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We present an approximate solution for time (frequency) dependent response under conditions of dynamic percolation which 
may be related to excitation transfer in some random structures. In particular, we investigate the dynamics of structures where 
one random component blocks a second (carrier) component. Finite concentrations of the former create a percolation network 
for the latter. When the blockers are allowed to move in time, the network seen by the carriers changes with time, allowing for 
long-range transport even if the instantaneous carrier site availability is less than pc, the critical percolation concentration. A 
specific example of this situation is electrical transport in sodium 8”-alumina. The carriers are Na+ ions which can hop on a two- 
dimensional honeycomb lattice. The blockers are ions of much higher activation energy, such as Ba*+. We study the frequency 
dependence of the conductivity for such a system. Given a fixed Ba*+ hopping rate, l/7, the Na+ ions experience a frozen site 
percolation environment for frequencies w> l/7. At frequencies w< I /7, the Na+ ions experience a dynamic environment which 
allows long-range transport, even below pe. A continuous time random walk mode1 combined with an effective medium approxi- 
mation allows us to arrive at a numerical solution for the frequency-dependent Na+ conductivity a(o) which clearly exhibits the 
crossover from frozen to dynamic environment. 

1. Intruduction 

A mechanism of considerable importance for en- 
ergy, mass or charge transfer in solids is hopping 
transport [ 11. Examples include mixed crystals, metal 
hydrides, doped semiconductors, amorphous and 
glassy solids, and transition metal oxides. Most often 
systems exhibit disorder, usually assumed to be fro- 
zen, i.e. not time dependent. Here we investigate 
transport in systems with dynamic disorder. Specifi- 
cally, we investigate the dynamics of structures where 
one random component blocks a second (carrier) 
component. Finite concentrations of the former cre- 
ate a percolation network for the latter. When the 
blockers are allowed to move in time, the network 
seen by the carriers changes with time, allowing for 
long-range transport even ifthe instantaneous carrier 
site availability is less thanp=, the critical percolation 
concentration. As a specific case, we investigate the 
frequency dependence of the ionic conductivity in 
superionic solids containing two species of charge 
carriers. Our results are of a more general nature, and 
will apply to a large number of situations where ex- 

citation transport takes place in a dynamic 
environment. 

More specifically, in this paper we consider l3”-al- 
umina, a superionic conductor, well known for its 
ability to transport a variety of cations [ 2 1. The con- 
ductivity depends upon ion size, crystallinity, impur- 
ity content, stoichiometry, electrode material, and 
frequency. The structure of B”-alumina is highly an- 
isotropic with ion transport confined to the mirror 
plane. Mobile ions can hop between the Beevers-Ross 
(anti-Beevers-Ross) sites forming a twodimen- 
sional honeycomb lattice. We focus on Na+-B”-alu- 
mina where each hexagon in the honeycomb lattice 
is populated with five Na+ ions. Our interest in this 
material stems from the fact that the Na+ ions in 
Na+-B”-alumina can be readily exchanged with nu- 
merous other ions [ 3,4]. In the present case, two Na+ 
ions are substituted by a Ba*+ ion. Techniques for 
controlling substitutional ionic concentrations in g”- 
alumina are well developed [ 51, allowing the study 
of two-dimensional percolative transport. 

Doping of g” -alumina with two different ionic spa 
ties (e.g. Na+ and Ba*+ ) can be expected to produce 
interesting dynamical effects. The activation ener- 
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gies for these two ionic species are approximately 
[4,6] 0.35 eV for Na+ and 0.58 eV for Ba*+. At suf- 
ficiently low temperatures, only the lighter and 
smaller Na+ ions are mobile, while the Ba*+ are es- 
sentially frozen [ 4 1, blocking the Na+ ions from those 
sites occupied by Ba*+ ions. The sites available for 
Na+ ion occupancy thereby form a frozen two-di- 
mensional percolating network on a honeycomb lat- 
tice. At higher temperatures,. say room temperature, 
the Ba*+ are also mobile, and the network of sites 
available to the Na+ ions is no longer frozen. The Na+ 
ions, as our “test particles”, will experience a dy- 
namic environment because of the slower but finite 
Ba*+ ion motion. This situation will be termed “dy- 
namic site percolation”. 

Generally we distinguish between threekinds of 
“particles”: walkers (or test particles), blockers, and 
vacancies. For the particular system we are examin- 
ing, Na+-Ba*++“-alumina, the blocker (Ba*‘) 
concentration will be denoted by p. From the critical 
value 0.6962 for site percolation on the hexagonal 
lattice [ 71 the critical blocker concentration is here 
~~~0.3038. At pc, the requirement of charge neutral- 
ity (two Na+ ions exchange for one Ba*+ plus an un- 
charged vacancy) leads to a Na+ ionic concentration 
of x23%, considerably lower than the 83% in pure 
Na+-8” -alumina. The low sodium concentration has 
the advantage that Coulomb correlations between the 
(charged) test particles, and the concomitant inter- 
cluster polarization interaction, are minimized. Ex- 
periments to measure the conductivity of such 
systems are currently underway and have served as 
the motivation for this work [ 8 1. 

