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Abstract

Applications of fractional time derivatives in physics and engineering

require the existence of nontranslational time automorphisms on the ap-

propriate algebra of observables. The existence of time automorphisms

on commutative and noncommutative C∗-algebras for interacting many-

body systems is investigated in this article. A mathematical framework

is given to discuss local stationarity in time and the global existence of

fractional and nonfractional time automorphisms. The results challenge

the concept of time flow as a translation along the orbits and support

a more general concept of time flow as a convolution along orbits. Im-

plications for the distinction of reversible and irreversible dynamics are

discussed. The generalized concept of time as a convolution reduces to

the traditional concept of time translation in a special limit.
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[page 626, §1]

1. Introduction

[626.1.1] Applications of fractional time derivatives and engineering assume the existence of a physi-
cal time automorphism (time evolution) of observables, which for closed quantum many-body systems
is usually given as a Hamiltonian-generated one-parameter group of unitary operators on a Hilbert
space. [626.1.2] Dissipative processes, irreversible phenomena, decay of unstable particles, approach
to thermodynamic equilibrium or quantum measurement processes are difficult to accommodate
within this mathematical framework [1–3].
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[page 627, §1] [627.1.1] Many theoretical approaches to these problems consider an “open” system
(or subsystem) S coupled to a “reservoir” R, often viewed as a heat bath or as an apparatus for
measurement [3,4]. [627.1.2] A different physical interpretation with the same mathematical structure
is to identify S with a selection of macroscopic degrees of freedom of a large or infinite many body
system S ∪R, while R corresponds to the large or infinite number of microscopic degrees of freedom.
[627.1.3] It has remained difficult to find physical conditions which rigorously imply irreversibility for
the time evolution of the subsystem [4, 5]. [627.1.4] One expects intuitively that separation of time
scales will be important. [627.1.5] Relaxation processes in the reservoir R are usually much faster
than the characteristic time scale for the evolution of the system S of interest. [627.1.6] Equally
important for macroscopic dynamics and thermodynamic behaviour is scale separation in the size of
R and S. [627.1.7] Memory effects are expected to arise from interaction between the system and
the reservoir.

[627.2.1] Dynamical equations of motion for closed systems are frequently formulated as abstract
Cauchy problems on some Banach space B of states or observables A ∈ B

τε
d

dt
A(t/τ) = LA(t/τ) (1a)

A(t0/τ) = A0,τ (1b)

where A0,τ is the initial value, t, t0 are time instants measured in units of τ seconds (such that
t/τ ∈ R) and ε provides energy units (Joule) for the infinitesimal generator L (Liouvillian), which
is a linear, often unbounded, operator with domain D(L ) ⊂ B.

[627.3.1] Existence of a physical time evolution is equivalent to the existence of global solutions
of eq. (1) under various circumstances and assumptions such as physical constraints and boundary
conditions. [627.3.2] It is well known that global solutions do not always exist, particularly when the
system is infinite.

[627.4.1] Given a kinematical structure describing the states and observables of a physical system,
the infinitesimal generator L in eq. (1) describes infinitesimal changes of these states and observables
with time starting from an initial condition A0,τ ∈ B. [627.4.2] Let me briefly recall the kinematical
structures for classical mechanics, quantum mechanics and field theory [2,6,7]. [627.4.3] Observables
and states in classical mechanics of point particles correspond to functions over and points in a differ-
entiable manifold. [627.4.4] Rays in a Hilbert space and operators acting on them are the kinematical
structure in quantum mechanics. [627.4.5] In field theory the observables form a C∗-algebra of field
operators and the states correspond to positive linear functionals on this algebra. [627.4.6] Auto-
morphisms of the algebra of field operators in field theory, unitary operators on the Hilbert space in
quantum mechanics and diffeomorphisms of the differentiable manifold in classical mechanics, repre-
sent the time evolution of the system as a flow on the kinematical structure. [627.4.7] Many theories
of interacting particles are based on some Hamiltonian formalisms as in eq. (1) with a Hamiltonian
L corresponding to a vector field in classical mechanics, a selfadjoint operator in quantum mechanics
and some form of derivation on the algebra in field theories.

[627.5.1] Let B = A be the C∗-algebra of observables of a physical system. [627.5.2] Unless otherwise
stated all C∗-algebras will be assumed to have an identity. [627.5.3] Formally integrating eq. (1) gives

T t/τKA0,τ

(
t0
τ

)
= T t/τA0,τ (2)
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[page 628, §0] where the maps T s : A→ A and T s : A→ A are

T t/τA = exp

(
L t

ετ

)
A (3a)

T t/τKA(s) = KA
(
s+

t

τ

)
(3b)

and the orbit maps KA : R→ A are defined as

KA(s) : s 7→ T sA (4)

for each fixed A ∈ A, if T s with s ∈ R is a one-parameter familiy of *-automorphisms of A. [628.0.1] Of
course, the problem is to give meaning to the formal exponential in eq. (3a) such that the orbit maps
KA : R→ A are continuous for every A ∈ A.

