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Abstract

Applications of fractional dynamics have received a steadily increasing amount of

attention during the past decade. Its foundations have found less interest. This

chapter briefly reviews the physical foundations of fractional dynamics.
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[page 207, §1]

1. Introduction

[207.1.1] A fractional dynamical system has been defined [1] as a dynamical system involv-
ing fractional (i.e. noninteger order) time derivatives instead of integer order time deriva-
tives. [207.1.2] Despite the long history of fractional calculus in mathematics (see [2–6]
for reviews), despite numerous publications on fractional powers of infinitesimal genera-
tors [7–16], and despite a rapidly growing literature on possible applications of fractional
dynamical systems to physical phenomena (see [17–20] and the present volume for re-
views), there seem to exist only few publications discussing the physical foundations of
fractional dynamics.a

[207.2.1] My objective in this chapter is to call attention to the foundations of fractional
dynamics and fractional time evolution by reformulating the problem stated originally
in [1, 21] and briefly summarizing some known results. [207.2.2] As everyone knows,
fractional time derivatives do not appear in any established fundamental theory of physics
such as classical mechanics, electrodynamics, or quantum mechanics. [207.2.3] Instead,
integer (first and second) order time derivatives occur in all fundamental theories of
physics. [page 208, §0] [208.0.1] Obviously, time is a primordial and fundamental concept
from the foundations of physics. [208.0.2] Replacing integer order with fractional order
time derivatives therefore changes the fundamental concept of time and with it the concept
of evolution in the foundations of physics. [208.0.3] Evolution equations in physics do not
contain fractional time derivatives, because it would contradict the deep and fundamental
principle, that time evolution is time translation. [208.0.4] Most publications on fractional
dynamics proceed directly to applied problems, but do not justify, discuss or even mention,
that they remove the fundamental concept of time evolution (=time translation) from the
foundations of physics.

[208.1.1] Difficulties with fractional dynamics arise also, because fractional derivative op-
erators can be defined in numerous ways [4–6]. [208.1.2] Embedding a conventional dy-
namical system into a family of fractional dynamical systems is not unique. [208.1.3] In
fact, an infinite number of choices are possible and many publications fail to justify or
discuss their particular choice.

[208.2.1] Given the need for a fundamental justification of fractional dynamics, the ar-
ticle is structured as follows. [208.2.2] Let me first recall some basic ideas about time.
[208.2.3] Observables, states and their time evolution are discussed next. [208.2.4] Re-
stricting attention to conservative dynamical systems raises a fundamental problem for
the time evolution of macroscopic states. [208.2.5] Induced measure preserving transfor-
mations are then introduced to solve this problem. [208.2.6] Averaging them shows, that
macroscopic states evolve in time by convolution rather than translation. [208.2.7] My
short account of the foundations of fractional dynamics concludes with remarks about
irreversibility, experimental evidence, and dissipative systems.

aThe term “fractional dynamics” is used synonymously with “fractional dynamical system”
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2. The Aristotelian Concept of Time

[208.3.1] The concepts of time and time evolution are fundamental for physics (and other
sciences). [208.3.2] Aristotle [22, ∆ 11] defined time as

,
αριθµòς κινήσεως (i.e. as the

integer or rational number of motionb ), and formulates the idea, that past and future are
separated by a mathematical point, that he calls τ ò νυ̃ν (the Now). [208.3.4] Newton [24,
p. 5] formulates and postulates ”Tempus absolutum verum et Mathematicum, in se et
natura sua absque relatione ad externum quodvis, aequabiliter fluit, alioque nomine dicitur
Duratio” c. [page 209, §0] [209.0.1] The concept of time in modern physics is based on the
ideas of Aristotle in their Newtonian formulation. [209.0.2] Time is viewed as a flux
aequabilis (uniform flow) or succession of Aristotelian time instants.

[209.1.1] The theoretical and mathematical abstraction of this concept of time from general
mathematical theories of physical phenomena has led to the fundamental principle of
time translation invariance and energy conservation in modern physics. [209.1.2] All
fundamental theories of contemporary physics postulate time translation invariance as a
basic symmetry of nature.

3. Time Evolution of Observables

[209.2.1] Time is commonly considered as the set of Aristotelian time instants ṫ. [209.2.2]

The set of all time instants is represented mathematically by the set of real numbers R.
[209.2.3] Time is “measured” by observing clocks. [209.2.4] Clocks are physical systems.
[209.2.5] Let a be an observable quantity (e.g. the position of the sun, the moon or some
hand on a watch), and let A be the set of observables of such a physical system. [209.2.6] A
dynamical system is a triple (A,R, T ) where A is the set of observables of a physical
system, R represents time, and the mapping

T : A× R → A
(a, ṫ) 7→ T (a, ṫ) (1)

is its dynamical rule [25]. [209.2.7] It describes the change of observable quantities with
time. [209.2.8] For the dynamical rule T the following properties are postulated:

(1) [209.2.9] For all time instants ṡ, ṫ ∈ R the dynamical rule obeys

T (T (a, ṡ), ṫ) = T (a, ṡ+ ṫ) (2)

for all a ∈ A.
(2) [209.2.10] There exists a time instant ṫ∗ ∈ R, called beginning, such that

