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Abstract

Analytical representations in the time and frequency domains are derived for the most frequently used phenome-
nological fit functions for non-Debye relaxation processes. In the time domain the relaxation functions corresponding
to the complex frequency dependent Cole-Cole, Cole-Davidson and Havriliak—Negami susceptibilities are also rep-
resented in terms of H-functions. In the frequency domain the complex frequency dependent susceptibility function
corresponding to the time dependent stretched exponential relaxation function is given in terms of H-functions. The
new representations are useful for fitting to experiment. © 2002 Elsevier Science B.V. All rights reserved.

PACS: 77.22.Gm; 61.20.Lc; 71.55.Jv; 67.40.Pf; 78.30.Ly

Analytical representations of relaxation func-
tions in the time domain and susceptibilities in the
frequency domain are important to fit experi-
mental data in a broad variety of experiments on
glass-like systems. Dielectric spectroscopy, visco-
elastic modulus measurements, quasielastic light
scattering, shear modulus and shear compliance as
well as specific heat measurements all show strong
deviations from the normalized exponential Debye
relaxation function

f () = exp(—t/1), (1)
where 7 is the relaxation time [1]. All relaxation
functions in this paper are normalized to f(0) = 1.

Relaxation in the frequency domain is described in
terms of the normalized complex susceptibility
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where u = —iw, o is the frequency, y(w) is a dy-

namic susceptibility normalized by the corre-
sponding isothermal susceptibility, y, = lim,_o
Rey(w) is the static susceptibility, y. = lim, .o
Rey(w) gives the ‘instantaneous’ response, and
L{f(¢)}(u) is the Laplace transform of the relax-
ation function f'(¢). For the exponential relaxation
function this leads to
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i.e. the well-known Debye susceptibility.

Most generalizations of Egs. (1) and (3) for
glasses and other complex materials are obtained
by the method of introducing a fractional ‘stretch-
ing’ exponent. In the time domain this method
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leads to the ‘stretched exponential’ or Kohlrausch
relaxation function given as

f(t) = exp[=(1/7)"] (4)

with fractional exponent f [2]. Of course all for-
mulae obtained by the method of stretching
exponents are constructed such that they reduce
to the exponential Debye expression when the
stretching exponent becomes unity. Extending the
method of stretching exponents to the frequency
domain one obtains the Cole-Cole susceptibility

3]
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the Davidson—Cole expression [4]
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A(w) = W (6)
or the combined Havriliak—Negami form [5]
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as empirical expressions for the experimentally
observed broadened relaxation peaks. Most sur-
prisingly, the analytical transformations between
the time and frequency domain for general values
of the parameters in these simple analytical ex-
pressions seem to be largely unknown [6], and
authors working in the time domain usually em-
ploy the stretched exponential function while au-
thors working in the frequency domain use the
stretched susceptibilities. An exception are the re-
sults in [7] where the real and imaginary part of the
elastic modulus were obtained for Kohlrausch re-
laxation. Note however that there is a sign error in
the real part in the results of [7]. It is therefore the
purpose of this short communication to rederive
expressions for the Kohlrausch susceptibility in the
frequency domain. Secondly the same methods are
used to obtain for the first time the relaxation
function corresponding to the Havriliak—Negami
susceptibility (and hence also the Cole-Davidson
and Cole—Cole susceptibilities) in the time domain.
It is hoped that these expressions will be useful for
facilitating the fitting of experimental data.

The objective of this paper is achieved by em-
ploying a method based on so called H-functions
[8]. The H-function of order (m,n,p,q) € N* and

with parameters 4, ¢ R, (i=1,...,p), B, € R,
i=1,...,9), a,€C (=1,...,p), and b;€C
(i=1,...,q) is defined for z € C, z # 0 by a con-

tour integral in the complex plane [8,9]

mn (alaAl)a‘“v(avap)
H =
P4 (Z (b1,B)), ..., (b, B,)
1 —S
=24/, n(s)z*ds, (8)

where the integrand is

(s) . HZ":l F(bi + B,-s) H:’:I F(l —4a; — A,-s)
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In Eq. (8), z—* = exp{—slog|z| —iargz} and argz
is not necessarily the principal value. The integers
m, n, p, ¢ must satisfy

0<m<gq, 0<n<p, (10)

and empty products are interpreted as being unity.
For the conditions on the other parameters and
the path of integration the reader is referred to the
literature [8] (see [10, p. 120ff], for a brief sum-
mary). The importance of these functions for
glassy relaxation arises from the facts that (i) they
contain most special functions of mathematical
physics as special cases and (ii) their Laplace
transform is again an H-function. Moreover they
possess series expansions that are generalizations
of hypergeometric series.