[628.1.1] The one-parameter family (T s)s∈R of *-automorphisms is expected to obey the time evo-
lution law

T t/τT s/τ = T (t+s)/τ (5)

with T 0 = 1 being the identity. [628.1.2] The continuity of the orbit maps may be rephrased as
continuity of the maps t 7→ T t from R into the space B(A) of all bounded operators on A endowed
with the strong operator topology [8, 9]. [628.1.3] The operator family (T s)s∈R is then a strongly
continuous one-parameter group (C0-group) on A.

[628.2.1] The time evolution of states is obtained from the time evolution of observables by pass-
ing to adjoints [10, 11]. [628.2.2] States are elements of the topological dual A∗ = {z : A → C :
z is linear and continuous}. [628.2.3] The notation 〈z, A〉 is used for the value z(A) ∈ R of a selfad-
joint A ∈ A in the state z. [628.2.4] States are positive, 〈z, A∗A〉 ≥ 0 for all A ∈ A, and normalized,
‖z‖ = sup{|〈z, A〉|, ‖A‖ = 1} = 1, linear functionals on the algebra A of observables [6]. [628.2.5] The
adjoint time evolution T ∗t : A∗ → A∗ with t ∈ R consists of all adjoint operators (T t)∗ on the dual
space A∗ [10,12]. [628.2.6] Let Z ⊂ A∗ denote the set of all states. [628.2.7] The orbit maps for states
Kz : R→ Z are defined as

Kz(s) : s 7→ (T s)∗z = T ∗sz (6)

for states z ∈ Z ⊂ A∗. [628.2.8] If T t is strongly continuous then

|
〈
(T ∗t − 1)z, A

〉
| = |

〈
z, T tA− A

〉
|

≤ ‖z‖ ‖T tA− A‖ (7)

shows that the adjoint time evolution T ∗t is weak*-continuous in the sense that the maps 〈A〉z : R→
R

t 7→ 〈A〉z (t) =
〈
z, T tA

〉
=
〈
T ∗tz, A

〉
(8)

are continuous for all A ∈ A, z ∈ Z. [628.2.9] These maps are the time evolutions of all expectation
values. [628.2.10] In other words for a C0-group (T s)s∈R the orbit maps Kz(s) are continuous from R
into the space B(A∗) of all bounded operators on A∗ endowed with the weak* topology [8, 13] and
the adjoint family (T ∗s)s∈R is a C∗0 -group. [628.2.11] Note, that the adjoint time evolution T ∗t need
not be strongly continuous unless A is reflexive. [628.2.12] The relation between the time evolution
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of states and observables is〈
Kz(t0), T tKA(t0)

〉
=
〈
Kz(t0),T tKA(t0)

〉
= 〈Kz(t0),KA(t0 + t)〉
= 〈Kz(t1 − t),KA(t1)〉 (9)

=
〈
T −tKz(t1),KA(t1)

〉
=
〈
T ∗tKz(t1),KA(t1)

〉
[page 629, §0] where t1 = t0 + t ∈ R. [629.0.1] The adjoint time evolution of states is related to right

translations along the orbits in state space in the same way as the time evolution of observables is
related to left translations along orbits in the algebra.

[629.1.1] Equation (1a) combined with eq. (9) for the adjoint time evolution states formally the
proportionality

±τ d

dt
= ±L

ε
(10)

of the infinitesimal generator d/dt of time translations and the infinitesimal generator L of changes
of the physical system. [629.1.2] Independently of the manner in which one attaches a meaning to
the formal exponential, equation (2) says that the time evolution of a physical system is a translation
along orbits corresponding to the changes of the system, specifically

(left shift along A-orbit) = (change of observable) (11a)

(right shift along Z-orbit) = (change of state) (11b)

where the first equation reflects the Heisenberg picture, while the second corresponds to the Schrödinger
picture.

2. Problems and Objective

[629.2.1] There are several unsolved problems with the mathematical framework described in the
introduction, particularly when the system is infinite. [629.2.2] The following examples of open
problems stem from three different areas of theoretical physics.

A) Open quantum systems: [629.2.3] For open quantum systems with infinite reservoirs A = B(H)
is the C∗-algebra of bounded operators on the Hilbert space H of the system S ∪ R in a
suitably chosen GNS-representation. [629.2.4] The states 〈ρ,A〉 = Tr ρA can be identified
with trace class operators on H if Tr denotes the trace operation. [629.2.5] The unitary
time-automorphisms T t : B(H)→ B(H) of S ∪R are generated by a Hamiltonian H of S ∪R
H = HS ⊗ 1 + 1⊗HR +HSR = −iL (12)

written formally in terms of Hamiltonians HS of S, HR of R and their interaction HSR.
[629.2.6] It is well known [2] that the automorphisms T t on B(H) do not induce automorphisms
on the algebra B(HS) of the open subsystem, because the time evolution will mix the Hilbert
spaces HS and HR of the system and the reservoir. [629.2.7] Even if the initial state is prepared
as a product state ρS ⊗ ρR the subsystem evolutions defined by

T tSA = Tr
R

(1⊗ ρR)T−t(A⊗ 1)T t (13a)

T ∗ tS ρS = Tr
R
T t(ρS ⊗ ρR)T−t (13b)
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do not form groups

T a1
S T

a2
S 6= T a1+a2

S (14a)

T ∗ a1
S T ∗ a2

S 6= T ∗ a1+a2
S (14b)

[page 630, §0] because of memory effects accumulating from the mixing of the system and
the reservoir whenever there is nonvanishing interaction [2]. [630.0.1] Here ρS, ρR denote the
density matrices of the system and the rservoir. The trace TrR integrates out the reservoir
degrees of freedom.