T (a, ṫ∗) = a (3)

holds for all a ∈ A.
(3) [209.2.11] The map T is continuous in time in a suitable topology.

bWhile Aristotle was perhaps counting heart beats, days, months, years, or time intervals determined

with a κλεψύδρα, the idea to count periods has persisted. [208.3.3] Today the unit of time corresponds to

counting 9 192 631 770 periods of oscillation of a certain form of radiation emitted from 133Cs-atoms [23].
cTransl.: ”Absolute, true and mathematical time flows uniformly, in itself, according to its own nature,

and without relation to anything outside itself; it is also called by the name duration.”
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[209.2.12] The set of observables reflects the kinematical structure of the physical system.
[209.2.13] The dynamical rule prescribes the time evolution of the system. [page 210,

§0] [210.0.1] Setting ṡ = ṫ∗ in eq. (2) and using eq. (3) shows, that either ṫ∗ = 0 must
hold, or else the observable must be time independent. [210.0.2] The time evolution of

observables is the one-parameter family {AT
ṫ}ṫ∈R of maps AT

ṫ
: A → A defined by

AT
ṫ
a := T (a, ṫ) (4)

for ṫ ∈ R. [210.0.3] The time evolution obeys the group law

AT
ṫ
AT

ṡ
= AT

ṡ+ṫ
(5)

for all ṫ, ṡ ∈ R, and the identity law

AT (0) = 1 (6)

where 1 is the identity on A. [210.0.4] The continuity law requires a topology. [210.0.5] It
is usually assumed, that A is a Banach space with norm ‖ · ‖, and that

lim
ṫ→0+

‖AT
ṫ
a− a‖ = 0 (7)

holds for all a ∈ A. [210.0.6] Equations (5),(6) and (7) define a strongly continuous one

parameter group of operators {AT
ṫ}ṫ∈R on A, called a flow [26,27]. [210.0.7] For bounded

linear operators strong and weak continuity are equivalent [28].

[210.1.1] Identifying a = a(0) and writing T (a, ṫ) = a(ṫ) the time evolution becomes time
translation to the left, i.e.

AT
ṫ
a(ṡ) = a(ṡ+ ṫ) (8)

for all ṫ, ṡ ∈ R. [210.1.2] If the arrow of time is taken into account, then the flow of time
is directed, and only the time instants ṫ ≥ 0 after the beginning can occur. [210.1.3] In

that case, inverse elements do not exist, and the family {AT
ṫ}ṫ≥0 of operators forms only

a semigroup [28,29] instead of a group.

4. Time Evolution of States

[210.2.1] In general, the set of observables A of a physical system is not only a Banach
space, but forms an algebra, more specifically, a C∗-algebra [30]. [210.2.2] In classical
physics this algebra is commutative. [210.2.3] The states µ of a physical system are
normalized, positive linear functionals on its algebra of observables [30]. [210.2.4] As such
they are elements of the dual space A∗. [210.2.5] The notation 〈µ, a〉 is used for the
value µ(a) of the observable a in the state µ. [210.2.6] Convex combinations of states
are again states. [210.2.7] If a state cannot be written as a convex combination of other
states, it is called pure. [page 211, §0] [211.0.1] Because the observable algebra A is a
subset of its bidual, A ⊂ A∗∗, its elements can be considered as functions on the set
X(A) of its charactersd, i.e. a(χ) = 〈χ, a〉 for a ∈ A, χ ∈ X(A). [211.0.2] By virtue of this
correspondence, known as the Gelfand isomorphism [30, 31], a commutative C∗-algebra
is isomorphic to the algebra C0(X(A)) of continuous functions on the set X(A) of its
characters equipped with the weak∗ topology. [211.0.3] Characters are pure states.

dA character is an algebraic *-homomorphism from a commutative C∗-algebra to C .
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[211.1.1] The time evolution of states is obtained from the time evolution of observables

by passing to adjoints [28, 32]. [211.1.2] The adjoint time evolution A∗T
ṫ
: A∗ → A∗ with

ṫ ∈ R consists of all adjoint operators (AT
ṫ
)∗ on the dual space A∗ [28, 33]. [211.1.3] If

µ(ṫ1) denotes the state at time ṫ1 ∈ R, then equation (8) implies

〈µ(ṫ1),AT
ṫ
a(ṫ1)〉 = 〈µ(ṫ1), a(ṫ1 + ṫ)〉

= 〈µ(ṫ2 − ṫ), a(ṫ2)〉 = 〈A∗T
ṫ
µ(ṫ2), a(ṫ2)〉 (9)

where ṫ2 = ṫ1 + ṫ ∈ R is arbitrary. [211.1.4] For left translations the adjoint group

A∗T
ṫ
µ(ṡ) = µ(ṡ− ṫ) (10)

is the group of right translations with ṡ, ṫ ∈ R. [211.1.5] The adjoint semigroup is weak∗

continuous, but in general not strongly continuous, unless the Banach space A is reflexive
[32].