Let us begin by formulating the problem in terms 
of a master equation, and then go on to present the 
objectives and outline of our approach. Assuming in- 
dependent hopping migration for each of the carriers 
(Na+), we have 

Wr, 0 
- = Jr, [w,(~) W, 0 -wn,(t) P(r, 0 1 , 

dt 

(1.1) 

where the sum runs over the sites r’ that are nearest 
neighbours to site r. Here, P(r, t) is the probability 
to find a test particle at site r at time r, if it started at 
r= 0 at time c = 0. The transition rates w,. (t) from r 
to r’ are now time-dependent random variables, 
specified as 

w,,. (t) = w if site r’ is vacant at time t; 

= 0 if r’ is occupied by a blocker 

(Ba*+ ) at time t . (1.2) 

The stochastic process determining the w,,. (t) is the 
random walk of all blockers (Ba*+ ions), restricted 
by the excluded volume condition that two blockers 
cannot occupy the same site at the same time. 

Our objective is simply stated: we wish to calculate 
the frequency-dependent ionic conductivity of the test 
particle for this (dynamic site percolation) problem. 
We focus an the parameter regime where the concen- 
tration 1 -p of vacancies is bounded away from the 
percolation threshold, so that the corresponding cor- 
relation length is finite. The time scale 7 for blocker 
motion is taken to be much larger than the inverse 
local hopping rate of the test particles. Other regimes 
for r and p will be investigated elsewhere [ 9 1. We shall 
assume the blockers do not contribute to the conduc- 
tivity, and that the external field does not influence 
the motion of the blockers (i.e. the geometry of the 
dynamic environment is not affected by the time-de- 
pendent external field ) . 

We attack the problem by relating the conductivity 
of the dynamic problem (blocker hopping time, 7, fi- 

nite ) to that of the frozen case (blocker hopping time, 
7, infinite). This will be done in two steps. First, we 
discuss how large-scale cluster rearrangements influ- 
ence electrical conduction. Second, we include the 
fluctuations in the geometry experienced locally by 
the charge carrier. This program will be carried out 
using a continuous time random walk (CTRW) ap- 
proach for the dynamic problem, combined with an 
effective medium approximation (EMA) for the fro- 
zen case. Because we shall use the well-known single 
bond EMA [ 10,111 for the frozen case, we arc solv- 
ing the dynamic bond percolation problem, though 
the CTRW approach is in fact more general. 

Dynamic bond percolation, consistent with our 
microscopic model for 8”-alumina doped with Ba*+, 
can be defined as follows. A fraction p of bonds on 
the hexagonal lattice are occupied. These bonds now 
play the role of blockers: w,,. = 0 if the bond is occu- 
pied (see eq. ( 1.2 ) ). The bonds move by rotating an 
angle of 120” around either one of their end points 
(corresponding to the hopping of a Ba*+ ). Rotations 
are allowed only if the new bond position is not al- 
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Fig. 1. Example for possible rotations of a single blocking bond 
around either of its end points when other blockers are present. 

ready occupied by another blocking bond (excluded 
volume condition). Every bond has at most four el- 
ementary rotations. Fig. 1 depicts the possible rota- 
tions for a single bond if one of the nearest neighbours 
is occupied by a blocker. It must be emphasized that 
this model of “dynamic bond percolation” differs 
from previous models in which renewal processes for 
either single bonds [ 12 ] or full lattice configurations 
[ 131 were used to model the dynamics of the 
environment. 

Our main result is a crossover in the frequehcy-de- 
pendent electrical conductivity, Q(O), from a low- 
frequency regime dominated by the blocker motion 
to a high-frequency regime where the carriers expe- 
rience a frozen disordered environment. The cross- 
over occurs roughly at frequencies w w 1 /r, where T is 
the characteristic time scale for blocker motion. tr re- 
mains nearly constant below 1 /r, and increases mo- 
notonously for higher frequencies. This solution is 
obtained by incorporating the changing environment 
as an effective waiting time density for carrier release 
from finite clusters into the CTRW formulation of 
the frozen (infinite T) problem. As a theoretical pos- 
sibility for other models described by eq. ( 1.1) we 
find that the real part of rr( o) can, for certain release 
mechanisms, exhibit nonmonotonous behaviour as a 
function of frequency. Although we do not expect this 
case for our problem, we have included the results 
because this possibility is absent [ 141 for systems de- 
scribed by master equations with time-independent 
transition rates. 

In section 2 we collect the relevant results for con- 
tinuous time random walks (CTRW ) of which we 
shall make use in later sections. We show in section 3 
how rearrangements of vacancy clusters below the 
percolation threshold can be incorporated into the 

waiting time distribution for the CTRW. Using these 
results, we specify the waiting time distribution in 
section 4. It will incorporate the release of the test 
particles from the finite clusters (below an instanta- 
neous percolation threshold) as a consequence of 
motion of the blockers. Section 5 introduces the ef- 
fects of fluctuations in the local configurations, 
thereby completing the specification of the model. 
The results are presented in section 6. The discussion 
of section 7 presents a simple physical argument for 
the crossover in 6(o), and compares our approach 
with previous work on the subject. 

