink with time. [555.1.8] Thus fractional dynamics is dissipative.
[555.1.9] More generally (26) reads A$ν(B, t) = δ(t) with solution ν(B, t) = C0t

$−1
+ for t ≥ 0 in the

sense of distributions. [555.1.10] The stationary solution with $ = 1 has a jump discontinuity at t = 0,
and is not simply constant.

[555.2.1] The transition from an original invariant measure µ on Γ to a fractional invariant measure
ν on a subset G of measure µ(G) = 0 may be called stationarity breaking. [555.2.2] It occurs sponta-
neously in the sense that it is generated by the dynamics itself. [555.2.3] Stationarity breaking implies
ergodicity breaking, and thus the ultralong time limit is a possible scenario for ergodicity breaking in
ergodic theory.

[555.3.1] The present paper has shown that the use of fractional time derivatives in physics is not
only justified, but arises generically for induced dynamics in the ultralong time limit. [555.3.2] This
mathematical result applies to many physical situations. [555.3.3] In the simplest case the resulting
fractional differential equation (26) defines fractional stationarity which provides the dynamical basis
for the anequilibrium concept [18]. [555.3.4] Recently fractional random walks were discussed [8] and
solved [10] in the continuum limit.
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