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Abstract. Finite size scaling theory and hyperscaling are 
analyzed in the ensemble limit which differs from the 
finite size scaling limit. Different scaling limits are dis- 
cussed. Hyperscaling relations are related to the identifi- 
cation of thermodynamics as the infinite volume limit of 
statistical mechanics. This identification combined with 
finite ensemble scaling leads to the conclusion that hy- 
perscaling relations cannot be violated for phase transi- 
tions with strictly positive specific heat exponent. The 
ensemble limit allows to derive analytical expressions for 
the universal part of the finite size scaling functions at the 
critical point. The analytical expressions are given in 
terms of general H-functions, scaling dimensions and a 
new universal shape parameter. The universal shape 
parameter is found to characterize the type of boundary 
conditions, symmetry and other universal influences on 
critical behaviour. The critical finite size scaling functions 
for the order parameter distribution are evaluated nu- 
merically for the cases g = 3, 3 = 5 and 6 = 15 where 6 is 
the equation of state exponent. Using a tentative assign- 
ment of periodic boundary conditions to the universal 
shape parameter yields good agreement between the ana- 
lytical prediction and Monte-Carlo simulations for the 
two dimensional Ising model. Analytical expressions for 
critical amplitude ratios are derived in terms of critical 
exponents and the universal shape parameters. The pa- 
per offers an explanation for the numerical discrepancies 
and the pathological behaviour of the renormalized cou- 
pling constant in mean field theory. Low order moment 
ratios of difference variables are proposed and calculated 
which are independent of boundary conditions, and al- 
low to extract estimates for a critical exponent. 
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I. Introduction 

Analysis of finite size effects [1] has become an indis- 
pensible tool in the numerical simulation of critical phe- 
nomena [2-5]. According to the nonrigorous renormali- 
zation group derivations of finite size scaling [6] the sin- 
gular part of the free energy fsing (t, h, u, L) and the cor- 
relation length ~ have the scaling form 

Using (t, h, H, L) = L-d~(tL yt, hL yh, uL  y") (1.1) 

r (t, h, u, L )  = L g ( t L  y', hL  y', uL  y" ) (1.2) 

where t denotes the reduced temperature t =  ( T - T c ) I T  ~ 
relative to the critical temperature T~ of the infinite sys- 
tem, h is the field conjugate to the order parameter, u is 
an irrelevant variable, L the system size, d the spatial 
dimension, and Yt, Yh > 0 and y,  < 0 are the renormali- 
zation group eigenvalues for t, h and u. 

More heuristically there are several possibilities to in- 
troduce finite size scaling through a scaling hypothesis. 
One such method [7, 8] assumes that the probability den- 
sity p (~,  L)  for the order parameter ~ of the transition 
can be written as 

p(q/ ,L,  ~) = 

= L  d(d~ d*~/(d--d*)fi~,(~Ld(d~ d*)/(d--d*~,L/~d. ) (1.3) 

where d~, is the anomalous or scaling dimension of the 
order parameter, d* is Fishers anomalous dimension of 
the vacuum [9], and ~a* is Binders thermodynamic length 
[8]. If  hyperscaling holds then d* = 0, the thermodynamic 
length becomes the correlation length, ~o = ~, and the 
exponent in (1.3) reduces to the familiar form d~, = f l / v  
where fl is the order parameter exponent and v the cor- 
relation length exponent. The finite size scaling Ansatz 
(1.3) can be extended to arbitrary composite operators, 
an important case being the energy density ~ for which 
the exponent becomes d ~ = ( 1 - ~ ) / v  if hyperscaling 
holds. All finite size scaling relations (1.1)-(1.3) are as- 
sumed to hold in the finite size scaling limit 
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L-~o% ~--* oo (1.4) 

where L/~  = c is kept constant. 
Despite their very plausible and seemingly general 

character finite size scaling relations are not generally 
valid [10]. Violations of finite size scaling are closely re- 
lated to violations of hyperscaling relations [ 10, 11]. These 
violations have been rationalized via the so called mech- 
anism of "dangerous irrelevant" variables [12] or by say- 
ing that the correlation length ~ is not the only relevant 
length [5]. "Dangerous irrelevant" variables are relevant 
to critical behaviour because by definition they induce a 
singularity in one or both of the scaling functions 
f ( x ,  y, z) and ~(x, y, z) as z~0 .  The mechanism of dan- 
gerous irrelevant variables does not give general model- 
independent criteria for the validity or violation of hy- 
perscaling and finite size scaling. The present paper at- 
tempts to establish positivity of the specific heat exponent 
as such a general criterion for the validity of hyperscaling 
relations. 

Given the scaling Ansatz (1.3) another well known 
problem with present finite size scaling theory concerns 
integrals of the scaling function appearing in (1.3). To 
see this calculate the finite size scaling form for the ab- 
solute moments of order a from (1.3) for the case d*= 0 
as 

(I ~1 "5 (L, ~) =L - 'ply r (L/G) (1.5) 

where the new scaling function ~o (z) is given in terms 
of /~,  (x, y) as 

~(y)=~ Ix[~ff~(x,y)dx. (1.6) 

From these moments one finds for the ratio related to 
the renormalized coupling constant the result 

( ~r_/4 ) ~4 (Z/~) (1.7) 
g(L, r (~5~i  - ~ ( L I r  ' 

which implies that 

~4 (C) (1.8) g~(c)=  lim g ( L , r  

L / ~  = e 

in the finite size scaling limit for which L/~  = c is a con- 
stant. While the value g~ (oo) = 3 for the trivial high tem- 
perature fixed point is universal, the value g~ (0) for the 
nontrivial fixed point is found to depend on seemingly 
nonuniversal factors. Moreover, numerical difficulties 
arise in different methods of estimating g~ (0) [7, 13-16]. 
The problem is particularly apparent for the mean field 
universality class. Twodimensional conformal field the- 
ory predicts that g~ (0)oct/- 1 in the limit r/--*0 [ 17]. Here 
~7 is the correlation function exponent, and r/= 0 in mean 
field theory. Similarly for the n-vector models above four 
dimensions g~ (0) becomes n-dependent [15] in stark con- 
trast to the "superuniversality" of mean field exponents 
and amplitude ratios. The numerical agreement with 
Monte-Carlo simulations is poor and the authors of [ 13] 
have called for further studies to clarify the discrepancy. 
The present paper attempts to contribute to this point. 

Let me summarize the objective of this work resulting 
from the above exposition of two problems with current 
finite size scaling theory. The first objective is to provide 
general criteria for the validity or violation of finite size 
scaling. The second objective is to investigate the finite 
size scaling functions and finite size amplitude ratios in 
the ensemble limit. 

Methodically, the results of this paper follow directly 
from a recently introduced classification theory of phase 
transitions [18-23]. Let me briefly outline the basic idea. 
Within the classification theory it was shown that each 
phase transition in thermodynamics as well as in statis- 
tical mechanics is characterized by a set of generalized 
Ehrenfest orders plus a set of slowly varying functions. 
This classification is macroscopic in the sense that it in- 
volves only thermodynamic averages while conformal 
field theory focusses on microscopic higher order corre- 
lation functions. The classification in thermodynamics 
[18] is based upon the application of fractional calculus, 
the one in statistical mechanics [22] rests upon the theory 
of limit distributions for sums of independent random 
variables. The latter theory, which cannot be employed 
in the traditional way of performing the scaling limit, 
became applicable by introducing a fundamentally new 
scaling limit, which was called ensemble limit. In the en- 
semble limit critical systems decompose into an infinite 
ensemble of infinitely large, yet uncorrelated blocks. The 
classification schemes in thermodynamics and statistical 
mechanics are mathematically very different but can be 
related to each other by studying the fluctuations in the 
ensemble of blocks. The difference between the classifi- 
cation schemes is found to be related to violations of 
hyperscaling. Moreover, a thermodynamic form of scal- 
ing, called finite ensemble scaling, emerges from the clas- 
sification. The basic idea of this paper is to regard finite 
ensemble scaling as a macroscopic or thermodynamic 
form of finite size scaling. Thus the limit distributions in 
the classification theory ought to be related to the prob- 
ability distributions, such as p (q/, L, ~), appearing in fi- 
nite size scaling theory. To show that this expectation is 
indeed borne out it is first necessary to discuss in some 
detail the different scaling limits and finite ensemble scal- 
ing. Subsequently the classification approach can be re- 
lated to the theory of finite size scaling, hyperscaling and 
general scaling at critical points. In the last two sections 
critical finite size scaling functions and amplitude ratios 
are discussed and compared with Monte Carlo simula- 
tions. The comparison of the predicted universal part of 
the finite size scaling functions for the order parameter 
distribution at criticality with Monte Carlo simulations 
for Ising models shows good quantitative agreement. 