2. Continuous time random walks 

To effect a solution for eqs. ( 1.1) and ( 1.2 ) , we 
must generate a simpler formulation into which the 
dynamics of the geometry enters only in an averaged 
manner. The CTRW approach provides such a 
formulation. 

Our *first step is to approximate eqs. (.I. 1) and 
( 1.2) by the generalized master equation, 

wr, 0 
dt 

= JI I K(r-r’, t-t’)P(r’, t’) dt’ . (2.1) 

0 

This constitutes an approximation because we have 
replaced the time-dependent random transition rates 
w, (t) describing the motion of the environment by 
the nonrandom memory kernel K(r, t), which de- 
scribes an average effect of the changing environment. 

We now recall that eq. (2.1) is equivalent to the 
CTRW equation [ 15 1, 

P(r, t)= ,& 1 W(i-r’, t-t') P(r’, t') dt' 
0 

+ wmr,o - (2.2) 

In this equation, the kernel r( r, t) is the probability 
density of making a step of vector length r in a time 
interval [ t, t + dt 1, and G(t) is the probability for the 
test particle to remain fixed (i.e. not to jump) for a 
time t. It is obtained from v(r, t) through 
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@(f)=l- jyl(f.)df., (2.3) 
0 

where w(t), called the waiting time distribution, is 
given by 

(2.4) 

The CTRW equation, eq. (2.2), has two advantages 
over the generalized master equation, eq. (2.1). One 
is that it no longer contains derivatives, but its prin- 
cipal advantage is that it only involves probabilistic 
quantities. Hence, probabilistic arguments can be 
used to obtain the kernel w for a given problem. 

We proceed to relate the frequency-dependent con- 
ductivity rr( o) to the waiting time distribution. The 
conductivity can be calculated from the Laplace 
transform of the autocorrelation function P( r, t) via 
a generalized Einstein relation [ lo], 

(2.5) 

Here, p is the number density of carriers, e the elec- 
tronic charge, T the absolute temperature and kB the 
Boltzmann constant. The frequency-dependent gen- 
eralized diffusion coefficient D ( w ) is given by [ 10 ] 

cl2 
fi(W) = - 7 1 r2 P(r, iw) , 

I 

where z is the coordination number of the lattice. 
P( r, iw) denotes the Laplace transform P( r, u) of P(r, 
t) evaluated at u =iw. We shall use u and io 
interchangeably. 

For dynamic percolation all sites of the underlying 
regular (here, honeycomb) lattice are in principle ao 
cessible to the walkers because the disorder is time 
dependent. Thus, similar to regular random walk, 
there is no dependence on the starting point. 

We assume the usual decoupling of space and time 
in the waiting time distribution [ 111: w(r, t) = 
w(r)yl(t). This is justified for hopping models on 
regular lattices [ 16,171 p’ and is commonly used also 
for disordered systems. One obtains 

” See, however, ref. [ 161 for a discussion of the decoupling 
approximation. 

D(o)= & B(w)= 
iov( iw ) 
1 -w(iw) ’ (2.7) 

where (r’) = Er2w(r), and D(w) is a normalized 
diffusion coefficient. With the use of eq. ( 2.7 ) , a( co) 
can be calculated from the waiting time distribution 
w(u), the Laplace transform of v(t). Note however, 
that D( co) as defined above is in general not equiva- 
lent to the Laplace transform of d (R? ( f ) ) /dt [ 18 1. 

Before concluding this section we remark that the 
generalized diffusion coefficient D corresponds to the 
memory kernel in the generalized master equation. It 
depends on frequency alone because of the decou- 
pling approximation. The inverse Laplace transform 
of D can be interpreted as an effective time-depen- 
dent transition rate for the master equation of a self- 
consistently determined effective medium. 

We now formulate our model as a continuous time 
random walk. 

3. General form of y(r) 

We show in this section how the waiting time dis- 
tribution for the frozen percolation problem (frozen 
blockers) below the percolation threshold for vacan- 
cies suggests a general form for the waiting time dis- 
tribution for the dynamic problem. The dynamic site 
or bond percolation problems described in the intro- 
duction will guide the discussion. 

We begin with the discussion of the waiting time 
distribution for the frozen problem. It is shown in the 
CTRW formalism that [ 17,111, 

(R2(u)>a WV(U) 
u[l-‘Y(u)1 ’ (3.1) 

where ( R2( u) ) denotes the Laplace transform of the 
mean-square displacement of the random walk. Us- 
ing eq. (2.7) it follows that 

(R’(u))a y. (3.2) 

The long-time limit of ( R 2 ( t ) ) can be determined 
from the small u behaviour of D( u). In particular, we 
notethat,ifD(u)ac,foru+O,onehas (R2(t))at, 
i.e. ordinary diffusive transport. This case obtains for 
p > pc in a frozen percolation problem. For p cpc one 
must have D(u) xc,u in order to obtain localization 
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within finite clusters, i.e. (R ’ (t ) ) cc const. The case 
p=pc, leading to anomalous behaviour (fractional 
power laws), is here of minor interest. 