B) Classical dynamical systems: [630.0.2] In classical systems it is well known [14] that the orbits
in the abelian algebra A of functions on phase space cannot always be defined for all t ∈ R and
for all initial conditions A0 in the thermodynamics limit. [630.0.3] The integration of eq. (1)
does not generally give a dynamical flow of time for all initial conditions and the problem is
to find sufficiently large subsets of A such that catastrophic behavior is absent and a unique
orbit exists for all t ∈ R.

C) Quantum field theory: [630.0.4] For quantum field theories or infinite systems the Stone-von
Neumann uniqueness breaks down. [630.0.5] Haags theorem shows that the determination
of a suitable representation of the canonical commutation relations becomes a dynamical
problem, if the vacuum states for different couplings are different. [630.0.6] Non-normal states
arise that yield representations assigning different values to global observables like densities.
[630.0.7] Due to the problem of inequivalent representations it is not possible to represent the
time evolution as a group of unitary transformation within a single representation, because
the representation algebra may change into an inequivalent representation as time evolves.

[630.0.8] One objective of this paper is to suggest that these three open problems are, in fact, related
to each other, even though they seem to be unrelated at first sight.

[630.1.1] The present article suggests that the common denominator of problems A)-C) associated
with the mathematical framework described in the introduction is the concept of time flow as a
translation, implicitly assumed on the left hand side of Equation (1). [630.1.2] The common origin of
problems A)-C) emerges from studying the following two general questions associated with Equation
(1).

Problem 1. [630.1.3] Are there global solutions of equation (1), i.e. solutions for all t ∈ R?

[630.1.4] If global solutions and hence a group of *-automorphisms on A exist, then this implies
a continuous time evolution for all states z ∈ Z. [630.1.5] This means a time evolution indepen-
dent of the state, which is not to be expected for general infinite systems without rescaling time.
[630.1.6] Rescaling of time is also expected to be necessary for establishing hydrodynamic limits
governing invariant states.

Problem 2. [630.1.7] If global solutions of equation (1) exist, how can invariant solutions still change
with time?

[630.1.8] Local stationarity (invariance) in time arises from the underlying dynamics. [630.1.9] Local
stationarity in time is necessary, if thermodynamic observables such as temperature, pressure or
densities are to provide an approximate representation of the physical system that changes slowly
on long time scales. [630.1.10] Hence one has to study the set of stationary states that are invariant
under the time evolution. [630.1.11] If the thermodynamic observables change then there must exist
many invariant states and many possible time averages, i.e. the time averages are not unique.

[page 631, §1] [631.1.1] The objective of this paper is to introduce a framework in which questions
concerning the abundance of time-invariant states and their embedding in the set of all states can
be posed mathematically in a proper way.
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3. Almost invariant states

[631.2.1] Strictly stationary or invariant states [15] are an idealization. [631.2.2] In experiments sta-
tionarity is never ideal, but only approximate. [631.2.3] Expectation values are uncertain within the
accuracy of the experiment. [631.2.4] Experimental accuracy depends on the response and integration
times of the experimental apparatus.

[631.3.1] These experimental restrictions suggest to focus on a class of states that are stationary
(invariant) only up to a given experimental accuracy ε. [631.3.2] To do so, recall the definition of
invariant (stationary) states. [631.3.3] A state z ∈ A∗ is called invariant, if〈

z, T tA
〉

= 〈z, A〉 (15)

holds for all A ∈ A and t ∈ R, i.e. if the expectation values 〈A〉z (t) = 〈z, A〉 of all observables
A ∈ A are constant. [631.3.4] The set of invariant states B0 ⊂ A∗ over A is convex and compact in
the weak*-topology [6]. [631.3.5] The same holds for the set of all states Z ⊃ B0. [631.3.6] Invariant
states are fixed points of the adjoint time evolution T ∗t as seen from eq. (8). [631.3.7] Because invariant
states are fixed points of T ∗t, they are of limited benefit for a proper mathematical formulation of
the problems discussed above. [631.3.8] Once an orbit in state space reaches an invariant state, it
remains forever in that state and cannot leave it.