II. Scaling limits 

The finite size scaling limit L ~  o% ~--* oo with L /~  con- 
stant is a special kind of field theoretical scaling limit. A 
fieldtheoretic scaling limit involves three different limits: 
1. The thermodynamic limit L ~ o o  in which the system 
size becomes large, 2. the continuum limit a--*O in which 
a microscopic length becomes small, and 3. the critical 



limit ~ --+ o~ in which the correlation length of a particular 
observable (scaling field) diverges. 

This section discusses the recently introduced en- 
semble limit [20-23] as a novel kind of field theoretic 
scaling limit, and relates it to traditional limiting proce- 
dures. 

A. Discretization in f i e M  theory 

Consider a macroscopic classical continuous system 
within a cubic subset of R a with volume V and linear 
extension L. The finite macroscopic volume V= L a is 
partitioned into N mesoscopic cubic blocks of linear size 
~. The coordinate of the center of each block is denoted 
by y / ( j  = 1 .... , N). Each block is further partitioned into 
M microscopic cells of linear size a whose coordinates 
with respect to the center of the block are denoted as 
x~(i= 1 ... . .  M). The position vector for cell i in block j 
is y / +  X i. This partitioning of R ~ is depicted in Figure 1 
for d =  2 and M = N = 25. The number of blocks is given 
by 

N = ( ~ )  ~ (2.1) 

while the number of cells within each block is 
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Fig. 1. Discretization of a macroscopic classical continuum system 
of size L into mesoscopic blocks (solid lines) of size ~x and micro- 
scopic cells (dashed lines) of size a. The vector y/ denotes the 
position of block j, the vector x~ is the position vector for cell i 
relative to the block center 
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The total number of cells inside the volume V is then 
N M  = ( L / a )  a. 

Let the physical system enclosed in V be describable 
as a classical field theory with timeindependent fields 
~0 (z, t=0 )=~o  (z) and a local microscopic configura- 
tional Hamiltonian density 

J 
+Tr ~ =~-  (du ~0 (z))2 + U(~0 (z)) (2.3) 

where Ou = O/ # x  u (~ = 1 . . . . .  d) denotes partial deriva- 
tives. A particular example for the potential U(~o) would 
be the q~4-model for which 

U ((p) = m 2 (q~ (z))2/2 + g (r (z))4/4[, (2.4) 

where the parameters m and g are the mass and the cou- 
pling constant. For future convenience the parameters of 
the field theory are collected into the parameter vector 
H---- ( / / 1 , / / 2  . . . .  ) = (J, m, g .. . .  ). The partitioning intro- 
duced above allows two regularizations into a lattice field 
theory. On the mesoscopic level the regularized block 
action representing the total configurational energy of a 
single block (e.g. for block j )  reads 

HMN (~O (y/)) 

= - J  ~ ,  ~ o ( y / + x z ) - O ( y j + x ~ )  
< x i , x k ) j  

M 

+ ~, UGo ( y / +  x,)) (2.5) 
i = 1  

where (xi, x~)j  denotes nearest neighbour pairs of cells 
inside block j ,  (j = 1 .... , N) such that each pair is counted 
once. On the macroscopic level one has the discretized 
action between blocks (representing the total configura- 
tional energy) 

~MN(t#)=--~ Z r (Y/) ' r  (Yk) 
< Y j , Y k )  

N 

+ ~, 11(4~ (yj)) (2.6) 
j = ]  

where now (Y/,Yk} denotes nearest neighbour blocks. 
Although the overall form of the discretizations is iden- 
tical for HMN and ~MN the macroscopic discretized fields 
4~ and interactions ~, 11 may in general require renor- 
malization in the infinite volume and continuum limit, 
and are therefore denoted by different symbols. Rear- 
ranging (2.5) the macroscopic discretized action ~MN (r 
is related to the mesoscopic discredzed action 
HMN(q9 ( y j ) )  through 

N 

'~ iN(d?)  =~MN(~O) = ~] HMN(q~ (Yj)) 
j = l  

+ 2 ~o ( y / +  xi). (o (Yt + x~) (2.7) 
(Yj +xi,Yl--X k ) 

expressing a decomposition into bulk plus surface ener- 
gies. Here ~, expresses a summation over nearest neigh- 
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bour cells in the surface layers of adjacent Mocks such 
that each pair of adjacent block surface cells is counted 
once. Conventional field theory or equilibrium statistical 
mechanics assumes that the surface term which is of order 
~y (NM(d-1)/d) becomes negligible compared to the bulk 
term which is of order G(NM)  in the field-theoretic 
continuum limit. 

B. Fieldtheoretic scaling limit 

Consider now a scalar local observable XM~ v (9 (Xi + yg )) 
(composite operator) fluctuating from cell to cell. The 
fluctuations generally define a correlation length ~x(/7) 
whose magnitude depends on the observable in question 
and the parameters /7  in the Hamiltonian. The recon- 
struction of the continuum theory from its discretization 
is usually carried out in two steps [24]. First one takes 
the (thermodynamic) infinite volume limit L ~ oo at con- 
stant a as the limit of canonical (Boltzmann-Gibbs) prob- 
ability measures in the finite volume. The existence of 
this limit requires stability and temperedness of the in- 
teraction potentials [25]. The limit amounts to setting 
N =  1 and thus "15M1 = HM1. 

Given the existence of the infinite volume limit one 
studies the scaling limit a~O,/7--*/7~ of the regularized 
infinite-volume theory. This field theoretic limit in gen- 
eral requires the renormalization of the action HM1 (~o). 
The quantities of main interest are the correlation func- 
tions 

<X~I(X1).,.X~I(Xn)>N = 

~.~ 2"  --1 I xc~ (~O (Xl))...Xc~ 1 ((p (Xn)) 

X exp ( - - H ~ I  ((o (0))) 2 [q] (2.8) 

= lim lim j" XM~ (~ (Xl))...XM1 (~0 ( X n ) )  
a--+0 L~oo 

• dH (~o; a, L, H)  (2.9) 

within a single block here chosen to be the one at the 
origin, i.e. Yl = 0. The normalization constant 2"  is the 
partition function, the measure/2 (~o; a, L, H)  is the finite 
volume lattice probability distribution on the space of 
field configurations, and the notation <... >n for the ex- 
pectation value expresses its dependence on the param- 
eters in the Hamiltonian. The correlation fucntions (2.9) 
are plagued the well known short distance signularities 
in the continuum limit a-+ 0. The standard approach [24] 
to this problem is to keep a > 0 fixed and to use instead 
a lattice rescaling procedure in which the auxiliary re- 
scaling factor b oc a -  1 __. oo diverges. This keeps the theory 
explicitly finite at all steps. Thus the field theoretic con- 
tinuum theory is defined through the limiting renormal- 
ized correlation functions 

<X~I(x1)...X~I(Xn)>~ = 

= lim A (b)n<Xml (bx I )...Xool (bXn)>rl(b) (2.10) 

where A (b) is the field renormalization. The parameters 
/7 approach a critical point / / c = / / ( o c )  such that the 

rescaled correlation length 

lim Cx(l-l(b))/b > 0 (2.11) 
b~cxz 

remains nonzero. The field theoretical continuum or scal- 
ing limit is called "massive" or "massless" depending on 
whether the rescaled correlation length approaches a fi- 
nite constant or diverges to infinity. Because a > 0 is fixed 
(2.2) and (2.11) imply b oc ~ oc M lid in the massive scaling 
limit, and this allows to rewrite equation (2.10) as 

<Xool (Xl ) . . .Xoc l  (Xn)>Hc 

= lim D(M)n(X+I (M1/dx1)...Xoo I (Ma/dXn)>ll(Ml/d) 
M~cr (2.12) 

if the limit exists. In that case the renormalization factor 
D (M) has the form 

D(M), , ,M ax/a (2.13) 

by virtue of the relation 

A (b),,,b ax, (2.14) 

which follows generally from renormalization group 
theory [26]. Here d x is the anomalous dimension of the 
operator X. 