5. Conservative Systems

[211.2.1] In classical mechanics the commutative algebra of observables A = C0(Γ) is the
algebra of continuous functions on phase space Γ, that vanish at infinitye. [211.2.2] The
characters (pure states) are point measures on phase space Γ, and one has the isomor-
phism Γ ≡ X(A). [211.2.3] By the Riesz representation theorem the states µ ∈ A∗ ≡
C0(X(A))∗ ≡ C0(Γ)∗ in classical mechanics are probability measures on phase space
Γ ≡ X(A). [211.2.4] Every state µ ∈ C0(Γ)∗ gives rise to a probability measure space
(Γ,G, µ) where G is the σ-algebra of measurable subsets of phase space Γ.

[211.3.1] Let S : Γ → Γ be an invertible map such that S and S−1 are both measurable,
i.e. such that S−1G = SG = G where SG := {Sx : x ∈ G} for G ∈ G. [211.3.2] The
map S is called a measure preserving transformation and the measure µ on Γ is called
invariant under S, if µ(G) = µ(SG) = µ(S−1G) for all G ∈ G. [page 212, §0] [212.0.1] An
invariant measure is called ergodic with respect to S, if it cannot be decomposed into a
convex combination of S-invariant measures.

[212.1.1] Here and in the following the measure preserving transformation is the adjoint

time evolution A∗T
ṫ

which is denoted more briefly as ΓT
ṫ

= A∗T
ṫ
. [212.1.2] Pure states

(characters) are not invariant under ΓT
ṫ
. [212.1.3] Examples of invariant probability

measures are furnished by the set of equilibrium states of a conservative system with
Hamiltonian dynamics. [212.1.4] If µ is an equilibrium state of a conservative system

then (Γ,G, µ, ΓT
ṫ
) is a measure preserving system.

eThis means that for each a ∈ C0(Γ) and ε > 0 there is a compact subset K ⊆ Γ such that |a(x)| < ε

for all x ∈ Γ \K.
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6. Statement of the Problem

[212.2.1] Let (Γ,G, µ, ΓT
ṫ
) be a measure preserving system for a many body system.

[212.2.2] The detailed microscopic time evolution ΓT
ṫ
: Γ → Γ is frequently not of in-

terest in applications, because it is much too detailed to be computable. [212.2.3] Instead
one is interested in a reduced, coarse grained or averaged time evolution of macroscopic
states where the system is locally or globally in equilibrium. [212.2.4] Examples are iso-
lated systems at phase coexistence or in metastable statesf. [212.2.5] This gives rise to

the problem of finding the time evolution GT
ṫ
: G→ G on subsets G ⊂ Γ of phase space.

[212.3.1] It is not possible to define GT
ṫ

= ΓT
ṫ|G as the restriction of ΓT

ṫ
to G, because for

fixed initial state x(0) ∈ G ⊂ Γ the time evolution ΓT
ṫ

produces states ΓT
ṫ
x(0) = x(ṫ) /∈ G.

[212.3.2] Equivalently, for fixed time ṫ the map ΓT
ṫ

maps states x ∈ G to states not in G.

[212.3.3] The restriction ΓT
ṫ|G is not defined for all ṫ ∈ R. [212.3.4] This seems to preclude

a sensible definition of GT
ṫ
. [212.3.5] The problem of defining an induced continuous time

evolution for mixed states on subsets of small measure was introduced and solved in [1,21].
[212.3.6] It originated from the general classification theory for phase transitions [35–39].

[212.3.7] The solution involves discretization of ΓT
ṫ
, averaging Kakutani’s induced measure

preserving transformation [26,40] and Kac’s theorem for recurrence times [1, 21].

7. Induced Measure Preserving Transformations

[212.4.1] Consider a subset G ⊂ Γ with small but positive measure µ(G) > 0 of a measure

preserving many body system (Γ,G, µ, ΓT
ṫ
). [page 213, §0] [213.0.1] Because of µ(G) > 0

the subset G becomes a probability measure space (G,S, ν) with induced probability
measure ν = µ/µ(G) and S = G ∩G being the trace of G in G [41].

[213.1.1] The measure preserving continuous time evolution ΓT
ṫ

is discretized by setting

ṫ = kτ (11)

with k ∈ Z and τ > 0 the discretization time step. [213.1.2] A character x ∈ G is called

recurrent, if there exists an integer k ≥ 1 such that ΓT
kτ
x ∈ G. [213.1.3] If G ∈ G and

µ is invariant under ΓT , then almost every character in G is recurrent by virtue of the
Poincarè recurrence theorem. [213.1.4] A subset G is called recurrent, if µ-almost every
point x ∈ G is recurrent. [213.1.5] By Poincarè’s recurrence theorem the recurrence time
tG(x) of the character x ∈ G, defined as

tG(x) = τ min{k ≥ 1 : ΓT
kτ

(x) ∈ G}, (12)

is positive and finite for almost every x ∈ G. [213.1.6] For every k ≥ 1 let

Gk = {x ∈ G : tG(x) = kτ} (13)

denote the set of characters with recurrence time kτ . [213.1.7] Then the number

p(k) = ν(Gk) (14)

fThis differs from relaxation to equilibrium discussed in [34].
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is the probability to find a recurrence time kτ . [213.1.8] The numbers p(k) define a discrete
probability density p(k)δ(ṡ − kτ) on the arithmetic progression ṡ − kτ, k ∈ N, ṡ ∈ R.
[213.1.9] Every probability measure %(ṡ) on (G,S) at time instant ṡ is then defined on
the same arithmetic progression through