[631.4.1] Almost invariant states are based on states whose expectation values are of bounded mean
oscillation (BMO). [631.4.2] A state z ∈ Z is called a BMO-state if all maps 〈A〉z : R → R have
bounded mean oscillation for all A ∈ A. [631.4.3] The Banach space BMO(R) of functions with
bounded mean oscillation on R is defined as the linear space

BMO(R) = {f ∈ L1
loc(R), ‖f‖BMO <∞} (16)

where L1
loc(R) is the space of locally integrable functions f : R → R . [631.4.4] The BMO-norm is

defined as

‖f‖BMO = inf
C


∫
I

|f(x)− fI |dx ≤ C|I|, for all I

 (17)

where I ⊂ R denotes intervals of length |I| and

fI =
1

|I|

∫
I

f(x)dx (18)

denotes the average of f over the interval I. [631.4.5] The set of all BMO-states

B =
{
z ∈ Z : ‖〈A〉z‖BMO <∞ for all A ∈ A

}
(19)

is convex by linearity. [631.4.6] As a subset B ⊂ Z of a weak* compact set it is itself weak* compact.
[631.4.7] Hence a decomposition theory into extremal BMO-states exists by virtue of the Krein-
Milman theorem. [631.4.8] The set of invariant states is identified through

B0 =
{
z ∈ B : ‖〈A〉z‖BMO = 0 for all A ∈ A

}
(20)

as a subset B0 ⊂ B.

[page 632, §1] [632.1.1] A BMO-state will be called ε-almost invariant or almost invariant with accuracy
ε if the expectation of all observables are stationary to within experimental accuracy ε. [632.1.2] More
precisely, the set Bε of all ε-almost invariant states is defined as

Bε =
{
z ∈ B : ‖〈A〉z‖BMO < ε for all A ∈ A

}
(21)
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as a family of subsets of B. [632.1.3] For small ε→ 0 these states are almost invariant. [632.1.4] The
accuracy ε measures temporal fluctuations away from the time average.

[632.2.1] The following inclusions of classes of states used in the following are summarized for
orientation and convenience

Kβ ⊂ B0 ⊂ Bε ⊂ B∞ = B ⊂ Z ⊂ A∗ (22)

where 0 < ε < ∞ and the set of KMS-states Kβ at inverse temperature β > 0 are defined as states
z ∈ Z such that the KMS-condition [16]〈

z, T t/τ (A)B
〉

=
〈
z, BT t/τ+iεβ(A)

〉
(23)

holds for all t/τ ∈ R and A,B ∈ A. [632.2.2] The KMS-states are invariant states for all β ≥ 0, but
KMS-states for different β are disjoint [16]. [632.2.3] For β = 0 the KMS-states are trace states, i.e.
〈z, AB〉 = 〈z, BA〉 holds for all A,B ∈ A. [632.2.4] Because KMS-states are Gibbs states they are
usually interpreted as equilibrium states with extremal states corresponding to pure thermodynamic
phases [16].

4. Indistinguishability of states

[632.3.1] Experimental uncertainties limit also the ability to distinguish different states. [632.3.2] Two
states are experimentally indistinguishable (or metrologically equivalent) if they cannot be distin-
guished by measurements. [632.3.3] Let m < ∞ denote the maximal number of experiments that
can be performed to distinguish the states of the system. [632.3.4] Let {Ai}m1 ⊂ A with i = 1, ...,m
denote the observables in these experiments, and let ηi (i = 1, ...,m) be the experimental resolutions
or accuracy that can be attained for Ai. [632.3.5] Two states z, z′ ∈ Z with

| 〈z, Ai〉 − 〈z′, Ai〉 | (24)

= | 〈z− z′, Ai〉 | < ηi ≤ η = max
i=1,...,m

ηi

for all i = 1, ...,m are called metrologically equivalent or experimentally indistinguishable with
respect to the observables A1, ..., Am. [632.3.6] The sets of indistinguishable states

N(z; {Ai}m1 ; η)

= {z′ ∈ A∗ : | 〈z− z′, Ai〉 | < ηi, i = 1, ...,m} (25)

are η-neighborhoods of z in the weak* topology [17]. [632.3.7] The algebra M generated by the
elements A1, ..., Am ∈ A will be called macroscopic algebra.

[632.4.1] In the following 0 < ηi < ∞ and 0 < η = maxi ηi < ∞ will be assumed. [632.4.2] The
η-neighborhoods of ε-almost invariant states, i.e. the sets N(z; {A}m1 , η) ∩ Bε with z ∈ B0 for small
ε, η → 0 will be the candidates for local (in time) stationary states.

[page 633, §1]

5. Invariant Measures on BMO-states

[633.1.1] The set of BMO-states B is weak*-compact. [633.1.2] Its open subsets are the elements
of the weak*-topology restricted to B. [633.1.3] They generate the σ-algebra B of Borel sets on B.
[633.1.4] Let z ∈ B0 ⊂ B denote an invariant state so that eq. (15) holds for all t ∈ R, A ∈ A.
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[633.1.5] An invariant probability measure on B corresponding to the invariant z can be constructed
with the help of a resolution of the identity on B.

[633.2.1] Let (Hz, πz,Ωz, U
t
z) denote the cyclic representation canonically associated with an invari-

ant state z ∈ B and the time evolution T t on A. [633.2.2] It is uniquely determined by the two
requirements

U t
z πz(A) U−tz = πz

(
T tA

)
(26)

for A ∈ A, t ∈ R and

U t
z Ωz = Ωz (27)

for t ∈ R. [633.2.3] Let ( , ) denotes the scalar product in Hz.