C. Ensemble limit 

The ensemble limit introduced in [20] is a way of defining 
infinite volume continuum averages from the discretized 
theory in a finite volume without actually calculating the 
measure/2 (q~, 0, 0% He) explicitly. The idea is to focus on 
the one point functions given by (2.12) with n = 1 as 

( X |  >m = 

= <Xo~, (x,)>no (2.15) 

= lira D(M)<Xo~I(M~/dx,)>n(M) (2.16) 
M ~ 

= l i m  D(M)< M > M ~  M ~ X~I (M1/dXi) (2.17) 
i= 1 rl(M) 

where independence of xi by virtue of translation invar- 
lance has been used in the first and the last equality. At 
criticality these functions contain information about fluc- 
tuations through the renormalization factor D (M) for 
field averages. 

For a given field configuration the fluctuating 
local observable inside cell i(i= 1 , . . . ,M)  of block j 
( j =  1 .... ,n)  will again be denoted by XMN(~0 (y j +x/))  
as defined above and illustrated in Fig. 1. The block 
variables 

M 

XMN(~O ( Y J ) ) =  Z XMN(~O (YJ "q- X/)) (2 .18)  
i=1 

(j = 1 ... . .  N) are defined by summing the cell variables 
and the ensemble variable 



Table 1. Different possible scaling limits. FSS stands for finite size scaling, and ES for ensemble scaling 

aL N 
Type of scaling limit a L H ~ -  M N ~-  
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1. Discrete ES limit --+0 --+oo ~ I I  c --+c 1/~ ----~ OO --~00 ---+C 

2. ~ 0  -~oo =/7~ =0 = oo = 1 =0 

3. Massive scaling limit --+0 = oo --+H~ = oo = oo --+ 1 = 0 
O0 

4. Massless scaling limit -+0 = oo =H~ = oo = 1 = 0 
002 

5. Massive FSS limit =0 ~oo --+//~ =0 = oo --+N O =0 
0 

6. Massless FSS limit = 0 --+ c~ = H~ = oo = 1 = 0 
002 

O0 
7. Continuum ES limit = 0 = ~ -*H~ = 0- c~ = oo = oo - 

OO 

0.OO 
8. =0 =c~ =H~ =oo =1 =0 

002 

N 

XMN(~O) = Z XMN(~O ( Y J ) )  ( 2 . 1 9 )  
/=1 

is obtained by summing the block variables. Fo r  a > 0 
the ensemble limit is defined as the limit 

N aL  
M--+ oo, N--+ 0% M - -  ~ x ( H )  2 - -  c (2.20) 

where c is a constant.  In  the ensemble limit L ~  ( ~ x ( / / ) )  2 
as compared  to L ~  ~x (H)  in the fieldtheoretic scaling 
limit. The difference to the field theoretic scaling limit 
is that  t he rmodynamic  (L--+oo), con t inuum (a -+0)  and  
critical (II--+llc) limit are taken simultaneously. In  this 
way an infinite ensemble o f  regularized infinite classical 
con t inuum systems is generated. The elements o f  the en- 
semble are replicas of  one and the same system governed 
by the Hamil tonian  density ~( r  Thus the ensemble 
limit generates an ensemble in the sense o f  statistical me- 
chanics. 

The critical or  noncritical averages <X~I)r  t can be 
calculated in the ensemble limit as 

1 
< X ~ l ) n =  lim XMN(~O). (2.21) 

M,N~oo 

This equat ion states that  macroscopic  ensemble averages 
can either be calculated using (2.9) in the tradit ional  scal- 
ing limit or directly using (2.18) and (2.19) in the en- 
semble limit. Equat ion  (2.21) gives the connect ion be- 
tween the scaling limit and the ensemble limit. No te  that  
the validity o f  (2.21) requires the existence o f  the renor-  
malized field theory. Thus  the left hand  side o f  (2.21) 
cannot  be calculated at anequil ibrium phase transitions 
[21,22] while the right hand  side can still be calculated 
in such cases. 

D. Summary o f  different scaling limits 

The main  difference o f  the ensemble limit as compared  
to other  scaling limits is that  the three limits a-+0,  L--+ 0% 
H - + H  c are simultaneously performed while in other  lim- 
its only two of  these limits are taken simultaneously. There 

a re  2 3 =  8 ways o f  performing the scaling limit with the 
three variables a, L, H depending on whether a particular 
variable is set equal to its limiting value or not.  The 
different possibilities are summarized in Table 1. Note  
that  only the ensemble limit (1.) and the related critical 
limit (7.) in an infinite con t inuum theory  yield an infinite 
number  o f  uncorrelated blocks. The close relation be- 
tween the ensemble limit and the massive finite size scal- 
ing limit (5.) is apparent  if No>> 1. 

LII. Finite ensemble scaling 

The quant i ty  o f  main  interest for finite ensemble scaling 
[21-23] is the macroscopic  ensemble sum XMN(~O ) given 
by (2.19). The idea is to neglect completely its microscopic 
definition (2.18) in terms of  cell variables, and to consider 
the mesoscopic block variables XMN (~O (y)) as a starting 
point. The univariate probabil i ty distribution o f  the en- 
semble variable is defined as 

Px~x (x)  = Prob {XMN(~O) ~ X}. (3.1) 

Because the ensemble limit automatical ly generates in- 
dependent  and identically distributed block variables 
XMN(~O (y j ) )  the s tandard theory o f  stable laws [27, 28] 
can be applied. It  yields the existence and uniqueness o f  
limiting distributions for  the linearly renormalized en- 
semble sums 

x~(~)- c~ 
ZMN(~O ) = 

DN 
N 
Z XMN(~O ( Y J ) )  - -  CN 

_ / = 1  (3.2) 
DN 

where D N > 0 and C N are real numbers.  Remember  that  
this holds for sums of  arbi t rary block variables inde- 
pendent  o f  their microscopic definition. The index M 
serves only as a reminder for the fact that  the ensemble 
limit is used. 
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The distribution function Pz,~,,(x) for ZMN(~O ) is given 
in terms of Px~,(x) as PXM~v(DNX-[- CN) and it is thus 
sufficient to consider Px~,u (x). The (weak) ensemble limit 
of these probability distribution functions 

lim Px,~.(D~vx + CN) = 
M , N - - * ~  
N / M  = e 

= H ( x ;  Nx(C), (x(C), C(c),D(c)) (3.3) 

exists if and only if H(x; ~x(C), ~x(C), C(c), D(c)) is 
a stable distribution function whose characteristic func- 
tion 

h(k)=(eikX)= S eik~dH(x) (3.4) 

has the form 

h (k; ~x, (x, C, D) 

= exp (i Ck - D I k l ~ e T (1  - -  l1  - -  N x l )  ~xSg nk) (3.5) 

for ~ x *  1 and 

h(k; 1, ~x, C,D) 

=exp ( iCk-  Dlkl ( 1 - i ~ x 2  sgnklog lkl ) )  (3.6) 

for ~ x = l .  The c-dependence of the parameters 
~x(C), ~x(C), C(c), D (c) has been suppressed to shorten 
the notation. The parameters ~x, ~x, C, D obey 

0 <  ~x=<2 

- 1 < ~x < 1 (3.7) 
- - o o < C < o o  

0_<D. 