Consider now the question how the difference 
above and below pc is reflected in the waiting time 
distribution, w( t ) . To answer this question, one must 
express w in terms of D. Inverting eq. (2.7 ) , we have 

w(u) = D(u) 
u+D(u) ’ (3.3) 

Writing D(u)=c~+c,u+... above pc, and D(u)= 
cl u + . . . below, one finds that 

v(t) dt=l$ly(u)=l forp>p,, 
0 

= & forp<p,. (3.4) 
I 

It can be seen immediately that the waiting time dis- 
tribution is not normalized below pc. It lacks the 
weight 1 / ( 1 + cl ) . This implies that at every step the 
random walker has the finite probability l/ ( 1 + cl ) 
to get trapped forever. Stated differently, the correct 
normalized waiting time distribution below pc must 
be augmented by a 6 function at infinity with weight 
l/ ( 1 +c, ). This finite weight for infinite waiting 
times produces a constant mean-square displace- 
ment in the long-time limit. 

We now return to the original dynamic percolation 
problem wiih mobile blockers. We will distinguish 
notationally between the frozen and the dynamic 
problem using an index 0 for the frozen case. In the 
following it will be important to remember that wait- 
ing time densities and other quantities of the CTRW 
formulation do not refer to the original dynamic per- 
colation problem, but to an effective random walk on 
a regular lattice having the same averaged behaviour 
as the original problem. We will try to use crude phys- 
ical and probabilistic arguments to arrive at an an- 
satz for the waiting time density of this effective 
CTRW. 

The basic idea of our approach is suggested by the 
different structure of the frozen waiting time density 
w. ( t ) above and below the percolation threshold pe. 
Below pc, 1 -p<pc, one has an immediate starting 
point because the blockers are mobile and therefore 
infinite waiting times have zero weight. No such 

starting point exists above the percolation threshold, 
1 -p >pc. Using the freedom introduced by the miss- 
ing weight below pc, the waiting time density for the 
full problem v(t) can be decomposed as 

w(t) =aw,(t) + (1 -aMo(t) * (3.5) 

Here, !~~vo( t) is the density for the frozen problem, 
while w. ( t ) is an effective waiting time density which 
corresponds to an escape from finite clusters. It re- 
places the J-function density at infinity for the frozen 
case. The coefficient a is the probability that the 
walker in the effective CTRW for the frozen problem 
would wait an infinite amount of time for its next step, 
corresponding to a full exploration of all finite clus- 
ters. On the other hand, the CTRW evolves as it would 
in the frozen environment with probability 1 -a. Eq. 
(3.5) states that the length of the waiting time be- 
tween two hops is determined from either ~/e(t) or 
vo( t) with probability a or 1 -a, respectively. Be- 
cause WC generalizes the infinite waiting time for re- 
lease from the finite clusters in the frozen problem, 
we know from the discussion following eq. (3.4) that 
this occurs with probability 

a=l/(l+c,), (3.6) 

which determines a. It is important to realize that the 
simple decomposition of eq. ( 3.5 ) is fundamentally 
limited to the case 1 -p<pc. As 1 -p approaches pc, 

the coefficient c, diverges and the weight a goes to 
zero. For 1 -p>pc the weight a vanishes because the 
waiting time distribution is already normalized, as 
seen in eq. (3.4). Thus, one has v(t) =vo(t) for 
1 -p>pc. This implies that utilizing the missing 
weight below pc is not fully sufficient for a satisfac- 
tory treatment of the dynamic percolation problem. 
The new density v, ( t ) describes only the release from 
fully explored clusters. The actual hopping attempts 
of the walker are governed by vo( 2) describing a fro- 
zen environment. This problem will be taken up in 
section 5. Here we continue with the specification of 

v,(t). 
To obtain a general form for we(t) for 1 -p <pc we 

must distinguish between waiting times between 
hopping attempts and waiting times caused by being 
blocked after full exploration of finite clusters. The 
waiting time between hopping attempts is governed 
by ~~(2). According to eq. (3.5), the walker will be 
blocked with probability a. During the random 
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blocking time, however, the walker continues to make 
jump attempts which remain unsuccessful.until geo- 
metrical (blocker) rearrangements allow it to move 
again. The blocked periods are distributed according 
to a density wI (2) which reflects the dynamics of the 
rearranging clusters. The instant at which the block- 
ing condition is removed will in general not coincide 
with a hopping attempt. The random time between 
the end of the blocked interval and the next jump at- 
tempt is called residual waiting time, and is governed 
by a density v/r ( t ) . Summing the random blocking 
time and the residual waiting time gives the random 
waiting time governed by v/e ( t ) . Thus 

sumed to be known. Eqs. (3.3) and (3.4) then yield 

where Y-’ denotes the inverse Laplace transform. 
The distribution or is known in the CTRW 

literature as the waiting time distribution for the first 
jump [ 19 1. Assuming that the hopping attempts de- 
scribed by v. have reached a stationary state, one ob- 
tains VF (t) by averaging y. over all time spans 
between the end of the blocking period and the last 
jump attempt. One finds [ 191 

K(f) =N (t)*KY(t) I (3.7) 

where * denotes the convolution product f*g= 
Jbf( t- t’ )g( t’ ) dt’ for the density of the sum of two 
independent random variables with densitiesfand g. 