Based on the convenient properties of H-func-
tions it is possible to derive time and frequency
domain expressions for all non-Debye relaxation
functions and suceptibilities. The results of the
calculations are summarized in the tables below.
Table 1 gives H-function representations for all
relaxation functions in the time domain. Table 2
gives the corresponding power series for all relax-
ation functions for small and large times. Table 3
summarizes H-function representations for the
susceptibilities in the frequency domain, and Table
4 gives their power series expansions. Note that
those power series where the domain of validity is
given by a limit are asymptotic series. In these
tables the notation



124

Table 1
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H-function representation for the normalized relaxation functions (f(0) = 1) with relaxation time t

70 H-functions

Debye exp(—1/7) Hy? (f (_0,1)>

Kohlrausch exp(~(1/75)") &?((%ﬂ ﬁ‘ (_071)>
Cole-Cole Ey(—(t/1.)") Hyy ((‘ 1 Egj&o, ac))
Cole-Davidson F(?(iti/;) O L <* 8 11))(0,1)>
Havriliak—Negami =5 His (H 8 11)>(0,oc)>

Table 2
Series expansions for normalized relaxation functions (f(0) = 1) with relaxation time t
£ Series
o (=DF ok
Debye exp(—1/1) Z;{:o% (;) t/1 < o0
exp(~(t/7) o0
k Bk
. _ ] o (1) (1t t/tp < 00
Kohlrausch exp(—(t/15)") oo T 1) (r,;)
t
exp(~(1/%)) frnee
M (— 1)k 1% /1, < 00
Cole-Cole E,(—(t/7,)") S P )( )
W (CDF e
Zk:l F(l _ O(k) E /rd o0
- r(yt/t) L oo (=" AN t/t, < 00
Cole-Davidson o) 757 2kt (k+y)(k+1)\5,
exp(~1/7) ( ) S ) { } } 1/, = o0
1+ y—J)|— /
T \g ,; ]1_[
Havriliak—Negami 1 Z (=1 (k+ ) {L} e t/ty < 00
F(/ ¢ (oak + oy + D) (k+1) |t
1 o) (_I)H»lr(k + V) t —ak
) 2 T — )T + 1) \ow ## 1t =00

Series are asymptotic whenever its range of validity is given as a limit.

I'(a,x) = / y e dy

denotes the complementary incomplete I" function,

and the abbreviation

(11)

E,(x)

short h

_i xt
- £~ T'(ak +1)

and notation

(12)

is the Mittag—Leffler function. In addition the
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Table 3
H-function representations for the normalized frequency dependent complex susceptibilities (u = —iw)
7 (u) H-function
1 11 (07 1)
Debye e H| <ur 0.1)
Kohlrausch 1 — Hy(—(uzy)”) 1—Hl (ur )/f (L,1)
B B 11 B (1,p)
! 11 2| (0,1)
Cole—Cole TFeny H| <(ura) ©.1)
- 1 1 pgll (I=y1)
Cole-Davidson Truy o Hi | uty 0,1)
- . 1 A (1=7,1)
Havriliak-Negami 0T @y ol <(urH) 0,1)
Table 4
Series representations for the normalized frequency dependent complex susceptibilities (z = —iw)
2%(u) Series
Debye b S (=D (ur)* |uz| < 1
1 +ut k=0
= (=) )™ luz| > 1
Kohlrausch 1 — Hy(—(uzp)") 1-3, ﬁ{ WD) () |uzg| — 0
=3, ﬁkﬂ) (uzy) ™ |utg| >0
1
Cole-Cole Ty Seco(—1) (ur,()“" lut,| < 1
= (=1 () Y lua| > 1
. 1 k
Cole-Davidson vy Yicor 1/)), H])) (uz,)* uz,| < 1
oo (=D (k4 ~(kty
k=0 (1-({,))1{(2111/) ur,)” " luz,| > 1
Havriliak-Negami _ -3 w(urﬂ)yk luth| < 1
(1 + (uzn)")y k=0 I k+1)
k " okt
o i (wmn) 4 Juty| > 1

Series are asymptotic whenever its range of validity is given as a limit.

) = (| 1) (13
was introduced for writing the Kohlrausch sus-
ceptibility.

In summary the present paper has given unified
representations of non-exponential relaxation and
non-Debye susceptibilities in terms of H-functions.
These representations lead to computable expres-
sions that can be used to investigate the relations
between the Kohlrausch susceptibility and other fit
functions [11]. It is hoped that the H-function

representations given here will help to facilitate the
computational transformation between the fre-
quency and time domain in theoretical consider-
ations and experiment.

References

[1] R. Bohmer, K. Ngai, C. Angell, D. Plazek, J. Chem. Phys.
99 (1993) 4201.

[2] G. Williams, D. Watts, Trans. Faraday Soc. 66 (1970) 80.

[3] K. Cole, R. Cole, J. Chem. Phys. 9 (1941) 341.



126 R. Hilfer | Journal of Non-Crystalline Solids 305 (2002) 122-126

[4] D. Davidson, R. Cole, J. Chem. Phys. 19 (1951) 1484. [8] C. Fox, Trans. Am. Math. Soc. 98 (1961) 395.

[5] S. Havriliak, S. Negami, J. Polym. Sci. C 14 (1966) 99. [9] A. Prudnikov, Y. Brychkov, O. Marichev, in: Integrals and

[6] F. Alvarez, A. Alegria, J. Colmenero, Phys. Rev. B 44 Series, vol. 3, Gordon and Breach, New York, 1990.
(1991) 7306. [10] R. Hilfer, Applications of Fractional Calculus in Physics,

[71 W. Glockle, T. Nonnenmacher, J. Stat. Phys. 71 (1993) World Scientific, Singapore, 2000.

741. [11] R. Hilfer, Phys. Rev. E (2002) in press.