If the limit exists, and D 4= 0, the constants DN must have 
the form 

O N = (NA (N))i/~x (3.8) 

where A (N) is a slowly varying function [28], i.e. 

A (bx)  
lim - -  - 1 (3.9) 
x ~  A ( x )  

for all b > 0. 
The forms (3.5) and (3.6) of the limiting characteristic 

functions imply the following scaling relations for the 
stable probability densities h (x; Nx, ~x, C, D). If 
Nx~ 1 then 

h (x; ~x, (x, C, D) = 

=D-1/mxh(( x -  C)D-1/mx; ~x, ~x, 0, 1) 

holds, while for ~ x =  1 one has 

(3.10) 

h(x; Nx, ~x, C,D) 

= D - l h ( ( x - C )  D-1 -2  ~x  l~ Nx, (x, 0, 1) - 
ze (3.11) 

The parameters C and D correspond to the centering and 
the width of the distribution. 

Strictly stable probability densities (i.e. those with 
Nx*  1) are conveniently written in terms of Mellin trans- 
forms [29, 30]. This representation is useful for compu- 
tations and involves the general class of H-functions 
[31, 32]. For 1 < Nx < 2 corresponding to equilibrium 
phase transitions two cases are distinguished. If 1 -~xl * I 
then [30, 22] 

h(x; ~x, ~x,O, 1) 

1 ( (1-1/~x ,  1/~x) ( 1 - p , p ) ' ~  (3.12) 
- ~-~ H21~ x (0,1) ( 1 -p ,p ) /  

1 ~x + ~ -  and the definition of the general where p -  2 Nx 
I 

H-function H~mQ m is given in the appendix. If [r = 1 
then for 1 < Nx < 2 

h(x; ~x, _+1,0,1) 

1 ( (1 -- 1/~x, 1/~x) ~ (3.13) 
- - ~ - H 1 1 ~  ~ x  (0,1) J" 

Similar expressions hold for 0 < Nx < 1 [30, 22]. The 
special case Nx = 2 of the general limit theorem (3.3) is 
the central limit theorem [28] and in this case the stable 
probability density 

1 e - - ( x  -- C ) 2 / ( 4 D )  (3.14) h(x;2'~x'C'D) V4D~ 

is the Gaussian distribution with mean C and variance 
a 2= 4 D. Note that the right hand side is independent of 
(x in this case. Another special case expressible in terms 
of elementary functions is ~ x  = 1, ~x = 0 where 

1 D 2 
h(x; 1,0, C,D)-zc D D2._~_(x - C)  2 (3.15) 

is the Cauchy distribution centered at C and having 
width D. 

For sufficiently large but finite N =  (L/~) d (3.3) im- 
plies that the distribution function of ensemble variables 
may be written as 

PXMu(X) = 
x - C ~  

( R ( x , M , N , c ) H ( - ~ - ;  ~x,~x,C,D): 
for x=<0 

= X - - C N  D ]I--R(x,M,N,c)(1--H( D N ; ~ X , ~ x , C ,  ~): 
for x > 0  

(3.16) 



which defines a nonuniversal cutoff function 
R (x, M, N, e) such that lira R (x, M, N, c) = 0 for all 

x-.• 
M, N < oc. In the ensemble limit the cutoff function must 
obey 

lim R ( x ; M , N , c ) = I ,  (3.17) 
M,N~m 
N/M=c 

for all x and c as a result of (3.3). Note that (3.17) does 
not hold for the finite size scaling limit. Instead Table 1 
implies that for the finite size scaling limit 

lim R ( x ; M , N , N / M ) = R ( x ;  oc,ca,0) (3.18) 

L/r = e 

if the limit exists, and where now c = L~ ~. The function 
R (x; 0% (L/~) a, 0) may in general differ from unity, and 
thus the finite size scaling limit may involve a nonuniversal 
cutoff function which is absent in the finite ensemble limit. 

Wherever possible (3.16) will be abbreviated as 

PxM~v(x),~H(X--CN'~x, ~x,C,D) (3.19) 
DN ' 

to shorten the equations. If  the centering constants are 
now chosen as 

I - D N C :  for ~x:t= 1 
CN = / 7 \ (3.20) 

--DN(C+ = r ") for N x = l  

then using (3.10), (3.11) and (3.8) the basic finite en- 
semble scaling result [21, 22] 

px~(x)~-,h(x; Nx, (x, O, DNA (N)) (3.21) 

is obtained for the probability density function 
Px~N (x) of suitably centered and renormalized ensemble 
sums. The approximate result (3.21) has formed the basis 
for the statistical mechanical classification of phase tran- 
sitions [21, 22]. 

From the basic result (3.21) the scaling form for the 
probability density of ensemble averaged block variables 
XMN (~0) = XMN ( {0 ) / (MN)  is readily obtained using (3.10) 
a s  

( L /  ~)d(1-(1/fox)) 

(DA ((L/~)a)) '/mx 

( x ( L / l )  "(' -o/~,:~) 
• \ (DA ((L/ {)d)) TM ; ~x,  ~x, O, 1/. 

(3.22) 

Setting X = h u this result is found to be distinctly different 
from (1.3). This shows that finite ensemble scaling (3.22) 
and finite size scaling (1.3) are not equivalent. 

IV. Finite size scaling 

This section discusses the implications of finite ensemble 
scaling for finite size scaling at a critical point. Contrary 
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to finite ensemble scaling the theory of finite size scaling 
includes the strongly correlated microscopic cell variables 
into the theoretical consideration. This can be done in 
two ways. Thermodynamic finite size scaling concentrates 
on the thermodynamic fluctuations within the ensemble, 
while statistical mechanical (or fieldtheoretical) finite size 
scaling focusses on the correlation functions on the block 
level. The distinction appears already in (1.1) and (1.2). 
The general identification of thermodynamics as the in- 
finite volume limit of  statistical mechanics implies a re- 
lation between the two parts which is at the origin of 
hyperscaling relations. 

A. Thermodynamic finite size scaling 

The thermodynamic method of reintroducing the strongly 
correlated cell variables is to use the definition of block 
variables (2.18) and to define 

XMN ({O) -- CMN 
ZMN({O ) -- 

DMN 
N M 
~, Z XMN((O(yj+x'))--C'N 

_ _ j = l  i=1  (4.1) 
DMN 

as a double sum over correlated microscopic cell vari- 
ables. Although the microscopic variables are strongly 
correlated inside the blocks they remain uncorrelated at 
separations larger than ~. Therefore the property of strong 
mixing [33, 34] continues to hold in the ensemble limit. 
Therefore the same considerations as in the previous sec- 
tion can also be applied to the double sums (4.1) to give 
the finite size scaling result 

DD ~x ~ (4.2) Px,u(x)~H(x;  Nx, (x,O, MNY 

where now 

DMN = (MNA (MN))1/~x (4.3) 

similar to (3.8). 
To exhibit the relation of the result (4.2) with the usual 

thermodynamic finite size scaling Ansatz (1.3) [8] for the 
order parameter distribution it is first necessary to rewrite 
the results in terms of the probability density for the 
ensemble averages f2MN ((0) = XMN (~0) / (MN). This gives 
the thermodynamic finite size scaling result 

(L/a)d--(d/~x) 
fiXMN(X)"~(A ((L/a)a)),/~x 

/ x(L/a)  d--(d/~x) 
; ~x,O,D) (4.4) • ~(A ((L/a)d)) T M  Nx, 

Setting X =  ~ and comparing with [5] yields the identi- 
fication [21, 22] 

~ , = m i n  (2, y~,~,+2fl~,~ ~ ) ~ - ~  / = m i n ( 2 , ; ~ , )  (4.5) 

where y ~,~, is the order parameter susceptibility exponent, 
f ie  is the order parameter exponent, and 2~, is the 
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generalized Ehrenfest order [19] in the conjugate field 
direction. The appearance of the min-function results 
from the general inequality (3.7). Similarly, for the energy 
density X =  ~" the result 

e" = min (2, 2 - ~ e') = min (2, 2 e') (4.6) 

is obtained with a e. = e the specific heat exponent. In 
general the identification is given as Nx=min (2 ,2  