[633.3.1] A resolution of the identity [13, p.301] on the Borel σ-algebra B is a mapping

P : B → B(Hz) (28)

with the properties

(1) P (∅) = 0, P (B) = 1
(2) Each P (G) is a self-adjoint projector.
(3) P (G ∩ G′) = P (G)P (G′)
(4) If G ∩ G′ = ∅ then P (G ∪ G′) = P (G) + P (G′)
(5) For every ψ ∈ Hz and φ ∈ Hz the set function Pψ,φ : B → C defined by

Pψ,φ(G) = (P (G)ψ, φ) (29)

is a complex regular Borel measure on B.

[633.3.2] Because the projectors are self-adjoint the set function Pψ,ψ is a positive measure for every
ψ ∈ Hz. [633.3.3] For ψ = φ = Ωz the resulting measure

PΩz,Ωz = (P (G)Ωz,Ωz) =: Pz (30)

is an invariant probability measure on the measurable space (B,B) associated with the invariant
BMO-state z ∈ B. [633.3.4] The triple (B,B, Pz) is a probability space. [633.3.5] The probability
measure Pz is invariant under the adjoint time evolution T ∗t on B.

[page 634, §1]

6. Almost Invariance and Recurrence

[634.1.1] To discuss the question how invariant states can evolve in time (Problem 2) consider two
invariant states u, v ∈ B0 and the straight line segment

S = {z = λu + (1− λ)v, 0 ≤ λ ≤ 1, u ∈ B0, v ∈ B0} (31)

connecting u and v. [634.1.2] Of course S ⊂ B0. [634.1.3] In practical applications S might be a
more or less general subset of B0, e.g., a KMS-state in

⋃
β Kβ. [634.1.4] Straight line segments of

invariant states are expected to be physically important for phase transformations at thermodynamic
coexistence. [634.1.5] Define a weak*-neighbourhood

G = Bε ∩

(⋃
z∈S

N(z, {A}m1 ; η)

)
(32)

of ε-almost invariant η-indistinguishable states near S. [634.1.6] Depending on the invariant states
S and macroscopic algebra M of interest a similar weak*-neighbourhood G = G(S,M, ε, η) can be
defined for other subsets of B0.
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[634.2.1] The time translations T −t/τ with time scale τ translate any initial state z ∈ G along its
orbit according to

T −t/τKz

(
t0
τ

)
= Kz

(
t0 − t
τ

)
(33)

where t0 denotes the initial instant, Kz(t0/τ) = z and τ > 0 the time scale. [634.2.2] Discretizing
time as

t = kτ (34)

with k ∈ Z such that t0 = 0 produces discretized orbits Kz(−k), k ∈ N for all z ∈ G as iterates of
T 1. [634.2.3] For every initial state z ∈ G define

wG(z) = min
{
k ≥ 1 : T −kKz(0) ∈ G

}
(35)

as the first return time of z into the set G. [634.2.4] For all invariant z ∈ B0 one has wG(z) = 1.
[634.2.5] For states z that never return to G one sets wG(z) =∞. [634.2.6] For all k ≥ 1 let

Gk = {z ∈ G : wG(z) = k} (36)

denote the subset of states with recurrence time 1 ≤ k ≤ ∞ with k =∞ interpreted as

G∞ = G \
⋃
k∈N

Gk. (37)

[634.2.7] The states z ∈ S generate a one parameter family of resolutions of the identity resulting in
a one parameter family of measures on (B,B) denoted as Pλu+(1−λ)v with λ ∈ [0, 1]. [634.2.8] Their
mixture

Q =

1∫
0

Pλu+(1−λ)vdλ (38)

[page 635, §0] is again an invariant measure on (B,B). [635.0.1] The numbers

p(k) =
Q(Gk)

Q(G)
(39)

define a discrete probability density on N ∪ {∞}. [635.0.2] It may be interpreted as a properly
weighted probability of recurrence into the neighbourhood G of the straight line segement S ⊂ B0.

7. Results

[635.1.1] The time evolution of almost invariant states can be defined by the addition of random
recurrence times. [635.1.2] Let pN(k) be the probability density of the sum

WN = w1 + · · ·+ wN (40)

of N ≥ 1 independent and identically-distributed random recurrence times wi ≥ 1. [635.1.3] Let p(k)
from Equation (39) be the common probability density of all wi. [635.1.4] Then, with N ≥ 2 and
p1(k) = p(k),

pN(k) = (pN−1 ∗ p)(k) =
k∑

m=0

pN−1(m)p(k −m) (41)
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is an N -fold convolution of the discrete recurrence time density in Equation (39). [635.1.5] The family
of distributions pN(k) obeys

pN(∞) +
∞∑
k=1

pN(k) = 1 (42)

for all N ≥ 1, and the discrete analogue of Equation (5)

pN+M(k) = (pN ∗ pM)(k) (43)

holds for all N,M ≥ 1. [635.1.6] Because the individual states in G are indistinguishable within the
given accuracy η, but may evolve very differently in time, it is natural to define the duration of time
needed for the first recurrence (a single time step) as an average

S −1 =
∞∑
k=1

p(k) T −k (44)

over recurrence times. [635.1.7] If a macroscopic time evolution with a rescaled time exists, then one
has to rescale the sums WN and the iterations

S −N = S −(N−1)S −1 =
∞∑
k=1

pN(k) T −k (45)

in the limit N →∞ with suitable norming constants DN ≥ 0.

