Problem Sheet 6 Solid State Theory Summer Semester 2021

Fakultät für Physik, Universität Stuttgart

Prof. Dr. R. Hilfer

Problem 1)

(4 Points)

Consider a semi-infinite plasma on the positive side of the plane z = 0. A solution of Laplace's equation $\nabla^2 \phi = 0$ in the plasma is $\phi_i(x, z) = A \cos(kx) e^{-kz}$, whence $E_{zi} = kA \cos(kx) e^{-kz}$ and $E_{xi} = kA \sin(kx) e^{-kz}$.

- (a) Show that in the vacuum $\phi_0(x, z) = A \cos(kx) e^{kz}$ for z < 0 satisfies the boundary condition that the tangential component of \vec{E} be continuous at the boundary; that is, find E_{xo} .
- (b) Note that $\vec{D}_i = \epsilon(\omega)\vec{E}_i$ and $\vec{D}_o = \vec{E}_o$. Show that the boundary condition that the normal component of \vec{D} be continuous at the boundary requires that $\epsilon(\omega) = -1$, whence from Eq. (10) in Chapter 6 of the Lecture we have the Stern-Ferrell result:

$$\omega_s^2 = \frac{1}{2}\omega_p^2 \tag{1}$$

for the frequency ω_s of a surface plasma oscillation.

Problem 2)

The frequency of the uniform plasmon mode of a sphere, is determined by the depolarization field $\vec{E} = -4\pi \vec{P}/3$ of a sphere, where the polarization is $\vec{P} = -ne\vec{r}$, with \vec{r} as the average displacement of the electrons of concentration n. Show from $\vec{F} = m\vec{a}$ that the resonance frequency of the electron gas is $\omega_0^2 = 4\pi ne^2/(3m)$. Because all electrons participate in the oscillation, such an excitation is called a collective excitation or collective mode of the electron gas.

Problem 3)

- (4 Points)
- (a) Find what Eq. (56) in Chapter 6 of the Lecture becomes when $\epsilon(\infty)$ is taken into account.
- (b) Show that there is a solution of Eq. (55) in Chapter 6 which at low wavevector is $\omega = cK/\sqrt{\epsilon(0)}$, which is what you expect for a photon in a crystal of refractive index $n^2 = \epsilon$.

(4 Points)