FRACTIONAL MASTER EQUATIONS AND FRACTAL TIME RANDOM WALKS
R. HILFER AND L. ANTON

AsstracT. Fractional master equations containing fractional time derivatives of order 0 < w <1
are introduced on the basis of a recent classification of time generators in ergodic theory. It is
shown that fractional master equations are contained as a special case within the traditional
theory of continuous time random walks. The corresponding waiting time density ¥(t) is
obtained exactly as ¥ (t) = (t“71/C)E, (—t*/C) where E,, ,(z) is the generalized Mittag-
Leffler function. This waiting time distribution is singular both in the long time as well as in
the short time limit.
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1. INTRODUCTION AND STATEMENT OF THE
PROBLEM

[1.2.1.1] A recent classification theory [1, 2, 3] has
derived fractional equations of motion from abstract
ergodic theory. [1.2.1.2] Fractional equations of mo-
tion contain fractional rather than integer order time
derivatives as generators of the time evolution. /[1.2.
1.5] Fractional equations of motion arise at anequilib-
rium phase transitions [1, 2] or whenever a dynamical
system is restricted to subsets of measure zero of its
state space [3].

[1.2.2.1] Master equations in which the time deriv-
ative is replaced with a derivative of fractional order
form the subject of the present paper. [1.2.2.2] Such
fractional master equations arise as special cases of the
more general fractional Liouville equation introduced
in [1, 2, 3], and they contain the fractional diffusion
equation as a special case. [1.2.2.3] A fractional master
equation for a translationally invariant d-dimensional
system may be written formally, but in suggestive no-
tation, as

(1.1)

where p(7, t) denotes the probability density to find the
diffusing entity at the position ¥ € R? at time ¢ if it was
at the origin # = 0 at time t = 0. [1.2.2.4] The positions
7 € R? may be discrete or continuous. [1.2.2.5] The
fractional transition rates w(7) measure the propensity
for a displacement # in units of (1/time)¥, and obey
the relation ) - w(#) = 0. [1.2.2.6] The fractional order
w plays the role of a dynamical critical exponent. /1.
2.2.7] Equation (1.1) can be made precise by applying
the fractional Riemann-Liouville integral as

t
= — L _\w—1 4 = 4/ /
p(r,t)—ém—i-r(w) /(t ') Z;w('r 7 )p(7,t') dt
0 ™

(1.2)

where the initial condition p(7,0) = 7 has been in-
corporated.

[1.8.1.1] Diffusion in a d-dimensional euclidean space
is contained in the fractional master equations (1.1) or
(1.2) as the special case in which w = 1 and w(7) is
the discretized Laplacian on a d-dimensional regular
lattice. [1.8.1.2] The integral form (1.2) suggests a re-
lation with the well known theory of continuous time
random walks [4, 5, 6, 7, 8,9, 10]. [1.3.1.3] It is the pur-
pose and objective of the present paper to show that
there exists a precise and rigorous relation between the

fractional master equation and the theory of continu-
ous time random walks. [1.5.1.4] It will be shown that
the fractional master equation describes a fractal time
process [11, 10]. [1.3.1.5] Fractal time processes (see
[10] for a review) are defined here as continuous time
random walks whose waiting time density has an infi-
nite first moment [12, 13, 14, 15, 16].

[1.3.2.1] Given the existence of an exact relation be-
tween fractional master equations and fractal time ran-
dom walks, it might seem that (1.1) or (1.2) describe
also diffusion on fractals. [1.3.2.2] Dimensional analysis
suggests anomalous subdiffusive behaviour of the form
(#2(t)) o< t%/ where d is the fractal dimension, and d
is the spectral or fracton dimension [17, 18, 19], and
indeed some authors have suggested that w = J/a [1.
3.2.3] It must be clear however, that while the rela-
tion between fractional master equations and fractal
time random walks established in this paper is exact,
the relation with diffusion on fractals is not. [1.3.2.4]
It appears doubtful that the latter relation can exist
beyond superficial scaling similarities because exactly
solvable cases show that the spectral properties as well
as the eigenfunctions for fractal time walks and walks
on fractals are radically different [20, 21, 22, 23].