- COx) = rain (2, 2x) where ax is the thermodynamic fluc- 
tuation exponent [9] defined in terms of derivatives of 
the free energy. Equation (4.4) in combination with (4.5) 
and (3.16) determines the thermodynamic finite size scal- 
ing function for the order parameter distribution in (1.3) 
explicitly as 

~R(x,y) 
(R(x,y)h~,(x)+H~,(x) ~x : 

for x=<O 
fi~, (x, y) = 

l R(x,y)h~,(x) - (1 -H~,(x)) OR~x'Y) : 

for x > 0  
(4.7) 

where 

(x  ~'~'~" + 2 fl~' 29) h~,(x,y)=h ; ?~'+fl~" ; ~ ,0 ,  

_ d H ~  (x )  
dx (4.8) 

and h is defined through the H-functions in (3.12), (3.13) 
and the appendix. Note that the thermodynamic finite 
size scaling function depends on y only through the non- 
universal cutoff function R(x;M,y, c). It will be seen 
below that the dependence on y in the universal function 
h reappears in fieldtheorefical finite size scaling. Note also 
that the general inequalities fl~, > 0 and ?~,~, > 0 imply 
~ , <  2. 

B. Fieldtheoretical finite size scaling 

The fieldtheoretical or statistical mechanical method of 
reintroducing the microscopic cell variables uses the same 
uncorrelated block sums as in finite ensemble scaling (3.2), 
but multiplies them with the M-dependent field theoretic 
renormalization factor for block sums D (M)/M from 
(2.17) which has to be calculated independently. In this 
case the renormalized ensemble sums are defined as 

(D  ( M ) / M )  YMN(~O) -- C N 
ZMN(~O) = 

DN 
N 

(D(M)/M) ~. YMN(~O(y+))--CN 
_ _  j = l  

DN 
(4.9) 

where C N and Dw are constants as in (3.2). The composite 
operators YMN (~O (y j)) have been denoted differently from 
the thermodynamic case to indicate that the variables of 
interest in mesoscopic fieldtheoretic or statistical me- 

chanical calculations (block level) may in general differ 
from those accessible to macroscopic thermodynamic ex- 
periments (ensemble level). Particular examples are the 
staggered magnetization for antiferromagnets or the 
quantum mechanical wave function. Applying the same 
limit theorem as in the previous section now gives the 
fieldtheoretic finite size scaling result 

( "(MDN'] ~ ']  (4.10) Py~(x )~H x; ~y,~y,O,D \D(M)J / 

for the limiting probability distribution function of en- 
semble sums in the ensemble limit. Using (2.13) and going 
over to averages the finite size scaling form for the prob- 
ability density of ensemble averages is found as 

\ a l  ; 

~ r ,  ~r, 0, D '  --  A 

(4.11) 

which is exactly of the form (1.3) with d*=0.  Thus the 
validity of (2.13), which has to be established by inde- 
pendent calculation, implies the validity of hyperscaling. 
Note that the fieldtheoretic finite size scaling result (4.11) 
appears to be different from the thermodynamic one (4.4) 
in that it depends on L/~. It will be seen below however 
that the two forms are generally identical except for 
~ x = 2 .  

C. Hyperscaling and the structure 
of the Gaussian fixed point 

To establish the connection between thermodynamic fluc- 
tuation exponents ~ x  and field-theoretic correlation ex- 
ponents ~ r it is necessary to compare the scaling results 
(4.4) and (4.11). Note that (4.4) holds generally by virtue 
of the ensemble limit while the validity of (4.11) depends 
upon the validity of (2.13). The connection between ther- 
modynamics and statistical mechanics is generally given 
by identifying - k T log ~7 with the free energy or, in the 
microcanonical ensemble, by inverting the logarithm of 
the density of states to give the internal energy as function 
of entropy. Thus the identification rests upon the iden- 
tification of microscopic and macroscopic energies. In 
fact the energy is the only observable which will always 
exist microscopically and macroscopically for thermal 
systems because it is a defining property of the system, 
and generates the thermal fluctuations of interest. Thus 
the connection between thermodynamics and statistical 
mechanics in the present probabilistic approach is pro- 
vided by identifying (4.4) for X = ~ with (4.11) for Y= H. 
This yields the algebraic form 

D ( M ) = M , - ( I / ~ ) (  D'A(N) ) ~/~ 
DA (MN) (4.12) 

for the energy renormalization. Comparison with (2.13) 
and (4.6) gives the identification (first obtained in [21, 22]) 
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N g . = m i n ( 2 ,  d ) = m i n ( 2 , d v )  
d - d ~  

=rain(2,  2 - c Q  (4.13) 

where v = v g, is the correlation length exponent, and 
c~=a~, is the specific heat exponent. Thus (4.12) and 
(4.13) combined with the general relation [9] 

2 - a x  _ 2 - a t  

V X Y y  
(4.14) 

establish the general validity of hyperscaling for all mi- 
croscopically and macroscopically accessible observables 
whenever the specific heat exponent is positive. Therefore 
the hyperscaling relation 

d 

= min (2, dvx)  = rain (2, 2 - ex)  (4.15) 

holds for all phase transitions with a > 0. This result is 
a direct consequence of identifying thermal fluctuations 
in thermodynamics with those in statistical mechanics or 
field theory. 

The violation of hyperscaling above four dimensions 
in field theory is now a simple consequence of the re- 
normalization group eigenvalues y ~ = l / v ~ = 2  and 
y ~ = l / v ~ = ( d + 2 ) / 2  for the Gaussian fixed point. 
Equation (4.13) implies N ~.=2 at d = 4 .  

Of course the present theory does not allow to con- 
clude that hyperscaling is generally violated for a =< 0. In 
fact very often hyperscaling continues to be valid in such 
cases. To see how this is possible it is instructive to con- 
sider the domains of attraction for the stable laws ap- 
pearing in the finite size and finite ensemble scaling for- 
mulas. Within the present approach the fact that only 
stable distributions have nonempty domains of attraction 
[28] is the reason for the existence of fixed points in the 
renormalization group picture and for universality of crit- 
ical behaviour [35]. It is well known [27, 28] that the 
domain of attraction for gaussian and nongaussian fixed 
points is very different. 

The existence of the limit distribution in (4.2) for the 
correlated ensemble sums implies by virtue of (2.18) and 
(2.19) that the limiting distribution of the correlated block 
sums 

PxM~j (x) = Prob { X M N  (~0 (yj)) ~ X} (4.16) 

must approach a distribution within the domain of at- 
traction of the stable distribution (4.2) for all blocks 
j = 1,..., N. In order that a distribution PX~Ni (X) belongs 
to the domain of attraction of the stable law with index 
0 < Nx < 2 and parameters ~x, D it is necessary and 
sufficient [28] that, as I x I --* Go, 

~c_A ( -x)(-x)-~x:  
PxMNj (X) = (. 1 -- e + A (x) x -  ~-~ : 

for x < 0  
(4.17) 

for x > 0  

where A (x) is slowly varying and the constants c_,  
c+ >0 ,  c 4-c+ > 0 are related to the parameters Nx ,  
(x ,  D by 

C• = 

D cos (o01 ~x) 
(1 -T- cot (co 1) tan (o) 1 ~x)) : 

2F(1 - Nx) cos (ool) 

for 0<  Nx < 1 
D 
~- cos (~ (x/2) (1 -T- cot (o) 1) tan (n (x/2)) : 

D (1 - Nx) cos (o92 (x) 
2F(2-- Nx) cos (co O 

for Nx = 1 

(1 T cot (o01) tan (o0 2 ~x)) : 

for 1 < N x < 2  
(4.18) 

with ~Ol=rc~x /2  and o)2=rc ( 2 - N x ) / 2 .  For N x = 2  
on the other hand the domain of attraction is much larger. 
A distribution PXMNS (X) belongs to the domain of at- 
traction of the Gaussian if it has a finite variance or if, 
for x > 0, 

1 - PxM~j (x) -4- Px~Ny ( - x) = x -=A  (x) (4.19) 

where A (x) is slowly varying. 
Equation (4.17) implies that for Nx < 2 the general- 

ized susceptibility which is proportional to the second 
moment of the renormalized block variables 

oe=  lim ~ x2dPxMNj(x)'~Xx x (4.20) 
m,N~oo --or 

diverges in each block j = 1 .. . . .  N. For Nx = 2 on the 
other hand the second moment may either diverge or else 
it is finite and nonzero. (A zero value occurs only away 
from the critical point.) This result underlines the general 
validity of the algebraic form (2.13) derived in (4.12) for 
nongaussian fixed points, i.e. N ~ < 2, which then implies 
the validity of hyperscaling. The Gaussian fixed point 

~-- 2 on the other hand has a much larger domain of 
attraction. In particular it contains both distribution 
functions with algebraic tails and distributions without 
algebraic tails. No general conclusion about the validity 
or violation of hyperscaling can be drawn in the present 
approach for the Gaussian fixed point. 