The complete waiting time density has the general 
form 

co 

ho”= j vo(t+t’) dt’ 
0 

corn 

> 
--I 

X yo(t+t’) dt dt’ , 

V(0=aV,(0*yl&=(0+(l-a)!&(0 - (3.8) 

Before proceeding with the specification of the dif- 
ferent densities, we emphasize the difference be- 
tween I,U, and the two other densities. Contrary to v/O 
and &Y, w, is itself not a property of the walkers. 
Rather it describes the dynamics of the finite clusters 
via the distribution of time intervals during which the 
walker is blocked. Contrary to the frozen case where 
each walk is terminated on the average after 1 / ( 1 -a) 
steps, the walker is now released after a finite time 
governed by w, ( t ) . 

where the denominator is a normalization factor. 
Comparison with eq. (2.3) leads to 

W(t)=@otO (? @o(t) dt)-‘=@oWi, 3 (4.3) 

where 

OD 

s @o(t) dt 
0 

4. Specification of y(t) is the average of the frozen density vo( t). 

Section 3 has introduced a general decomposition 
of the waiting time distribution v(t) into vo(t), 
~6” (t ), and w1 (t ). These components will be speci- 
fied in this section. As a result our approach will em- 
phasize the difference between the regime below p. 
described in this section where transport is limited 
by geometrical rearrangement; and the regime above 
pc, described in section 5, where transport is limited 
by the hops of the test particle. 

We discuss first the densities v/O and ~6”. The den- 
sity v. is obtained from the generalized diffusion 
coefficient Do for the frozen problem which is as- 

Finally we turn to the determination of wI ( t ) . It is 
the central new ingredient in our approach. 1, re- 
flects the effect of rearrangements necessary to re- 
lease a blocked random walker. In order to obtain an 
expression for vl it is helpful to consider the case 
where the concentration of vacancies is low, i.e. pz 1. 
In this case the walker is blocked most of its time. 
The length of a blocked interval is the time between 
two consecutive visits of a vacancy to any of the near- 
est neighbour sites of the blocked walker. Because we 
consider only hard-core repulsions between blockers 
the vacancies can move independently of each other, 
and their trajectories are realizations of a Markov 

(4.1) 

(4.2) 
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process. Therefore, at any given instant, the residual 
blocking time depends only on the present confi- 
ration. It is unaffected by the past, and has the same 
distribution as the blocking time itself. This “lack of 
memory” implies that the blocking times are expo- 
nentially distributed [ 201, and thus 

W,(t)=r;-’ e-r/r1. (4.5) 

The average blocking time r1 is related to the density 
1 -p of vacancies and their hopping time r by 

r, =r/(l-_p) , (4.6) 

because each site is occupied once every l/ ( 1 -p) 
steps in units of I: This argument breaks down ifthere 
are spatial or temporal correlations between vacan- 
cies coming for example from long range interactions. 

We digress for a moment to describe a possible form 
of y, that might arise for other models because it leads 
to interesting theoretical consequences. Suppose that 
the release mechanism described by v1 is sequential. 
This means the length of a blocking interval is made 
up from a number of shorter intervals of random 
length. These shorter intervals represent a sequence 
of substeps necessary to release the walker. The total 
blocking time is the sum of the times for all substeps. 
Then the central limit theorem will lead to a Gaus- 
sian distribution for v, if the number of necessary 
substeps becomes large. The main difference with 
(4.5 ) is that wI would no longer be monotonically 
decreasing. In order to study this possibility we have 
considered the case that there are an average of II 
identically distributed substeps following an expo- 
nential distribution with mean r2. This leads to a 
density 

1 C-l 1 
V;(t)=< < 

0 
r(n) e-‘/n , (4.7) 

where r( n ) denotes the gamma function. We use this 
formula also for noninteger n in the sense of an inter- 
polation between integer values. Note that for ~~ = r, 
andn=l eq. (4.7) becomeseq. (4.5). 

This concludes the discussion of the waiting time 
distribution. 

5. Configuration renewal 

We have been concerned up to now with the effects 
of release from finite clusters below the percolation 

threshold ( 1 -p<p=). We now return to the full range 
of blocker concentrationsp, and include the averaged 
effect of fluctuations in the geometry experienced by 
the test particle at every step. 

The waiting time density w( t ), specified in section 
4, treats the individual hopping instants of the test 
particle as being given by vO( t). If not blocked, the 
walker behaves in the same way as in the frozen per- 
colation problem. Such a description is clearly unsat- 
isfactory because it neglects the changes in the local 
environment experienced by the particle at every step. 