%(B, ṡ− kτ) = %(B ∩Gk, ṡ) (15)

for all B ∈ S and ṡ ∈ R. [213.1.10] The induced time evolution GT on the subset G is
defined for every B ∈ S as the average [1, 21]

GT%(B, ṡ) =

∞∑
k=1

p(k)%(B, ṡ− kτ) (16)

where ṡ ∈ R. [213.1.11] For characters % = x ∈ G, one recovers the first step in the
discretized microscopic time evolution GTx(ṡ) = x(ṡ− tG(x)) as expected. [213.1.12] For
mixed states % this formula allows the transition from the microscopic to the macroscopic
time evolution. [213.1.13] It assigns an averaged translation to the first step in the induced
time evolution of mixed states.

[page 214, §1]

8. Fractional Time Evolution

[214.0.1] The induced time evolution is obtained from GT by iteration. [214.0.2] According
to its definition in eq. (16) the induced measure preserving transformation GT acts as a
convolution in time,

GT% = % ∗ p (17)

where % is a mixed state on (G,S). [214.0.3] Iterating N times gives

GT
N
% = (GT

N−1
%) ∗ p = % ∗ p · · · ∗ p︸ ︷︷ ︸

N factors

= % ∗ pN (18)

where pN (k) = p(k) · · · ∗ p(k) is the probability density of the sum

TN = τ1 + · · ·+ τN (19)

of N independent and identically with p(k) distributed random recurrence times τi.
[214.0.4] Then the long time limit N → ∞ for induced measure preserving transforma-
tions on subsets of small measure is generally governed by well known local limit theorems
for convolutions [42–45]. [214.0.5] Application to the case at hand yields the following
fundamental theorem of fractional dynamics [1, 21]

Theorem 8.1. Assume that τ > 0 is maximal in the sense that there is no larger τ for
which all recurrence times lie in τN. [214.0.6] Then the following conditions are equivalent:

(1) [214.0.7] Either
∑∞
k=1 kp(k) <∞ or there exists a number 0 < γ < 1 such that

γ = sup{0 < β < 1 :

∞∑
k=1

kβp(k) <∞}. (20)

(2) [214.0.8] There exist constants DN ≥ 0, D ≥ 0 and 0 < α ≤ 1 such that

lim
N→∞

sup
k

∣∣∣∣DN

τ
p(k)− 1

D1/α
hα

(
kτ

DND1/α

)∣∣∣∣ = 0 (21)
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where α = 1, if
∑∞
k=1 kp(k) < ∞, and α = γ otherwise. [214.0.9] The function

hα(x) vanishes for x ≤ 0, and is

hα(x) =
1

x

∞∑
j=0

(−1)jx−αj

j! Γ(−αj)
. (22)

for x > 0.

[page 215, §0] [215.0.1] If the limit exists, and is nondegenerate, i.e.D 6= 0, then the rescaling
constants DN have the form

DN = (NΛ(N))
1/α

(23)

where Λ(N) is a slowly varying function [46], i.e.

lim
x→∞

Λ(bx)

Λ(x)
= 1 (24)

for all b > 0.

[215.1.1] The theorem shows that

pN (k) ≈ τ

DND1/α
hα

(
kτ

DND1/α

)
(25)

holds for sufficiently large N . [215.1.2] The asymptotic behaviour of the iterated induced

measure preserving transformation GT
N

for N →∞ allows to remove the discretization,
and to find the induced continuous time evolution on subsets G ⊂ Γ. [215.1.3] First,
the definition eq. (15) is extended from the arithmetic progression ṡ − τN to ṫ ≤ ṡ by
linear interpolation. [215.1.4] Let %̃(ṫ) denote the extended measure defined for ṫ ≤ ṡ.
[215.1.5] Using eq. (11) and setting

t = DND
1/α (26)

the summation in eq. (18) can be approximated for sufficently largeN →∞ by an integral.

[215.1.6] Then GT
N
%̃(ṡ) ≈ GT

t
α%̃(ṡ), where

GT
t
α%̃(ṡ) =

∞∫
0

%̃(ṡ− ṫ)hα
(
ṫ

t

)
dṫ

t
(27)

is the induced continuous time evolution.[215.1.7] GT
t
α is also called fractional time evo-

lution. [215.1.8] Laplace tranformation shows that GT
t
α fulfills eq. (5). [215.1.9] It is an

example of subordination of semigroups [7, 33,47,48]. [215.1.10] Indeed

GT
t
α =

1

t

∞∫
0

T ṫhα

(
ṫ

t

)
dṫ (28)

where T ṫ denotes right translations on the interpolated measure. [215.1.11] Because
DN ≥ 0 and D ≥ 0, eq. (26) implies t ≥ 0. [215.1.12] As remarked in the introduc-
tion, the induced time evolution is in general not a translation (group or semigroup), but
a convolution semigroup. [215.1.13] The fundamental classification parameter