2. RELATION BETWEEN FRACTIONAL AND FRACTAL
WALKS

[1.3.3.1] Let us start by recalling briefly the general
theory of continuous time random walks [5, 7, 8]. [1.8.
3.2] The basic equation of motion is the continous time
random walk (CTRW) integral equation [16]

a

p(7t) = 6m®(t) + /W — )Y AT — 7 )p(, 1) dt!
) =

(2.1)

[page 2, 80] describing a random walk in continous time
without correlation between its spatial and temporal
behaviour. [2.1.0.1] Here, asin (1.2), p(#, t) denotes the
probability density to find the diffusing entity at the
position ¥ € R? at time ¢ if it started from the origin
¥ =0 at time ¢t = 0. [2.1.0.2] A(¥) is the probability
for a displacement # in each single step, and ¥(t) is the
waiting time distribution giving the probability density
for the time interval ¢t between two consecutive steps.
[2.1.0.3] The transition probabilities obey >~ A(F) = 1.
[2.1.0.4] The function ®(t) is the survival probability at
the initial position which is related to the waiting time
distribution through

D(t)=1-— /w(t’) dt'. (2.2)
0
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[2.1.0.5] The objective of this paper which was defined
in the introduction is to show that the fractional master
equation (1.2) is a special case of the CTRW-equation
(2.1), and to find the appropriate waiting time density.

[2.1.1.1] The translation invariant form of the tran-
sition probabilities in (2.1) allows a solution through
Fourier-Laplace transformation. [2.1.1.2] Let

vlo) = L{p®) ) = [ v (@23)
0
denote the Laplace transform of ¢ (t) and
T (2.4)

M@) = FINAH = Y ¢ TTAT)

the Fourier transform of A(#), which is also called the
structure function of the random walk [5]. /2.1.1.3/
Then the Fourier Laplace transform p(q,u) of the so-
lution to (2.1) is given as [5, 7, 8, 16]

PP /O B ()

ul—=y(Ak)  1-9(A(@)
where ®(u) is the Laplace transform of the survival
probability.

(2.5)

[2.1.2.1] Similarly the fractional master equation (1.2)
can be solved in Fourier-Laplace space with the result

uw—l

o (2.6)

p(q ) =
where w(q) is the Fourier transform of the kernel w(¥)
n (1.2). /2.1.2.2] Eliminating p(q, v) between (2.5) and

(2.6) gives the result

v M@ -1, .
u“tp(u) w(q)

where C' is a constant. [2.1.2.3] The last equality ob-

tains because the left hand side of the first equality is

g-independent while the right hand side is independent

of u.

[2.1.8.1] From (2.7) it is seen that the fractional mas-
ter equation characterized by the kernel w(#) and the
order w corresponds to a special class of space time de-
coupled continuous time random walks characterized
by A(7) and ¢ (t). [2.1.3.2] This correspondence is given
precisely as

) = —

= — 2.
1+ Cu® (2:8)

and

A@) =1+ Cuw(q)

with the same constant C' appearing in both equations.
[2.2.0.3] Not unexpectedly the correspondence defines
the waiting time distribution uniquely up to a constant

(2.9)

while the structure function is related to the Fourier
transform of the transition rates.

[2.2.1.1] To invert the Laplace transformation in (2.8)
and exhibit the form of the waiting time density ()
in the time domain it is convenient to introduce the

Mellin transformation
o0

/xsflf(x) dx  (2.10)
0

for a function f(z). [2.2.1.2] The Mellin transformed
waiting time density is obtained as

P(s) = M{Y(8)}(s)
S)ra -

1 1\ T -
 wClw \ O/w I'(1—s)

where I'(x) denotes the Gamma function. [2.2.1.3] To
obtain (2.11) from (2.8) the relation between Laplace
and Mellin transforms

f(s) = M{f(2)}(s) =

+2)

1
w w

(2.11)

MELLF(@)Hw)}(s) = T(s) M{f(D)}(1 =), (2.12)
the special result
M { T i 33} () =T(s)I'(1 - ) (2.13)

and the general relation

M{f(aa")}(5) = 30" M{F()}(5/8) (214)

valid for a,b > 0 have been employed. [2.2.1./] Using
the definition of the general H-function given in the
appendix one obtains the result

¥(t) =Pt w, C)

_ 1 11 l (1 - l’l)
= Lote e (cuw a-1%) 1 ) &)

which may be rewritten as

. — 1 11 t (17 1)

Z/J(t,w,C') - ¥H12 <Cl/w (171) (Lw) (216)
with the help of general relations for H-functions [24].
[2.2.1.5] The dependence on the parameters w and C'
has been indicated explicitly. /2.2.1.6] From the series
expansion of H-functions given in the appendix one
finds
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o1 & 1 t“\ "
Y(tw,C) = —5 ;:(:)F(wk—i—w) <c> (2.17)

showing that ¢ (t) behaves as
Y(t) oc 1T (2.18)

for small ¢ — 0. /3.1.0.1] Because 0 < w < 1 the waiting
time density is singular at the origin. [3.1.0.2] The
series representation (2.17) shows that the waiting time
density is a natural generalization of an exponential
waiting time density to which it reduces for w = 1,
ie. ¥(t;1,C) = (1/C)exp(t/C). [3.1.0.3] The series in
(2.17) is recognized as the generalized Mittag-Leffler
function E,, ., (z) [25], and ¢(¢) may thus be written

alternatively as
- 1 $w
7Ew w7~ ]
e (-2)