This will be taken into account by renewing the con- 
figuration after a typical renewal time rr. If the re- 
newal time 7, is chosen long enough so that the 
memory of the last configuration has been lost, one 
is led to an exponential renewal process with density 

v,(t)=r;’ e-‘I* (5.1) 

for the random time intervals between subsequent 
renewals. Thus, instead of following the trajectory of 
every blocker, we update the entire lattice contigura- 
tion. The average time r, between updates is chosen 
such that the memory of the configuration after the 
last renewal has been completely lost. 

To specify the renewal time r,, we distinguish be- 
tween 1 -p<pC and 1 --p2pC. In the former case, the 
configuration of vacancies constitutes the disordered 
environment for the test particles by means of a de- 
viation from the completely blocked situation at p= 1. 
In the latter case, the configuration of blockers forms 
a deviation from the vacant lattice, p=O. The crite- 
rion for memory loss of the last configuration is that 
the diffusing quantities (blockers or vacancies) must 
diffuse at least the average distance between them. 
For blockers the average distance is p - IId, for vacan- 
cies ( 1 -p)-“4 The average number of steps neces- 
sary to diffuse this distance is therefore proportional 
to ps21d for blockers, and ( 1 -p) -‘Id for vacancies. 
Assuming, as before, that the individual steps of 
blockers or vacancies occur with the typical hopping 
time T of the blockers, leads to a renewal time 

r for 1-p<p,, 

for l-pap,, (5.2) 

where we have chosen the normalization so that r,= r 
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for 1 -p=pC, i.e. at pC the memory is already lost if collect all formulas in their Laplace-transformed 
each blocker (or vacancy) moves once. version. 

The effect of an exponential renewal process on the 
generalized diffusion coefficient for the frozen prob- 
lem has been analyzed in previous work [ 13 1. It was 
found that the diffusion coefficient for the system with 
configuration renewal is given as D,, ( u + I /rr) where 
D,,(u) is the generalized diffusion coefficient for the 
frozen problem. Incidentally, the same result was ob- 
tained from an effective medium approximation for 
a system where single bonds are renewed individ- 
ually at a rate r, [ 121. The result can be understood 
from the remark in section 2 that the inverse Laplace 
transform of the generalized diffusion coefficient can 
be interpreted as a generalized time-dependent effec- 
tive transition rate in a master equation. The transi- 
tion rate for the frozen problem can only be used for 
a time interval during which no renewal occurs. Be- 
cause the renewal process is assumed to be indepen- 
dent of the jump process, one has to multiply the 
transition rates by the probability 9, of no renewal 
during the given time interval. Hence, 

First, we determine the Laplace transform w(u) of 
w(t). From the discussion in section 3, we recall that 
Do(u) ccclu for small u. Here, and in the following, 
we set the time scale for the hopping of the walkers 
(test particles) to unity. Then, to second order in U, 
we can write 

Do(u)=c,u+c~u~+o(u~) ) (6.1) 

for 1 -p<pc. Further, for the Laplace transform of 
the density of blocking periods, we find from eqs. 
(4.5) and (4.6), 

(6.2a) 

Transformation of eq. (2.3), using eq. (4.3), yields 

wgyu)= l-;!e) . 
0 

(6.2b) 

D(l)=&(l) @r(f) , 

where 

(5.3a) 

&, can be determined using eqs. (4.4) and (6.1) to 
give 

CO = - 
c2 

c,(l+c,)~ 

(6.2~) 

t 

q$(t)=l- JvJf’)dt’=e-‘I’. 
0 

(5.3b) 

One obtains the desired result by taking the Laplace 
transform of this equation. 

This result can be applied directly to the general- 
ized diffusion coefficient resulting from the waiting 
time distribution v(t) specified in sections 3 and 4. 
In this way we use configuration renewals to account 
for the fluctuations in the geometry seen by the walker 
at every step. This constitutes a severe approxima- 
tion because it neglects the correlations in the time 
development of the geometry. We have kept some ef- 
fects from those correlations by using the freedom of 
the missing weight to modify the waiting time distri- 
bution and have introduced a concentration-depen- 
dent renewal rate. 

6. Results for the hexagonal lattice 

Before actually solving our model for the case of 
interest, the two-dimensional honeycomb lattice, we 

We now obtain w( u ) by transformation of eq. ( 3.8 ) , 

+ Do(u) 
u+&(u) ’ 

(6.2d) 

where eqs. (3.6), (4.1) and (6.2a)-(6.2c) have 
been employed. Eq. (6.2d) is to be inserted into eq. 
( 2.7 ) , which itself reads 

w(u) D(u)= - 
1 -v(u) * 

(6.2e) 

Finally, we obtain the generalized diffusion coeffi- 
cient from section 5 as 

D(u)=B(u+l/r~), (6.2f) 

wherer,isgiven byeq. (5.2). Eqs. (6.1), (6.2) and 
(5.2) collectively represent the formulation of our 
model. They relate the conductivity of the dynamic 
percolation model to that of the frozen problem. The 
only parameters are p, the density of blockers, and 1 / 



R. Hilfr, R. Orbach /Continuous time random walks 283 

7, their relative hopping rate. Both can be fixed in the 
experiment. 