α = α(T,G, τ) (29)

[page 216, §0] depends not only on the dynamical rule T (·, ṫ) and the subset G, but also on
the discretization time step τ , i.e. on the time scale of interest.
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9. Irreversibility

[216.1.1] The result in eq. (27) has provided new insight into the irreversibility paradox [21,
p. 554]. [216.1.2] For α→ 0− one finds

h1(x) = lim
α→0−

hα(x) = δ(x− 1) (30)

and therefore

GT
t
1%̃(ṡ) =

∞∫
0

%̃(ṡ− ṫ)δ
(
ṫ

t
− 1

)
dṫ

t
= %̃(ṡ− t) (31)

is a right translation. [216.1.3] Here ṫ ∈ R denotes a time instant, while t ≥ 0 is a time
duration. [216.1.4] This shows, that induced right translations do not form a group, but
only a semigroup.

[page 217, §1] [217.1.1] These observations suggest a reformulation of the controversial irre-
versibility problem [6,49]. [217.1.2] The problem of irreversibility is normally formulated
as:

Definition 9.1 (The normal irreversibility problem). [217.1.3] Assume that time is re-
versible. Explain how and why time irreversible equations arise in physics.

[217.1.4] The assumption that time is reversible, i.e. ṫ ∈ R, is made in all fundamen-
tal theories of modern physics. [217.1.5] The explanation of macroscopically irreversible
behaviour for macroscopic nonequilibrium states of subsystems is due to Boltzmann.
[217.1.6] It is based on the applicability of statistical mechanics and thermodynamics, the
large separation of scales, the importance of low entropy initial conditions, and proba-
bilistic reasoning [34].

[217.2.1] The problem with assuming ṫ ∈ R is not the second law of thermodynamics,
because the foundations of thermodynamics and statistical mechanics do not cover all
dynamical systems in nature. [217.2.2] The problem with the arrow of time is that an
experiment (i.e. the preparation of certain intial conditions for a dynamical system) cannot
be repeated yesterday, but only tomorrow [49]. [217.2.3] While it is possible to translate
the spatial position of a physical system, it is not possible to translate the temporal
position of a physical system backwards in timeg. [217.2.4] This was emphasized in [6,
49]. [217.2.5] These simple observations combined with eqs. (30) and (31) suggest to
reformulate the standard irreversibility problem:

Definition 9.2 (The reversed irreversibility problem). [217.2.6] Assume that time is
irreversible. Explain how and why time reversible equations arise in physics.

[217.2.7] The reversed irreversibility problem was introduced in [49]. [217.2.8] Its solution
is given by Theorem 8.1 combined with (30) and (31). [217.2.9] The impossibility of
performing experiments in the past is fundamental and evident. [217.2.10] Therefore, as
emphasized in [49], it must be assumed that time is irreversible. [217.2.11] The normal
irreversibility problem starts from an assumption, that contradicts experiment, while the
reversed problem starts from the correct assumption. [217.2.12] Theorem 8.1 combined

gNote, that this is not the same as reversing the momenta of all particles in a physical system.
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with (30) and (31) explains why time translations, i.e. the case α = 1, arise in physics,
and why it arises more frequently than the case α < 1.

10. Infinitesimal Generators

[217.3.1] The operators GT
t
α form a family of strongly continuous semigroups on C0(G)∗

provided that the translations T t inside the integral in eq. (28) are strongly continuous
[33, 48] and

∫∞
0
‖T s‖hα(s/t)/tds < ∞. [217.3.2] In this case the infinitesimal generators

for 0 < α ≤ 1 are defined by

Aα%̃ = s-lim
t→0

GT
t
α%̃− %̃
t

(32)

for all %̃ ∈ C0(G)∗ for which the strong limit s-lim exists. [217.3.3] In general, the infinites-
imal generators are unbounded operators. [217.3.4] If A = −d/dt denotes the infinitesimal
generator of the translation T t in eq. (28), then

Aα = − (−A)
α

= −
(

d

dt

)α
(33)

are fractional time derivatives [16,50]. [217.3.5] The action of Aα on mixed states can be
represented in different ways. [217.3.6] Frequently an integral representation

Aα%̃ = lim
ε→o

C

∞∫
ε

t−α−1(1− T t)%̃dt (34)

of Marchaud type [8, 51] is used. [217.3.7] The integral representation

Aα%̃ = lim
ε→o

C

∞∫
ε

t−αA(1− tA)−1%̃dt (35)

[page 218, §0] in terms of the resolvent of A [12] defines the same fractional derivative
operator [52]. [218.0.1] Representations of Grünwald-Letnikov type are also well known
[16].

[218.1.1] In summary, fractional dynamical systems must be expected to appear generally
in mathematical models of macroscopic phenomena. [218.1.2] They arise as coarse grained
macroscopic time evolutions from inducing a microscopic time evolution on the subsets
G ⊂ Γ of small measure in phase space, that are typically incurred in statistical mechanics
[1, 21,50].