V. Relation with general scaling theory 

The results of the previous section are closely related 
with the general classification theory of phase transitions 
[18-23], the probabilistic approach in the theory of criti- 
cal phenomena [34-36], and finite size scaling theory for 
the order parameter distribution [7]. The relation with 
the general classification theory of phase transitions 
[21,22] has already been given above. The relation with 
the probabilistic approach to critical phenomena [35] is 
that scaling and universality are obtained probabilisti- 
cally from stability and nonempty domains of attraction 
for stable distributions. The difference to [34-36] is that 
in those works the usual scaling limit of the measure 
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p (~0, a, L , /7)  is studied instead of the much simpler dis- 
tributions appearing in the ensemble limit. Similarly the 
differences with finite size scaling theory of the order 
parameter distribution [7] arise from the difference be- 
tween the finite size scaling limit and the ensemble limit. 

The relation with the renormalization group scaling 
theory of critical points [37] is provided by the identifi- 
cation (4.15) relating the thermodynamic fluctuation ex- 
ponents to the field theoretic correlation exponents, i.e. 
by hyperscaling. The present theory considers only rele- 
vant operators by virtue of the general inequality 
Nx > 0. Note that marginal operators correspond for- 
mally to Nx--*--0% not to N x ~ 0 .  The influence of 
irrelevant operators is reflected in the general presence 
of a slowly varying function A (x) in all scaling relations. 

The traditional classification into irrelevant (IO), mar- 
ginal (MO) and relevant operators (RO) can be extended 
by three additional distinctions. The first refinement is 
into equilibrium (ERO) and anequilibrium relevant op- 
erators (ARO) according to YERO < d for equilibrium rel- 
evant operators and YARO > d for anequilibrium relevant 
operators. ARO's are readily constructed from ERO's 
and are well known to occur in many models. Examples 
are non-primary operators in conformal field theory [17], 
the energy and order parameter in anequilibrium phase 
transitions [21, 22], high gradient operators in the O (n) 
nonlinear a models [38, 39] or the hierarchical shell num- 
ber modes in shell models for turbulence [40]. An intrigu- 
ing formal analogy exists between the random local events 
building up a multifractal measure and equilibrium rel- 
evant operators [41]. 

A second ' refinement of the traditional classification 
is to distinguish between gaussian and nongaussian rel- 
evant operators. A relevant operator X is called gaussian 
if Yx < d/2 and nongaussian if Yx > d/2. By virtue of the 
duality law [281 

h(x; N x ,  ~x, O, 1) 

= x - l - m x H ( x - m x  ; 1 / ~ x ,  ~ ,  0, 1) (5.1) 

where ffJc= ~' (Nx,  ~x) an additional third distinction 
is expected for operators with Yx < 2 d as compared to 
those with Yx >= 2 d. The precise nature of this distinction 
remains to be explored. 

The new extended classification of the spectrum of 
critical operators may (in obvious notation) be summa- 
rized by the inequalities 

Yro < 0 = YMO < YGERO ~ d/2 < YNERO 

=< d < YARO1 ~ 2 d < YARO2 (5.2) 

in which the relevance increases from left to fight. 

VI. Scaling functions 

This section discusses how the general theory above may 
be used to obtain finite size scaling functions at the critical 
point. 

The finite size scaling function fix (x, y) for the prob- 
ability density p (x, ~, L) of the observable X is defined 
through an equation analogous to (1.3) by 

p (x, L, ~) = L a(ax- a*)l(a- a*) 

• (6.1) 

where d x is the anomalous dimension of X. The ensemble 
limit yields explicit analytical expressions for the scaling 
functions fix (x, y) at the critical point. This is seen from 
(4.11) as well as from (4.4) which become identical in the 
ensemble limit if Nx < 2. If X is identified as the mac- 
roscopic (thermodynamic) equivalent of the microscopic 
observable Y then it follows from (4.4) and (4.11) that 
the finite ensemble scaling functions are given as 

tiES (x,y)=fi~S (x , y )=h(x ;  Nx ,  r D) (6.2) 

if 1 < Nx < 2. The superscript is a reminder for the en- 
semble limit. The point N x =  1 corresponding to first 
order transitions is singular and will not be discussed 
here. For Nx = 2 on the other hand the thermodynamic 
form (4.4) yields a simple Gaussian while the fieldtheo- 
retic form (4.11) gives 

1 
ff~c s (x, y) -- ]/4nDy2a~:_a 

x 2 
•  (6.3) 

This is the scaling function conjectured in [7] for the order 
parameter density on the basis of a Gaussian approxi- 
mation. Note that this scaling function, contrary to those 
for N x < 2, does depend on the variable y separately. 
Note also that the order parameter generally has anom- 
alous dimension d e < d/2 and thus this scaling form for 
the order parameter distribution is expected to arise in 
the vicinity but not directly at the critical point. 

Another source for the dependence of the scaling 
function f i~(x,y)  for the order parameter distribu- 
tion on y is the appearance of the nonuniversal cutoff 
function R in the finite size scaling limit of equa- 
tion (3.18). With equation (3.18) and introducing the 
abbreviatons R (x, L /~ )  = R (x, oo, (L/~)a, oo), h (x) = 
h(x; Nx ,  ~x,O, D) and H ( x ) = H ( x ;  Nx ,  fix, 0, D) the 
analogue of equation (6.2) reads 

/ ~ s s  (x, y) = 

. . . .  aR(x ,y)  

I 
R ( x , y ) h ( x ) •  ~ - -  : 

for x < 0  

= Q R(x,  y ) h ( x ) - ( 1 -  H(x)) ~3R~ Y) : 

for x > 0  

(6.4) 

for the finite size scaling limit. Thus it is seen that the 
finite ensemble scaling function h corresponds to the uni- 
versal part of the finite size scaling function which is 
independent of y while the cutoff function R is respon- 



sible for the dependence on y and adds a nonuniversal 
part. 

The analytical expressions (3.5) and (3.12) for the uni- 
versal part of  critical finite size scaling functions can be 
employed to evaluate the scaling functions numerically. 
In this effort the symmetry relation [28] 

h ( - x ,  Nx ,  (x,  O, 1 ) = h ( x ;  N x  - ~x, 0' 1) (6.5) 

reduces the computational effort. Moreover equation 
(6.5) suggests a relation with the phenomenon of spon- 
taneous symmetry breaking within the present approach. 
In this view the two scaling functions H(x; Nx,  
-+ ~x, 0, 1) represent the two pure phases, and thus on 
general thermodynamic grounds the full scaling function 
is expected to become a convex combination 

fix (x) = fi~s (x, y) = sh (x; Nx ,  ~x, 0, D) 

+(1  - s ) h ( x ;  Nx ,  - (x,  O, D) (6.6) 

of two extremal phases. The relation may be generalized 
to several phases or asymmetric situations. 