We first calculate the frozen diffusion coefficient 
Q,(u). This can be performed using standard EMA 
methods [ 10,111. The EMA equation for bond per- 
colation can be rewritten as 

D 

0 
(u)= 4-PC -F(K Do) 

2(1-P,) 

X lf 1+ 4(1-P,)F(%Do) “2 
[ ( [F(% Do) -4+pc1* > 1 ’ 

(6.3a) 

where q= 1 -p is the vacancy concentration, p,=2/ 
3, and 

F(u, Do)=~cWulDo(u) I . (6.3b) 

Here, G(x) is the Green function at the origin for the 
hexagonal lattice. It can be expressed in terms of 

K(m), 

E/2 

K(m)= I (1-msin*#)-‘/*d@, (6.3~) 
0 

the complete elliptic integral of the second kind, as 

1111 

G(x) = - 
2(3+x) 

x(2+~)~‘*(6+x)“* 

(6.3d) 

Taking the limit u+O for the + sign in eq. (6.3a) 
recovers the well-known dc behaviour: D( 0) = (q- 
p,) / ( 1 -p,) above pc, while the - sign is used below 
the percolation threshold. We solve eq. (6.3) for the 
- sign by an iterative method. The iteration is ter- 
minated if the maximal relative change between two 
consecutive solutions falls below 1 O- 13. 

While, in principle, we could obtain cl and c2 from 
the solution of eq. (6.3), we calculate them indepen- 
dently. It is well known [ 10,111 that cl obeys the 
equation 

G(llc,)lc,=l-q/P,. (6.4a) 

This equation is solved with the same accuracy as eq. 
(6.3).~~isthenobtainedfiomc~byexpandingD~(u) 
aroundu=Ogiving [ll] 

c* = - c:t 1-q) 
~,[G(lIc,)+G’(llc~)lc~l ’ 

(6.4b) 

where G’ ( 1 /c, ) denotes the derivative of G(x) at 
x= l/c,. 

The results of a numerical solution are displayed 
in fig. 2 for 7= 5000 (recall that the typical hopping 
time for the test particles, Na+, has been set equal to 
unity). This is roughly the value of 7 in an experi- 
ment at room temperature [ 41. Five curves for con- 
centrations below the percolation threshold for the 
vacancies, 0.4 bp< 0.6, are shown. In fig. 3 the same 
data are plotted logarithmically. In the real part of D 
one finds a crossover from a regime w< l/7 con- 
trolled by the slow rearrangements of the geometry to 
the regime w> l/7 governed by diffusion on finite 
clusters. The position of the crossover regime shifts 
to higher frequencies with increasing blocker 
concentration. 

In fig. 4 we plot the dc conductivity on a logarith- 
mic scale as a function of the blocker concentration, 
p, for various values of 7. The broken line is the effec- 
tive medium result for frozen percolation (7~ 00) 

with a sharp transition at p= l/3. Clearly, the tran- 
sition is smeared out in the dynamic case. From the 
nonanalyticity of the function 7,(p) at pc in eq. (5.2), 
one expects to see some structure. Some structure is 
present around pc, becoming more pronounced for 
smaller 7. However, it is an artifact of the crude mean 
field type approximations used throughout this 
paper, and will be absent in more satisfactory 
treatments. 

The same calculations have been performed using 
v’, from the sequential release mechanism. One then 
has from eq. (4.7) 

(6.2a’ ) 

instead of eq. (6.2a), and eq. (6.2d) has to be mod- 
ified accordingly. The results are displayed in fig. 5. 
For comparison we have chosen 72 = 5000, and the 
values n=40/36,40/33,40/30,40/27, and 40124. 
For values of n above 40/36 the real part of D(w). 
begins to develop a minimum. This can be concluded 
also from an expansion of eqs. (6.2a’)-(6.2e), 
around w=O. We find that Re a(w) decreases for 
large enough 72. More precisely [ 9 ] the curvature for 
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3.6 b 

0,0 2.4 4.0 5.6 7.2 
0 (lo-‘) 

Fig. 2. (a) Real part, and (b) imaginary part of the conductivity as a function of frequency and blocker concentrations. Results for 
blocker concentrationsp=0.4,0.45,0.5,0.55, and 0.6 (from top to bottom) are shown. The hopping time for the blocken is 7=5000, 
the hopping time for the test particles is unity. 

the real part is found to be negative, and proportional 
to -rl(c,+l)(n-1)/n in the rr+CXI limit. The dc 
value, Red(O), is given by c2(c,+l)/(r2nc2-c3). 
Note that it depends upon the third-order coefficient 
c3. Because of the shift implied by eq. (6.2e), this 
analysis can at best be used in the limit p-* 1 of high 
blocker concentration. It suggests that the frequency- 
dependent conductivity, a( w ), proportional to D( w ) , 

decreases initially from its dc value as w increases 
from zero. Mathematically the resulting minimum in 
a(o) originates from the nonmonotonicity of w; (t ) 

which results from the sequential nature of the re- 
lease mechanism. The depth of the minimum in- 

creases not only with n but also with n. This is shown 
in fig. 6 where the top curve of fig. 5a with n = 40136 
is plotted for a higher value of 72 = 5 X 10’. Note that 
besides its increase in depth the position of the min- 
imum is shifted to higher values in units of 1 /r2. 