11. Experimental Evidence

[218.2.1] If fractional time evolutions from eq. (27) with α < 1 must be expected on general
grounds, then they should be observable in experiment. [218.2.2] Numerous experimental
examples of anomalous dynamics or strange kinetics have been identified (see [17–20] and
the present volume for reviews). [218.2.3] Here the example of dielectric α-relaxation in
glasses is briefly discussed [53, 54], because it provides experimental data over up to 19
decades in time [55], and because the explanation of its excess wing has been a matter of
debate.
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Figure 1. Five different fits to the real part ε′(f) of the complex dielectric function
of propylene carbonate at T = 193K as a function of frequency f . Experimental
data represented by crosses are from Ref. [56]. The fitting functions corresponds
to an exponential (Debye), stretched exponential (KWW), Cole-Davidson [57, 58]
Havriliak-Negami [59, 60] and the fractional dynamics (FD) relaxation from (40)
The range over which the data were fitted is indicated by dashed vertical lines in
the figure. For clarity the data were displaced vertically by half a decade each.
The original location of the data corresponds to the curve labelled FD.

[218.3.1] For every induced time evolution on G with time scale τ > 0 and fractional order
β(τ)

GT
τt
β(τ) = GT

τ1t
β(τ)GT

(τ−τ1)t
β(τ) = GT

τ1t
β(τ)GT

τ2t
β(τ1+τ2) (36)

holds generally with τ = τ1 + τ2. [218.3.2] A physical system typically shows different
physical phenomena on different time scales τi. [218.3.3] In [53, 54] it was assumed that
the second factor in eq. (36) becomes approximately fractional in the sense that

GT
τ2t
β(τ1+τ2) ≈ GT

τ2t
α(τ2) (37)

holds in the weak* or strong topology with

lim
τ2→0

α(τ2) = β(τ). (38)
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Figure 2. Five different fits as in Figure 1 for the imaginary part ε′′(f) of the
complex dielectric function of propylene carbonate at T = 193K as a function of
frequency f .

[218.3.4] The resulting composite time evolution GT
τ1t
β(τ)GT

τ2t
α(τ2) was studied in [53,54] for

the case β(τ) = 1. [218.3.5] Rescaling this composite operator as in the case of De-
bye relaxation and computing the infinitesimal generator yields the fractional differential
equation [53,54]

τ1
df

dt
+ τα2 Aαf = −f (39)

[page 219, §0] with Aα from eq. (33) and inital value f(0) = 1. [219.0.1] Its solution is

f(t) = E(1,1−α),1

(
− t

τ1
,−τ

α
2

τ1
t1−α

)
(40)

where

E(a1,a2),b(z1, z2) =

∞∑
k=0

∑
`1≥0

∑
`2≥0

`1+`2=k

k!

`1!`2!

z`11 z
`2
2

Γ(b+ a1`1 + a2`2)
(41)

with a1, a2 > 0 and b, z1, z2 ∈ C is the binomial Mittag-Leffler function [61].
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[page 220, §1] [220.1.1] The complex frequency dependent susceptibility is obtained from

the the normalized relaxation function as χ(u) = 1 − uf̂(u) where f̂(u) is the Laplace
transform of f(t) and u = iω is the imaginary circular frequency [54, p. 402, eq.(18)].
[220.1.2] The real part of the complex dielectric susceptibility for propylene carbon-
ate at temperature T = 193K is plotted in Figure 1, its imaginary part in Figure 2.
[220.1.3] These figures are taken from [53]. [220.1.4] Crosses represent experimental
data. [220.1.5] Different fit functions are shifted by half a decade for better visibility.
[220.1.6] The range over which the data were fitted is indicated by two dashed vertical
lines. [page 221, §0] [221.0.1] The curve labelled FD (fractional dynamics) is the susceptibil-
ity corresponding to the relaxation function in eq. (40) It reproduces the high frequency
wing even outside the range of its fit. [221.0.2] This is not the case for the other four
curves curves, labelled Debye, KWW, CD and HN. They correspond to four popular fit
functions for dielectric relaxation [55,62]. [221.0.3] The curve Debye corresponds to a sim-
ple exponential function, KWW (Kohlrausch-Williams-Watts) is a stretched exponential
relaxation function. [221.0.4] The relaxation functions for the two remaining cases, CD
(Cole-Davison) and HN (Havriliak-Negami) were given for the first time in [58,60].

[221.1.1] Figure 3 from [54] shows the real and imaginary part of the dielectric suscepti-
bility for glycerol as its temperature varies over the glass transition range from T = 323K
to T = 184K. [221.1.2] The fits are based on a trinomial fractional relaxation function as
detailed in [54,61].

12. Dissipative Systems

[221.2.1] The concept of time is the same for conservative and dissipative systems. [221.2.2]

For conservative dynamical systems a mathematically rigorous derivation of fractional dy-
namics from an underlying nonfractional dynamical system has remained elusive, although
some authors have tried to relate α to invariant tori, strange attractors or other phase
space structures [63,64]. [221.2.3] For dissipative systems the rigorous derivation has been
possible for Bochner-Levy diffusion [7, 44, 47, 65] and Montroll-Weiss diffusion [66–70].
[221.2.4] Due to restrictions on page number and preparation time only the latter case
will be considered very briefly.