Consider now an ordinary critical point with a global 
symmetry such as in the Ising models. Let X =  T be the 
order parameter which is assumed to be normalized such 
that D =  1. Then N x  becomes N~,=  1 + ( l / O )  where O 
is the equation of  state exponent. Abbreviating ~ ,  as 
the scaling function in (6.6) becomes 

~ , ( x ; 5 , ~ , s ) = s h  x ; l + ~ - ,  ~,0,1 

( ' ) + ( 1 - s ) h  x ; l + ~ - , - ~ , 0 , 1  . (6.7) 

For  the symmetric case s = 1/2 the function p~, (x; O, r s) 
is displayed in Figs. 2, 3 and 4 for O = 3, 5, 15 and several 
choices of ~. The symmetrization s = 1/2 in (6.7) corre- 
sponds to an "equal weight rule" which is known to apply 
for first order transitions [42]. Figure 2 shows the case 

= 3 which is the value for the universality class of mean 
field models. The six values for r in Fig. 2 through 4 are 
~=0.0 ,  0.6, 0.7, 0.8, 0.9, 1.0. The case r  1.0 corre- 
sponds to the double peak structure With the widest peak 
separation while the value r = 0.0 corresponds to the sin- 
gly peaked function whose maximum has the smallest 
height. Figure 3 shows the case 5 = 5 which is close to 
the value of  fi ~ 4.8 [ 16] for the threedimensional Ising 
model. The value O = 15 in Fig. 4 is the value for the two 
dimensional Ising universality class. 

The scaling functions displayed in Fig. 2 through 4 are 
consistent with published data on critical scaling func- 
tions [7, 43, 44]. Moreover it is seen that the universal 
shape parameter ~ is related to the type of  boundary 
conditions. Free boundary conditions apparently corre- 
spond to smaller absolute values of the universal shape 
parameter ~ than periodic boundary conditions. This cor- 
respondence between the value of ~ and the applied 
boundary conditions is not expected to be one to one. 
The value of  ~ may be influenced by other universal 
factors such as the type or symmetry of the pure phases. 
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Fig. 2. Universal part of the finite size scaling functions/~(x; 3, 
~, 1/2) for the order parameter probability density function for the 
mean field universality class corresponding to 5 = 3 for the equa- 
tion of state exponent (or N~= 1 + (1/5)=4/3). All curves have 
width D= 1, and symmetrization s= 1/2. Different curves corre- 
spond to different choices of the universal symmetry or shape pa- 
rameter ~=0.0, 0.6, 0.7, 0.8, 0.9, 1.0. The curves for ~=0.0 and 

= 1.0 are labelled explicitly, the curves for other values of ~ in- 
terpolate between them 
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Fig. 3. Same as Fig. 2 with 5=5 close to the d=3 Ising (5~4.8) 
universality class 
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Fig. 4. Same as Fig. 2 with 5 = 15 corresponding to the d=2 Ising 
universality class 
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Fig. 5. Comparison between the scaling function/~ (x; 15, 1, 1/2) 
(solid line) for the order parameter density of the two dimensional 
Ising universality class (&= 15) with a smoothed interpolation 
through the simulation results of [43-45], (open circles) under the 
assumption that [ ~ ] = 1 corresponds to periodic boundary condi- 
tions 

On the other hand the boundary conditions may also 
influence other parameters such as the value of  the sym- 
metrization s. This is expected for boundary conditions 
which do not preserve the symmetry. 

Figure 5 shows that the scaling functions are not 
merely consistent but also in good quantitative agreement 
with Monte-Carlo simulations of the twodimensional Is- 
ing model [43-45] where the exact value of & and the 
location of the critical point for the infinite system are 
known. The open circles in Fig. 5 represent the smooth 
interpolation through the data published in [43-45]. The 
solid line is the analytical prediction shown in Fig. 4 for 

= 1. For the comparison the nonuniversal scaling fac- 
tors which were chosen to yield unit norm and variance 
in [43-45] were matched to those of the theoretical curve. 
The excellent agreement between theory and simulation 
suggests to identify [ ~l = 1 with periodic boundary con- 
ditions. It is however not clear whether this identification 
will hold more generally. 

VII. Amplitude ratios 

This section discusses universal amplitudes such as those 
defined in (1.6) and their ratios. In numerical simulations 
of critical phenomena amplitude ratios such as (1.7) are 
used routinely to extract critical parameters/7~ and ex- 
ponents from simulations of finite systems. It is then of 
interest to analyze finite size amplitude ratios within the 
present framework. 

The absolute moment of order cr for the ensemble 
averages of X in a finite and noncritical system is found 
from equations (4.4) and (3.16) as 

<lXl >= I x l ' ~ p ~ ( x ) d x  (7.1) 
-oo 

_ (A ((L/a)a)) ~ X(a" a, g, L) (7.2) 
(L/a)aaO-(1/~,)) 

where the amplitude J~(cr; a, g, L)  of the finite, discrete 
and noncritical system is given as 

X ( a ; a ,  g , L ) =  

= S Ixl 'h(x; (x ,0 ,  D) 
-co 

( x (A  . g L aL ) 
•  (L/a)d_(d/~x> ' a '  g '  g 2 _ d x  (7.3) 

and the function r(x; l/a, L / l ,  aL/g 2) is defined from 
(4.7) by replacing ~g with X and extracting a factor 
h(x; Nx,  ~x,O,D) �9 In the ensemble limit one obtains 
from this and (3.17) the result 

J~Es(O-) = lira J~(cr;a, g ,L)  
M,N--+ cx) 
N / M  = c 

oo 
= I Ixl %(x; mx, ~x,O,D) dx (7.4) 

- o o  

for the critical ensemble scaling amplitude of order o- in 
an infinite system. The subscript is again a reminder for 
the ensemble scaling limit. The integral in (7.4) can be 
evaluated for D = 1 as 

Y(zs (c r ) -  2 / "  (cr)F ( 1 -  ~ x  ) ~ z  sin (~z /2 )  

( ~ c C r ~ x ( ~ x -  2) xcos \ ) ,  (7.5) 

which is valid for - 1 < R e a  < ~ x ,  1 < Nx < 2 and 
- 1  < ~x < 1. A derivation of this result is given in 
Appendix B. This allows to calculate the general moment 
ratios 

g(O'l,O'2; ~ X ,  ~ x ) =  lim ( [ X [ ~ ' )  

N / M = c  

YEs ( O O 
= ()~Es (cr2)) ~1/~ (7.6) 

with - 1 < o" 1 , 0" 2 < ~X in the ensemble limit. Figure 6 
shows a twodimensional plot of the ratio g(3/4,  1/4; 
~x,  ~x). 

If  (7.5) is used to analytically continue g(al,a2; 
Nx,  fix) beyond the regime - 1  < a 1, 0-2< %x the 
traditional fourth order cumulant g (4, 2; N ~,, ~ ~,) for the 
order parameter is found to exhibit special problems if 

~, < 2. This is mainly due to the presence of the factor 
sin(re,r/2) in (7.5). The divergence must somehow be- 
come absorbed by the cutoff factor r (0; oe, c, 0) in the 
finite size scaling limit. Assuming that this is indeed the 
case it is then of interest to consider the quantity 

gFSS (O'1' O"2; ~ X '  ~X) 

= lim (sin(~za2/2))~l/~ (7.7) 
L,r sin(rccr,/2)flxl'~2) "`/'~- 
L/r =r 
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Fig. 6. The moment ratio g(3/4, i/4; ~x, (x)= 
<IX] 3/4>/<1X11/4>3 as a function of the critical exponent Nx and 
the universal shape parameter ~x 

in the finite size scaling limit assuming that  it exists. Then 
the traditional finite size cumulant becomes 

gFSS (4, 2; N x ,  ex)  

V 1-- cos(27rCx(~x-2)/~x)  
= 3 ~ (7.8) 

The interest in this formal expression is that  it is still 
singular. Within the domain 1 < N x  < 2, - 1 < ex < 1 
it has simple poles along the lines 

N x = 4  (7.9) 

4 Cx 
~ x - 2  ~x--- 1 

and zeros along the lines 

8 r 

N x - 4  r 1 (7.10) 

8 (x 
Nx-4(x+_3 

For  the traditionally studied order parameter  cumulant, 
i.e. setting X =  g', the pole at 4 /3  implies a divergence 
whenever 6 = 3, i.e. in mean field theory. This result is 
consistent with the divergence g~ (0)oct/-~ found in con- 
formal field theory [17]. Note  that the points ( =  _ 1/2 
along the singular mean field line N ~, = 4/3  are intersec- 
tion points with a line of  zeros. 