Theorem 3. [635.1.8] Let pN(k) be the probability density of WN specified above in (41). [635.1.9] If
the distributions of WN/DN converge to a limit as N →∞ for suitable norming constants DN ≥ 0,
then there exist constants D ≥ 0 and 0 < α ≤ 1, such that

lim
N→∞

sup
k

∣∣∣∣DNpN(k)− τ

D1/α
hα

(
kτ

DND1/α

)∣∣∣∣ = 0 (46)

[page 636, §0] where:

α = sup{0 < β < 1 :
∞∑
k=1

kβp(k) <∞} (47)

if
∑∞

k=1 kp(k) diverges, while

α = 1 (48)

if
∑∞

k=1 kp(k) converges. [636.0.1] For α = 1, the function hα(x) is h1(x) = δ(x − 1). [636.0.2] For
0 < α < 1, the function hα(x) = 0 for x ≤ 0 and

hα(x) =
1

x

∞∑
j=0

(−1)jx−αj

j! Γ(−αj)
(49)

for x > 0.

Proof. [636.1.1] The existence of a limiting distribution for WN/DN > 0 is known to be equivalent to the
stability of the limit [18]. [636.1.2] If the limit distribution is nondegenerate, this implies that the rescaling
constants DN have the form

DN = (NΛ(N))1/α (50)

where Λ(N) is a slowly varying function [19], defined by the requirement that

lim
x→∞

Λ(bx)

Λ(x)
= 1 (51)
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holds for all b > 0. [636.1.3] That the number α obeys Equation (47) is proven in [18] (p. 179). [636.1.4] It
is bounded as 0 < α ≤ 1, because the rescaled random variables WN/DN > 0 are positive.

[636.2.1] To prove Equation (46), note that the characteristic function of WN is the N -th power

〈eiξWN 〉 = [p(ξ)]N =
∑
k

eiξypN (k) (52)

because the characteristic functions p(ξ) = 〈eiξwj 〉 of wj are identical for all j = 1, ..., N . [636.2.2] Inverse
Fourier transformation gives:

pN (k) =
1

2π

π∫
−π

e−iξk [p(ξ)]N dξ =
τ

2πDND1/α

πDND
1/α∫

−πDND1/α

e−iξx

[
p

(
ξτ

DND1/α

)]N
dξ (53)

where:

x = xkN =
kτ

DND1/α
(54)

and ξ was substituted with (ξτ)/(DND
1/α). [636.2.3] Let hα(ξ) denote the characteristic function of hα(x),

so that

hα(x) =
1

2π

∞∫
−∞

e−ixξhα(ξ)dξ (55)

holds.

[page 637, §1] [637.1.1] Following [20], the difference ∆N (k) in (46) can be decomposed and bounded from
above as

∆N (k) =

∣∣∣∣DNpN (k)− τ

D1/α
hα

(
kτ

DND1/α

)∣∣∣∣ =
∣∣∣DNpN (k)− τ

D1/α
hα (x)

∣∣∣
=

τ

2πD1/α

∣∣∣∣∣∣∣
πDND

1/α∫
−πDND1/α

e−iξx

[
p

(
ξτ

DND1/α

)]N
dξ −

∞∫
−∞

e−iξx hα(ξ)dξ

∣∣∣∣∣∣∣
=

τ

2πD1/α

∣∣∣∣∣∣∣
∫
|ξ|<B

e−iξx

[
p

(
ξτ

DND1/α

)N
− hα(ξ)

]
dξ +

∫
B≤|ξ|<ηDND1/α

e−iξx

[
p

(
ξτ

DND1/α

)N
− hα(ξ)

]
dξ

+

∫
η≤ |ξ|

DND
1/α

<π

e−iξx

[
p

(
ξτ

DND1/α

)N
− hα(ξ)

]
dξ −

∫
|ξ|≥πDND1/α

e−iξx hα(ξ)dξ

∣∣∣∣∣∣∣∣∣
≤ τ

2πD1/α

 ∫
|ξ|<B

∣∣∣∣∣p
(

ξτ

DND1/α

)N
− hα(ξ)

∣∣∣∣∣ dξ +

∫
B≤|ξ|<ηDND1/α

∣∣∣∣p( ξτ

DND1/α

)∣∣∣∣N dξ

+

∫
η≤ |ξ|

DND
1/α

<π

∣∣∣∣p( ξτ

DND1/α

)∣∣∣∣N dξ +

∫
|ξ|≥B

hα(ξ)dξ

 (56)

with constants B, η to be specified below. [637.1.2] The terms involving hα(ξ) from the second and third
integral have been absorbed in the fourth integral. [637.1.3] The four integrals are now discussed further
individually.
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[637.2.1] The first integral converges uniformly to zero for N →∞, because p(k) belongs to the domain of
attraction of a stable law with index α, as already noted above.