[221.3.1] For diffusive dynamical systems a mathematically rigorous relation of fractional
dynamics with microscopic Montroll-Weiss continuous time random walks was discovered
in [71,72]. [221.3.2] It was shown that a diffusion (or master) equation with fractional time
derivatives (i.e. a dissipative fractional dynamical system) can be related rigorously to the
microscopic model of Montroll-Weiss continuous time random walks (CTRW’s) [66, 70]
in the same way as ordinary diffusion is related to random walks [44]. [221.3.3] This
discovery became decoupled from its source in the widely cited review [19], and was later
incorrectly attributed in [73]h.

[221.4.1] The fractional order α can be identified and has a physical meaning related
to the statistics of waiting times in the Montroll-Weiss theory. [221.4.2] The relation
was established in two steps. [221.4.3] First, it was shown in [71] that Montroll-Weiss
continuous time random walks with a Mittag-Leffler waiting time density are rigorously

h [221.3.4] Contrary to [73, p. 51] fractional derivatives are never mentioned in [74].
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Figure 3. Separate fits for real part (upper figure) and imaginary part (lower
figure) of the complex dielectric susceptibility χ(ν) = χ′(ν) + iχ′′(ν) of glycerol for
temperatures T =323, 303, 295, 289, 273, 263, 253, 243, 234, 223, 213, 204, 195, 184
K (from right to left) as function of frequency ν (from [54]). The experimental data
are taken from Ref. [56], the fit uses a generalized composite fractional relaxation
model. For details see [54].

equivalent to a fractional master equation. [221.4.4] Then, in [72] this underlying random
walk model was connected to the fractional time diffusion equation in the usual asymptotic
sense [75] of long times and large distancesi. [page 222, §0] [222.0.1] For additional results
see also [50,76–78].

iThis is emphasized in eqs. (1.8) and (2.1) in [72] that are, of course, asymptotic.
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[222.0.2] The relation between fractional diffusion and continuous time random walks,
established in [71, 72] and elaborated in [50, 76–78], has initiated many subsequent in-
vestigations of fractional dissipative systems, particularly into fractional Fokker-Planck
equations with drift [17–19,73,79–86].
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Molekülen. (Springer, Wien, 1979).
[32] J. Neerven, The Adjoint of a Semigroup of Linear Operators. (Springer, Berlin, 1992).

[33] R. Phillips, On the generation of semigroups of linear operators, Pacific J. Math. 2, 343, (1952).
[34] J. Lebowitz, Statistical mechanics: A selective review of two central issues, Rev.Mod.Phys. 71, S346,

(1999).

[35] R. Hilfer, Thermodynamic scaling derived via analytic continuation from the classification of Ehren-
fest, Physica Scripta. 44, 321, (1991).

[36] R. Hilfer, Multiscaling and the classification of continuous phase transitions, Phys. Rev. Lett. 68,

190, (1992).
[37] R. Hilfer, Scaling theory and the classification of phase transitions, Mod. Phys. Lett. B. 6, 773,

(1992).

[38] R. Hilfer, Classification theory for anequilibrium phase transitions, Phys. Rev. E. 48, 2466, (1993).
[39] R. Hilfer. On a new class of phase transitions. In eds. W. Beyermann, N. Huang-Liu, and

D. MacLaughlin, Random Magnetism and High-Temperature Superconductivity, p. 85, Singapore,,

(1994). World Scientific Publ. Co.
[40] S. Kakutani, Induced measure preserving transformations, Proceedings of the Japan Academy, Series

A. 19, 635, (1943).

[41] H. Bauer, Maß- und Integrationstheorie. (Walter de Gruyter, Berlin, 1992).
[42] B. Gnedenko and A. Kolmogorov, Limit Distributions for Sums of Independent Random Variables.

(Addison-Wesley, Cambridge, 1954).
[43] H. Bergström, Limit Theorems for Convolutions. (Wiley, New York, 1963).

[44] W. Feller, An Introduction to Probability Theory and Its Applications. vol. II, (Wiley, New York,

1971).
[45] I. Ibragimov and Y. Linnik, Independent and Stationary Sequences of Random Variables. (Wolters-

Nordhoff Publishing, Groningen, 1971).

[46] E. Seneta, Regularly Varying Functions. (Springer Verlag, Berlin, 1976).
[47] S. Bochner, Diffusion equation and stochastic processes, Proc. Natl. Acad. Sci. USA. 35, 368, (1949).

[48] E. Nelson, A functional calculus using singular Laplace integrals, Trans. Amer. Math. Soc. 88, 400,

(1958).
[49] R. Hilfer. Remarks on fractional time. In eds. L. Castell and O. Ischebeck, Time, Quantum and

Information, p. 235, Berlin, (2003). Springer.

[50] R. Hilfer. Fractional time evolution. In ed. R. Hilfer, Applications of Fractional Calculus in Physics,
p. 87, Singapore, (2000). World Scientific.

[51] A. Marchaud, Sur les derivees et sur les differences des fonctions de variables reelles, Journal de
Mathematiques Pures et Appliquees. 6, 337, (1927).

