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Problem 1) (4 Points)

On the two-fluid model of a superconducter we assume that at temperatures 0 < T < Tc
the current density may be written as the sum of the contributions of normal and
superconducting electrons: ~j = ~jN +~jS, where ~jN = σ0 ~E and ~jS is given by the London
equation. Here σ0 is an ordinary normal conductivity, decreased by the reduction in the
number of normal electrons at temperature T as compared to the normal state. Neglect
inertial effects on both ~jN and ~jS.

(a) Show from the Maxwell equations that the dispersion relation connecting wavevector
~k and frequency ω for electromagnetic waves in the superconductor is

k2c2 = 4πσ0ωi− c2λ−2
L + ω2; (CGS)

or

k2c2 = (σ0/ε0)ωi− c2λ−2
L + ω2, (SI)

where λ2L is given by Equation (14a), in Chapter 8 of the Lecture, with n replaced
by nS. Recall that curl curl ~B = −∇2 ~B.

(b) If τ is the relaxation time of the normal electrons and nN is their concentration,
show by use of the expression σ0 = nNe

2τ/m that at frequencies ω � 1/τ the
dispersion relation does not involve the normal electrons in an important way, so
that the motion of the electrons is described by the London equation alone. The
supercurrent short-circuits the normal electrons. The London equation itself only
holds true if ~ω is small in comparison with the energy gap. Note: The frequencies
of interest are such that ω � ωp, where ωp is the plasma frequency.

Problem 2) (4 Points)

Consider a semiclassical model of the ground state of the hydrogen atom in an electric
field normal to the plane of the orbit (Figure 1), and show that for this model α = a3H ,
where aH is the radius of the unperturbed orbit.
Note: If the applied field is in the x direction, then the x component of the field of the nucleus at
the displaced position of the electron must be equal to the applied field. The correct quantum-
mechanical result is larger than this by the factor 9

2 . (We are speaking of α0 in the expansion
α = α0 + α1

~E + · · · ) We assume x� aH . One can also calculate α1 on this model.



Figure 1: An electron in a circular orbit of radius aH
is displaced a distance x on application of an
electric field ~E in the −x direction. The force
on the electron due to the nucleus is e2/a2H in
CGS or e2/4πεa2H in SI. The problem assumes
x� aH .

Problem 3) (4 Points)

Show that the polarizability of a conducting metallic sphere of radius a is α = a3. This
result is most easily obtained by noting that ~E = 0 inside the sphere and then using the
depolarization factor 4π/3 for a sphere (Figure 2). The result gives values of α of the
order of magnitude of the observed polarizabilities of atoms. A lattice of N conducting
sphere per unit volume has dielectric constant ε = 1 + 4πNa3, for Na3 � 1. The
suggested proportionality of α to the cube of the ionic radius is satisfied quite well for
alkali and halogen ions. To do the problem in SI, use 1

3
as the depolarization factor.

Figure 2: The total field inside a conducting
sphere is zero. If a field ~E0 is applied
externally, then the field ~E1 due to
surface charges on the sphere must
just cancel ~E0, so that ~E0 + ~E1 = 0
within the sphere. But ~E1 can be
simulated by the depolarization field
−4π ~P/3 of a uniformly polarized
sphere of polarization ~P . Relate
~P to ~E0 and calculate the dipole
moment ~p of the sphere. In SI the
depolarization field is −~P/3ε0.