[637.3.1] To estimate the second integral, note that the characteristic function p(ξ) belongs to the domain
of attraction for index α if and only if it behaves for |ξ| → 0 as [20]

|p(ξ)| = exp

{
−c|ξ|αΛ

(
1

|ξ|

)}
(57)

where c > 0 and Λ(x) is a slowly varying function at infinity obeying

lim
N→∞

NΛ(DN )

Dα
N

= 1 (58)

[637.3.2] By the representation theorem for slowly varying functions ( [21] p. 12), there exist functions d(y)
and ε(y), such that the function Λ(y) can be represented as

Λ(y) = d(y) exp

−
y∫
b

ε(u)

u
du

 (59)

[page 638, §0] for some b > 0 where d(y) is measurable and d(y) → d ∈ (0,∞), as well as ε(u) → 0 hold for
y →∞. [638.0.1] As a consequence

Λ(λy)

Λ(y)
=
d(λy)

d(y)
exp

−
λy∫
y

ε(u)

u
du

 (60)

so that with λ = |ξ|−1 and y = DN

Λ(DN/|ξ|)
Λ(DN )

= |ξ|o(1)(1 + o(1)) (61)

is obtained for N →∞. [638.0.2] Therefore, there exists for any γ < α a positive number c(γ) independent
of N , such that

|pN (ξ)| =
∣∣∣∣p( ξ

DN

)∣∣∣∣N =

∣∣∣∣exp

{
− cN
Dα
N

Λ(DN )

Λ(DN )
Λ

(
DN

ξ

)
|ξ|α
}∣∣∣∣ ≤ exp {−c(γ)|ξ|γ} (62)

for sufficiently large N . [638.0.3] If N is sufficiently large, it is then possible to choose an η > 0 (and find
c̃(γ)), such that∫

B≤|ξ|<ηDND1/α

∣∣∣∣p( ξτ

DND1/α

)∣∣∣∣N dξ ≤
∫

B≤|ξ|<ηDND1/α

exp
{
−c̃
(α

2

)
|ξ|

α
2

}
dξ

≤
∫
|ξ|≥B

exp
{
−c̃
(α

2

)
|ξ|

α
2

}
dξ (63)

and this converges to zero for B →∞.

[638.1.1] The third integral is estimated by noting that |p(ξ)| < 1 for 0 < |ξ| < 2π/τ . [638.1.2] Hence,
there is a positive constant c > 0, such that

|p(ξ)| ≤ e−c (64)

for η ≤ |ξ| ≤ π. [638.1.3] Consequently, with Equation (50),∫
η≤ |ξ|

DND
1/α

<π

∣∣∣∣p( ξτ

DND1/α

)∣∣∣∣N dξ ≤ 2πe−cN [NΛ(N)D]1/α (65)

converges to zero as N →∞.
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[638.2.1] Finally, the fourth integral converges to zero, because the characteristic function hα(ξ) is integrable
on R. [638.2.2] In summary, all four terms in Equation (56) vanish for N →∞, and Equation (46) holds. �

[638.3.1] Equation (46) implies

pN(k) ≈ τ

DND1/α
hα

(
kτ

DND1/α

)
(66)

for sufficiently large N and all τ . [638.3.2] Inserting this into Equation (45) gives

S −N =
∞∑
k=1

pN(k) T −k ≈
∞∑
k=1

τ

DND1/α
hα

(
kτ

DND1/α

)
T −k

=
∞∑
k=1

hα

(
kτ

DND1/α

)
T −k [k − (k − 1)]τ

DND1/α
(67)

[page 639, §0] [639.0.1] For α = 1, the average return time τ
∑

k kp(k) < ∞ is proportional to the
discretization τ . [639.0.2] In the case 0 < α < 1, the average time τ

∑
k kp(k) = ∞ for return into

the set G in a single step diverges. [639.0.3] This suggests an infinite rescaling of time as τ →∞ for
0 < α < 1. [639.0.4] This rescaling of time combined with N → ∞ was called the ultra-long-time
limit in [22]. [639.0.5] In the ultra-long-time limit N →∞, τ →∞ with:

lim
τ→∞
N→∞

DND
1/α

τ
= lim

τ→∞
N→∞

[NΛ(N)D]1/α

τ
= a (68)

one finds from Equation (67) the result

lim
τ→∞,N→∞

[NΛ(N)D]1/α/τ=a

S −N ≈
∞∑
k=1

hα

(
k

a

)
T −ka [k − (k − 1)]

a
≈

∞∫
0

hα (x) T −xa dx (69)

for sufficiently large N and τ . [639.0.6] The limit gives rise to a family of one-parameter semigroups
T a
α (with family index α and parameter a) of ultra-long-time evolution operators

lim
τ→∞,N→∞

[NΛ(N)D]1/α/τ=a

S −N = T −a
α =

∞∫
0

hα (x) T −xa dx (70)

which are convolutions instead of translations. [639.0.7] Note that a ≥ 0 because DN ≥ 0 and
D ≥ 0. [639.0.8] The rescaled age evolutions T −a

α are called fractional time evolutions, because their
infinitesimal generators are fractional time derivatives [22,23].