[52] J. Stafney, Integral representations of fractional powers of infinitesimal generators, Illinois Journal

of Mathematics. 20, 124, (1976).
[53] R. Hilfer, Fitting the excess wing in the dielectric α-relaxation of propylene carbonate, J.Phys.:

Condens. Matter. 14, 2297, (2002).

[54] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem.Phys.
284, 399, (2002).

[55] P. Lunkenheimer, U. Schneider, R. Brand, and A. Loidl, Glassy dynamics, Contemporary Physics.
41, 15, (2000).

[56] U. Schneider, P. Lunkenheimer, R. Brand, and A. Loidl, Broadband dielectric spectoscopy on glass-

forming propylene carbonate, Phys.Rev. E. 59, 6924, (1999).

[57] D. Davidson and R. Cole, Dielectric relaxation in glycerol, propylene glycol and n-propanol,
J.Chem.Phys. 19, 1484, (1951).

[58] R. Hilfer, Analytical representations for relaxation functions of glasses, J. Noncryst. Solids. 305,
122, (2002).

[59] S. Havriliak and S. Negami, A complex plane analysis of α-dispersions in some polymer systems,

Journal of Polymer Sciene: Part C. 14, 99–117, (1966).
[60] R. Hilfer, H-function representations for stretched exponential relaxation and non-Debye suscepti-

bilities in glassy systems, Phys.Rev.E. 65, 061510, (2002).

[61] R. Hilfer, Y. Luchko, and Z. Tomovski, Operational method for the solution of fractional differential
equations with generalized Riemann-Liouville fractional derivatives, Fractional Calculus and Applied

Analysis. 12, 299, (2009).

[62] F. Kremer and A. Schönhals(eds.), Broad Band Dielectric Spectroscopy. (Springer Verlag, Berlin,
2003).



17

[63] G. Zaslavsky. Fractional kinetics of hamiltonian chaotic systems. In ed. R. Hilfer, Applications of
Fractional Calculus in Physics, p. 202, Singapore, (2000). World Scientific.

[64] P. Inizan. Dynamique Fractionnaire Pour Le Chaos Hamiltonien. PhD thesis, L’Observatoire de

Paris, (2011).
[65] M. Riesz, L’integrale de Riemann-Liouville et le probleme de Cauchy, Acta mathematica. 81, 1,

(1949).
[66] E. Montroll and G. Weiss, Random walks on lattices. II, J. Math. Phys. 6, 167, (1965).

[67] M. Barber and B. Ninham, Random and Restricted Walks. (Gordon and Breach Science Publ., New

York, 1970).
[68] E. Montroll and H. Scher, Random walks on lattices. IV. Continuous-time walks and influence of

absorbing boundaries, J. Stat. Phys. 9, 101, (1973).

[69] R. Hilfer and R. Orbach, Continuous time random walk approach to dynamic percolation,
Chem.Phys. 128, 275, (1988).

[70] B. Hughes, Random Walks and Random Environments. vol. 1, (Clarendon Press, Oxford, 1995).

[71] R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys.Rev.E,
Rapid Commun. 51, R848, (1995).

[72] R. Hilfer, Exact solutions for a class of fractal time random walks, Fractals. 3(1), 211, (1995).

[73] I. Sokolov, J. Klafter, and A. Blumen, Fractional kinetics, Physics Today. Nov.2002, 48, (2002).
[74] A. V. Balakrishnan, Anomalous diffusion in one dimension, Physica. 132A, 569–580, (1985).

[75] M. Shlesinger, Asymptotic solutions of continuous time random walks, J. Stat. Phys. 10, 421, (1974).

[76] R. Hilfer. On fractional diffusion and its relation with continuous time random walks. In eds. A. P.
R. Kutner and K. Sznajd-Weron, Anomalous Diffusion: From Basis to Applications, p. 77, Berlin,

(1999). Springer.
[77] R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives, J.Phys.Chem.B.

104, 3914, (2000).

[78] R. Hilfer, On fractional diffusion and continuous time random walks, Physica A. 329, 35, (2003).
[79] A. Compte, Stochastic foundations of fractional dynamics, Phys.Rev. E. 55, 4191, (1996).

[80] R. Metzler, J. Klafter, and I. Sokolov, Anomalous transport in external fields: Continuous time

random walks and fractional diffusion equations extended, Phys.Rev.E. 58, 1621, (1998).
[81] R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to equilibrium: A

fractional Fokker-Planck equation approach, Phys.Rev.Lett. 82, 3563, (1999).

[82] I. Sokolov, Thermodynamics and fractional fokker-planck equations, Phys.Rev.E. 63, 056111, (2001).
[83] M. Meerschaert, D. Benson, H. Scheffler, and P. Becker-Kern, Governing equations and solutions of

anomalous random walk limits, Phys.Rev.E. 66, 060102, (2002).

[84] F. E.Scalas, R.Gorenflo, Uncoupled continuous-time random walks: Solution and limiting behavior
of the master equation, Phys.Rev.E. 69, 011107, (2004).

[85] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi, Disrete random walk models for
space-time fractional diffusion, Chem.Phys. 284, 521, (2002).

[86] G. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys.Rep. 371, 461, (2002).