Y(t;w,C) =

[3.1.0.4] Of course the result (2.17) can also be obtained
more directly, but we have presented here a method
using Mellin transforms because it remains applicable
in cases where a direct inversion fails [23]. /3.1.0.5] The
asymptotic expansion of the Mittag-Leffler function for
large argument [25] yields

P(t) ot (2.20)

for large t — oo and 0 < w < 1. [3.1.0.6] This result
shows that the waiting time distribution has an alge-
braic tail of the kind usually considered in the theory
of random walks [12, 13, 14, 15, 16].

(2.19)

3. DISCUSSION

[3.1.1.1] In Figure 1 we display the function ¥ (¢; w, C)
for C =1 and w = 0.01,0.1,0.5,0.9,0.99 in a log-log
plot. [3.1.1.2] The asymptotic behaviour (2.18) and
(2.20) is clearly visible from the figure. [3.1.1.8] The
fractional order w of the time derivative in (1.1) is re-
stricted to 0 < w <1 as a result of the general theory
[3]. /[3.1.1.4] This and the behaviour of ¢ (t) in figure 1
attributes special significance to the two limits w — 1
and w — 0.

[3.1.2.1] In the limit w — 1 the fractional master
equation (1.2) reduces to the ordinary master equa-
tion, and the waiting time density becomes exponential
P(t;1,1) = exp(—t). [3.2.0.2] In the limit — 0 on the
other hand equation (1.1) reduces to an eigenvalue or
fixed point equation for the operator on the right hand
side by virtue of 9°f /0t = f.

4 -2 0 2 4 6 8
Int

FIGURE 1. Log-log plot of the waiting time den-
sity 9 (t;w, 1) for w = 0.01,0.1,0.5,0.9,0.99, 1.0.
The curves for w = 1.0 and w = 0.01 have been
labeled in the figure, the other curves interpo-
late between them. For w = 1 the waiting time
density is exponential 1(t) = exp(—t) and for
w — 0 it approaches ¢(t) — 1/t.

[3.2.1.1] While this is interesting in itself an even
more interesting aspect is that the corresponding
waiting time density (¢) approaches the form
Y(t;w — 0,1) o 1/t for which the normalization be-
comes logarithmically divergent. [3.2.1.2] This signals
an onset of localization in this singular limit. /3.2.1.5]
It is hoped that our results will stimulate further re-
search into the fractal time concept.
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hospitality in Trieste, and to the Commission of the
European Communities (ERBCHBGCT920180) for fi-
nancial support.
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APPENDIX A. DEFINITION OF H-FUNCTIONS

[3.2.3.1] The general H-function is defined as the inverse Mellin transform [24]

mn (alyAl) (ap,Ap) .
HPQ <Z (b B1) .. (bQ,BQ) >_
bj+Bjs) [I/, T(1—a; — Ajs) .
2mi / HQ i T(1—b; — Bys) H] o T(a+ 4,9) z7°%d (A.1)

where the contour C runs from ¢ — ico to ¢+ oo separating the poles of I'(b; + B;s), (j = 1,...,m) from those
of '(1 —a; — Ajs), (j = 1,...,n). [3.2.3.2] Empty products are interpreted as unity. [5.2.3.9/ The integers
m,n, P,Q satisfy 0 <m < Q and 0 < n < P. [3.2.3.4] The coeflicients A; and B; are positive real numbers and
the complex parameters Clj, b; are such that no poles in the integrand coincide. [3.2.3.5] If

n

Q= ZAJ—ZA+ZB— ZB>0 (A.2)

Jj=n+1 j=m+1
[page 4, §3] then the integral converges absolutely and defines the H-function in the sector |argz|< Qn/2. [4.1.
3.1] The H-function is also well defined when either

§=> B;j—» A;>0 with 0<|z[<o0 (A.3)

or

P Q
—Aj B;
0=0 and O<|z|<R:HAj HBj . (A.4)
=1 j
[4.1.3.2] For 6 > 0 the H-function has the series representation

mes (o ) e )=

B\ 13 A;
) S0

ﬁ P (b - i+ B)

225 P
i=Lk=0 ] F(l—b + (b +k)§7> 11 r(af(bﬁk)g)
j=m+1 j=n+1 ¢
provided that By (b; +1) # B,(bx +s) for j # k,1 < j,k <m and l,s = 0,1,... [4.1.3.3) The H-function is a
generalization of Meijers G-function and many of the known special functions are special cases of it.