Irrespective of  these problems it is of  interest to esti- 
mate values for the traditional order parameter  cumulant 
ratio goo (0) because much previous work has focussed 
on it. Within the present approach this is possible from 
the knowledge of the scaling functions if it is assumed 
that the identification of ~ = 1 with periodic boundary 
conditions holds generally. I f  the scaling functions 
with ~- -1  in Fig. 2 through 4 are simply truncated 
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Fig. 7. Plot of goo(0) calculated by truncating fi~,(x; 6,1,1/2) 
at _+ xm~ and choosing the scale factors to give unit norm and 
variance. Solid arrows indicate numerical estimates from Monte- 
Carlo simulations on Ising models as goo (0) = 1.168 +_ 0.002 for 
d=2 [43], goo(0)=1.59_+0.03 for d=3 [16] and g~(0)=2.04 
_ 0.05 for d= 5 [46]. The dashed arrow represents the analytical 
result g~o (0) = 2.188... from [ 15] 

sharply at _ x . . . .  and subsequently rescaled to unit norm 
and variance, the order parameter  cumulant g~ (0) may 
be calculated as usual, and it will depend upon the non- 
universal cutoff  at Xma x, The results of  such a cutoff  pro- 
cedure are displayed in Fig. 7 for the cases 6 = 3, 5, 15. 
It  is seen that the cumulant  is distinctly cutoff  dependent. 
Note  that all curves appear  to diverge as the cutoff  in- 
creases. For  the cases 0 = 3 and & = 5 some structure 
appears between Xma x = 2 and 3 corresponding to the 
strong curvature in this region seen in Figs. 2 and 3. For  
the 2d-Ising case the curve is flat up to about  twice the 
maximal value 1.39 for the simulations of  Bruce and co- 
workers [43, 45]. Figure 5 provides a possible explanation 
for the poor  agreement between the value g ~ ( 0 ) =  
2 .042_ 0.05 observed in simulations of  the fivedimen- 
sional Ising model [ 11, 46] and the mean field calculation 
g~ (0) = 2.188. .. f rom [15]. The simulation result is in- 
dicated as the solid arrow, the analytical result as the 
dashed arrow pointing to the curve 0 = 3. The small dif- 
ference in the cutoff  Xm~ x corresponding to these values 
suggests that the discrepancy may result f rom different 
nonuniversal (but most  likely smooth) cutoffs in the two 
estimates. 

Finally, the fact that the value of  the universal shape 
parameter  ~x appears to be related to the choice of  
boundary conditions suggests a method of constructing 
critical amplitude ratios which do not depend on bound- 
ary conditions, or other factors influencing ~x. The basic 
idea is to use the difference of  two independent obser- 
vations of  ensemble averages or sums. Let XMN and 
X/l/IN be two independent measurements and YMN = 

XMN--X~N their difference. The limiting distribution 
function PXMN (X) for XMN and Xi~ N at criticality is given 
in (4.2). Then the difference YMZV has the distribution 
function 

PrMN(X),~H(x; ~x,  O, O, 2DD~v) (7.11) 
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in which the width is doubled, but ~x has disappeared. 
The fractional difference moment ratio A (o-1, a2, Nx)  is 
formed analogously to the moment ratio g as 

([ YMNI ~1) 
A (o.1,  0"2, ~ J X )  - -  (I r ~ l ~ )  ~'/~ 

(2/1r) F (1 -- (o- 1 / Nx))  F(o-1) sin (rco- 1/2) 

-- [(2/rr) F(1 -- (o-2/Nx))F(o-2) sin (~ro-2/2)] ~ d ~  
(7.12) 

and it has a universal value depending only on the scaling 
dimension of X as long as o.a, o.2 < ~ X "  If  the scaling 
dimension is universal then the fractional difference mo- 
ment ratio is independent of boundary conditions. Plot- 
ring A (a~, o.2, Nx)  as a function of length scale and tem- 
perature should then allow to extract the critical expo- 
nent. 

The author is grateful to Dr. N.B. Wilding for providing him with 
the data of [44, 45], and to Prof. Dr. K. Binder, Dr. B. Dfinweg and 
Dr. G. Schreider for useful discussions and critically reading the 
manuscript. 

Appendix A: Definition of H-functions 

The general H-function is defined as the inverse Mellin 
transform [32] 

t / [(al,AO...(ae,Ae) ~ Hy~ z t, I(b~,BO...(be,Be)) 
n 

1 f i  F(bj-Bjs) ]~ F(1-aj +Ajs) 
--21ri ~ Qj=I j = l  P zSds 

I~ F(1-bs+Bjs) ]-[ F(as-Ajs) 
j=m+l j=,+l (A1) 

where the contour ~ runs from c -  ioo to c + ioo sepa- 
rating the poles of F (bj - Bj s), (j  = 1,..., m) from those 
of F (1 - a s + A s s), (j = 1 ..... n). Empty products are in- 
terpreted as unity. The integers m, n, P, Q satisfy 
0 _< m _< Q and 0 _< n _< P. The coefficients A s and Bj are 
positive real numbers and the complex parameters as, b s 
are such that no poles in the integrand coincide. If  

n P m 

s Z A s -  ~, Aj+ Z B-i 
j = l  j = n - ? l  j = l  

Q 

- ~, B j > 0  (A2) 
j = m + l  

then the integral converges absolutely and defines the H- 
function in the sector l argz] < ~2zc/2. The H-function 
is also well defined when either 

Q P 

= Z Bj--  ~, A j > 0  with 0 <  I zl < o o  (A3) 
j = l  j = l  

o r  
P Q 

= 0 a n d  0 < I z I < R = 1 - I  A f  ~' 1-I Bye. (a4) 
j = l  j = l  

The H-function is a generalization of Meijers G-function 
and many of the known special functions are special cases 
of it. 

Appendix B: Derivation of (7.5) 

By virtue of the symmetry relation (6.5) the integral in 
(7.4) may be written as 

Ixl~h(x ., ~, ~,o, 1)dx 

=~ x~ ~,  ~,0, 1)dx 
o 

+ ~ x~ h(x; ?~, - r~,O, 1)dx.  (B1) 
0 

The definition (A1) implies the general formula [32] 

~ x  ~-1H~m~ (ax (a"A1)"'(ae'Ae)'] dx 
o (b,, B 1 )... (bQ, BQ) / 

m n 

]-~ F ( b j + B j s )  ~~ F ( 1 - - a j - - A j s )  
= a - S  j= l  S=l (B2) 

Q P 

]-[ F(1-bj - -Bjs)  ~-[ r(aj+Ass)  
j = m + l  j = n + l  

by virtue of the Mellin inversion theorem. Specializing to 
the case at hand 

~ x'~h(x; ~,  ~,0, 1)dx 
0 

~' ( ( 1 - 1 / ~ , l / N ) ( 1 - p , p ) ' ] d  x (B3) _ 1 ~x,~H11 x (0 ,1)  ( l - - p , p ) /  
o 

_ F ( o . +  1 ) r ( - o . / N )  (B4) 
~ F ( 1  + p a ) F ( - - p a )  

1 ~ 
where P -  2 ~ q-~. Using F ( x ) F ( - - x ) =  
-7 r / (x s in  (Trx)) and the functional equation for the F- 
function gives 

S x~ ~,  ~,0, 1)dx 
0 

which inserted into (B 1) readily yields the desired result 
(7.5). 
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