[639.1.1] The result shows that a proper mathematical formulation of local stationarity requires
a generalization of the left-hand side in Equation (1), because Equation (1) assumes implicitly a
translation along the orbit. [639.1.2] In general, the integration of infinitesimal system changes leads
to convolutions instead of just translations along the orbit [22, 23]. [639.1.3] Of course, translations
are a special case of convolutions, to which they reduce in the case when the parameter α approaches
unity. [639.1.4] For α→ 1−, one finds

h1(x) = lim
α→1−

hα(x) = δ(x− 1) (71)

and therefore

T −a
1 =

∞∫
0

δ (x− 1) T −xa dx = T −a (72)
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is a right translation. [639.1.5] Here, a ≥ 0 is an age or duration. [639.1.6] This shows that also the
special case of induced right translations does not give a group, but only a semigroup.

8. Discussion

[639.2.1] The introduction of the sets Bε of ε-almost invariant BMO-states with 0 ≤ ε ≤ ∞ has
provided a mathematical framework in which questions concerning the abundance of time-invariant
states and their embedding in the set of all states can be posed mathematically in a proper way.
[639.2.2] The class of BMO-states reflects in its definition the experimental reality that observations
are always performed by integration of experimental data over time intervals. [639.2.3] BMO-states
allow for singular expectation values, thereby establishing a general framework to discuss Problems 1
and 2 above.

[page 640, §1] [640.1.1] There exists a direct relation between Theorem 3 and the BMO-states.
[640.1.2] It is given by Equation (32), which directly determines the values of α and D, as well
as the function Λ in Theorem 3 and Equation (70).

[640.2.1] The result in Equation (70) shows that the left-hand side in a coarse-grained or rescaled
version of Equation (1) may not always be a time translation along the orbits of the original unscaled
dynamics. [640.2.2] Instead, the left-hand side is in general the infinitesimal generator of a convolution
along time rescaled orbits of ε-almost invariant states. [640.2.3] The orbits of ε-almost invariant states
can approach the manifold of invariant states of the physical system or subsystem of interest at every
point for any length of time without being trapped.

[640.3.1] As discussed above, the result in Equation (70) implies a general concept of time flow and,
hence, provides a new perspective on the issue of irreversibility [22, 24, 25]. [640.3.2] It suggest a
reformulation [25, 26] of the much discussed irreversibility problem. [640.3.3] The normal problem
can be stated as:

Problem 4 (The normal irreversibility problem).
[640.3.4] Assume that time is reversible.
[640.3.5] Explain how and why time irreversible equations arise in physics.

[640.3.6] The assumption that time is reversible, i.e., t ∈ R, is made in all fundamental theories of
modern physics. [640.3.7] The explanation of macroscopically irreversible behavior for macroscopic
nonequilibrium states of subsystems is due to Boltzmann. [640.3.8] It is based on the applicability
of statistical mechanics and thermodynamics, the large separation of scales, the importance of low
entropy initial conditions and probabilistic reasoning [27].

[640.4.1] The problem with with assuming t ∈ R is that an experiment (i.e., the preparation of an
initial state within an infinity of η-indistinguishable initial states for a dynamical system) cannot
be repeated yesterday, but only tomorrow [25]. [640.4.2] While it is possible to translate the spatial
position of a physical system forward and backward in space, it is not possible to translate the
temporal position of a physical system backwards in time. [640.4.3] Translating an experiment
backward in time is not the same as reversing the momenta of all particles in a physical system, as
emphasized in [25, 26]. [640.4.4] These observations combined with Equations (71) and (72) suggest
to reformulate the normal irreversibility problem above as:

Problem 5 (The reversed irreversibility problem).
[640.4.5] Assume that time evolution is always irreversible.
[640.4.6] Explain why time reversible equations are more frequent in physics.
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[640.4.7] The reversed irreversibility problem was introduced in [25]. [640.4.8] Its solution is given
by Theorem 3 combined with two additional facts. [640.4.9] Firstly, ultra-long-time evolutions with
0 < α < 1 are always irreversible, while those with α = 1 may be irreversible or reversible, depending
on the operator on the right-hand side of Equation (1). [640.4.10] Secondly, the set of recurrence time
distributions p(k) in the domain of attraction for the case α = 1 comprises all distributions whose
first moment

∑
k kp(k) exists, independent of their tail behavior. [640.4.11] Contrary to this, the

domain of attraction for the case 0 < α < 1 is restricted to those p(k) with the correct tail behavior.
[640.4.12] Thus, the domain of attraction is much larger for α = 1 than for 0 < α < 1. [640.4.13] This
explains why equations of motion with time reversal symmetry arise more frequently.

[page 641, §1] [641.1.1] Because anomalous time evolutions from Equation (70) with 0 < α < 1 must
be expected on theoretical grounds, they are attracting increasing experimental interest [15, 28].
[641.1.2] For the example of broadband dielectric spectroscopy in glasses, generalized relaxation
functions and susceptibilities based on Equation (70) have already been successfully compared to
experiments [23,29–32]. [641.1.3] Theoretical, mathematical and experimental studies are encouraged
to further explore the consequences of the generalized concept.
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