=



(1]

2]

(3]
(4]
(5]

[6]

[7]

(8]

(9]

(10]
(11]
(12]

(13]

14]

(15]

[16]

(17]
(18]
(19]
20]

(21]

(22]
23]
(24]

[25]

FRACTIONAL MASTER EQUATIONS AND FRACTAL TIME RANDOM WALKS 5

REFERENCES

R. Hilfer, “Classification theory for anequilibrium phase
transitions,” Phys.Rev.E, vol. 48, p. 2466, 1993.

R. Hilfer, “On a new class of phase transitions,” in Ran-
dom Magnetism and High Temperature Superconductivity
(W. Beyermann, ed.), (Singapore), World Scientific Publ.
Co., 1994. in press.

R. Hilfer, “Fractional dynamics, irreversibility and ergodic-
ity breaking,” Chaos, Solitons & Fractals, p. in print, 1994.
E. Montroll and G. Weiss, “Random walks on lattices II,”
J. Math. Phys., vol. 6, p. 167, 1965.

M. Barber and B. Ninham, Random and Restricted Walks.
New York: Gordon and Breach Science Publ., 1970.

E. Montroll and H. Scher, “Random walks on lattices IV.
continuous-time walks and influence of absorbing bound-
aries,” J. Stat. Phys., vol. 9, p. 101, 1973.

E. Montroll and B. West, “On an enriched collection of sto-
chastic processes,” in Fluctuation Phenomena (E. Montroll
and J. Lebowitz, eds.), (Amsterdam), p. 61, North Holland
Publ. Co., 1979.

G. Weiss and R. Rubin, “Random walks: Theory and se-
lected applications,” Adv. Chem. Phys., vol. 52, p. 363,
1983.

A. Blumen, J. Klafter, and G. Zumofen, “Models of reac-
tion dynamics in glasses,” in Optical Spectroscopy of Glasses
(I. Zschokke, ed.), (Dordrecht), p. 199, Reidel, 1986.
M. Shlesinger, “Fractal time in condensed matter,”
Rev. Phys. Chem., vol. 39, p. 269, 1988.

B. Mandelbrot, The Fractal Geometry of Nature. San Fran-
cisco: Freeman, 1982.

M. Shlesinger, “Asymptotic solutions of continuous time
random walks,” J. Stat. Phys., vol. 10, p. 421, 1974.

J. Tunaley, “Asymptotic solutions of the continuous time
random walk model of diffusion,” J. Stat. Phys., vol. 11,
p- 397, 1974.

J. Tunaley, “Some properties of the asymptotic solutions of
the Montroll-Weiss equation,” J. Stat. Phys., vol. 12, p. 1,
1975.

M. Shlesinger, J. Klafter, and Y. Wong, “Random walks
with infinite spatial and temporal moments,” J. Stat. Phys.,
vol. 27, p. 499, 1982.

J. Klafter, A. Blumen, and M. Shlesinger, “Stochastic path-
way to anomalous diffusion,” Phys. Rev. A, vol. 35, p. 3081,
1987.

D. Dhar, “Lattices of effectively nonintegral dimensional-
ity,” J. Math. Phys., vol. 18, p. 577, 1977.

S. Alexander and R. Orbach, “Density of states on fractals:
“fractons”,” J. Physique Lett., vol. 43, p. L625, 1982.

R. Hilfer, Renormierungsansdtze in der Theorie ungeord-
neter Systeme. Frankfurt: Verlag Harri Deutsch, 1986.

R. Rammal, “Spectrum of harmonic excitations on frac-
tals,” J. Physique, vol. 45, p. 191, 1984.

R. Hilfer, “The continuum limit for selfsimilar Lapla-
cians and the Greens function localization exponent,” 1989.
UCLA-Report 982051.

M. Fukushima and T. Shima, “On a spectral analysis for the
Sierpinski gasket,” Potential Analysis, vol. 1, p. 1, 1992.
R. Hilfer, “Exact solutions for a class of fractal time random
walks,” Fractals, vol. 3(1), p. in print, 1995.

A. Prudnikov, Y. Brychkov, and O. Marichev, Integrals and
Series, vol. 3. New York: Gordon and Breach, 1990.

A. Erdelyi (et al.), Higher Transcendental Functions,
vol. III. Malabar: R.E. Krieger Publ. Co., 1981.

Ann.

(R. Hilfer, L. Anton) INTERNATIONAL SCHOOL FOR ADVANCED

STUDIES, VIA BEIRUT 2-4, 34013 TRIEST, ITALY

(R. Hilfer) INSTITUT FUR PHYSIK, UNIVERSITAT MAINZ, 55099

MAINZ, GERMANY

Current address, R. Hilfer: Institute of Physics, University

of Oslo, P.O.Box 1048, 0316 Oslo, Norway



