Problem Sheet 10 Solid State Theory Summer Semester 2021

Fakultät für Physik, Universität Stuttgart

Prof. Dr. R. Hilfer

Problem 1)

Show that a parallel-plate capacitor made up of two parallel layers of material - one layer with dielectric constant ε , zero conductivity, and thickness d, and the other layer with zero dielectric constant, finite conductivity σ , and thickness qd - behaves as if the space between the condenser plates were filled with a homogeneous dielectric with dielectric constant

$$\varepsilon_{\text{eff}} = \frac{\varepsilon(1+q)}{1 - (\mathrm{i}\varepsilon\omega q)/(4\pi\sigma)}$$

where ω is the angular frequency. Values of ε_{eff} as high as 10^4 or 10^5 caused largely by this Maxwell-Wagner mechanism are sometimes found, but the high values are always accompanied by large ac losses.

Problem 2)

The wave function of the hydrogen atom in its ground state (1s) reads $\psi = e^{-r/a_0}/\sqrt{\pi a_0^3}$, where $a_0 = \hbar^2/(me^2) = 0.529 \times 10^{-8}$ cm. The charge density is $\rho(x, y, z) = -e|\psi|^2$, according to the statistical interpretation of the wave function. Show that for this state $\langle r^2 \rangle = 3a_0^2$, and calculate the molar diamagnetic susceptibility of atomic hydrogen (which is given by 2.36×10^{-6} cm³ mol⁻¹).

Problem 3)

The spin susceptibility of a conduction electron gas at absolute zero may be discussed by another method. Let

$$N^{+} = \frac{1}{2}N(1+\zeta), \qquad N^{-} = \frac{1}{2}N(1-\zeta)$$

be the concentrations of spin-up and spin-down electrons.

(a) Show that in a magnetic field B the total energy of the spin-up band in a free electron gas is

$$E^{+} = E_0(1+\zeta)^{5/3} - \frac{1}{2}N\mu B(1+\zeta),$$

where $E_0 = \frac{3}{10} N \varepsilon_F$, in terms of the Fermi energy ε_F in zero magnetic field. Find a similar expression for E^- .

(b) Minimize $E_{\text{total}} = E^+ + E^-$ with respect to ζ and solve for the equilibrium value of ζ in the approximation $\zeta \ll 1$. Go on to show that the magnetization is given by $M = 3N\mu^2 B/(2\varepsilon_F)$, in agreement with Equation (42) in Chapter 10 of the Lecture.

(4 Points)

(4 Points)

(4 Points)