7. Discussion and conclusion 

The crossover behaviour of a(o), exhibited in sec- 
tion 6, can be understood from the following simple 
argument for Ba2+ substitution in Na++“-alumina. 
At sufficiently low temperatures, say liquid nitrogen 

-0.5- b 

-t.5- P’O.40 
C 0.45 
2 0.50 
c1 0.55 
E -2.5- (x60 

c 
2 

-4.5 
I I I I 1 

-4,5 -3.9 -3.3 - 2.7 - 2.1 

lg (WI 
L Fig. 3. Same as fg 2 in a logarithmic plot. 
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P 

Fig. 4. dc conductivity as a function of blocker density p for hop 
ping time ratios 7= 5 x lo’, 5 x 1 OS, 5 x 1 03, 50. The broken line 
represents the EMA result of frozen percolation with 7=m. 

temperature, and for high enough blocker (Ba*+ ) 
concentrations, p ( 1 -p below the percolation 
threshold), the dc conductivity must vanish. Warm- 
ing to room temperature, the Ba*+ become mobile, 
and the sodium ions can get through the network. 
Hence, g(O) ~0. Imagine now that the frequency o 
is increased from zero. For the moment, take w, 
l/7. Then, on that time scale, the Baz+ appear fro- 
zen. That is, the system appears below the critical 
threshold pc for available sites. On the timescale l/ 
o, the Na+ will diffuse distances I( cc) which can be 
greater than or less than the correlation length, & de 

aso- 

0 1.6 3.2 4.8 6.4 6.0 

pending upon temperature and frequency o. The dis- 
tance I can be thought of as the square root of the 
mean-square displacement, eq. (3.2). Consider two 
cases: 

(1) I( l/r) ><. Here, the Na+ ions will feel the 
boundaries of all the finite clusters and the conduc- 
tivity will have essentially its dc value. As w increases 
beyond l/7, I( co) will diminish. Eventually, I(o) will 
become less than <, and a(o) will begin increasing 
with increasing o. Thus there should be a crossover 
in the conductivity in the vicinity of w= l/7. 

(2) I( 1 /T) < 4. Here, some of the Na+ ions will not 
feel the boundaries of all the finite clusters as w in- 
creases from zero towards l/7. The conductivity may 
then increase without a significant change of its be 
haviour at l/7. 

This simple argument highlights the importance of 
the interconnected length and time scales in the 
problem. Our CTRW formulation has, naturally, fo- 
cused on the time domain. A more direct approach 
would be to simulate the model. Preliminary results 
from such simulations seem to support our model 
calculations [ 9 1. 

The conductivity minimum resulting from a se- 
quential release mechanism does not occur in hop 
ping models based on a master equation with time- 
independent transition rates [ 141. In this paper, 
however, we have started from the more general 
equation ( 1.1) which includes such an effect as an 
interesting theoretical possibility. Although this pos- 

4.w- 

_b 

g 3.20- 

0 f .6 3.2 4.0 6.4 8.0 

Fig. 5. (a) Real part, and (b) imaginary part of the conductivity using w; for the sequential release model from eq. (4.7). Curves for 
7,=5000, and values n=40/36,40/33,40/30,40/27 and 40124 (from top to bottom) are shown. 
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0.40 

I 

Fig. 6. Real part of conductivity using w’, for the sequential re- 
lease model from eq. (4.7) for n=40/36 and 7*2=5x 10’. 

sibility does not apply to our model it is important to 
elucidate the physical meaning of a nonmonotonous 
waiting time density if we wish to understand in which 
cases it may be relevant. A nonmonotonous waiting 
time density with a single peak means that the walker 
jumps according to a badly synchronized clock. Such 
a situation is therefore intermediate between a dis- 
crete time random walk and a continuous time ran- 
dom walk. The conductivity minimum is thus seen 
to be a resonance effect. A resonance occurs when the 
frequency of the external field is a multiple of the 
clock frequency. Consequently one expects to find 
even more pronounced effects if the clock period be- 
comes more accurate, i.e. if the peak width becomes 
small. This is indeed observed for the sequential re- 
lease mechanism if the number of substeps, n, is in- 
creased, and will be discussed elsewhere [ 9 1. 

We conclude the discussion by comparing our ap- 
proach to previous work that has considered the 
frequency dependent conductivity [ 12,13 1. The 
common feature of earlier approaches is the neglect 
of correlations in the dynamics of the environment. 
In one approach [ 13 1, complete random lattice con- 
figurations are renewed with a constant renewal rate. 
In another, individual bonds are renewed indepen- 
dently of one another [ 121. In our model, we have 
tried to incorporate correlations in the time devel- 
opment of the blocker from the start. The blocking 
periods account for the fact that, below p. the walker 
can be trapped longer than the average blocker hop- 
ping time r because of the finite size of all clusters. In 
the pure renewal approach the walker is always started 

again on a typical cluster at the time of the next re- 
newal. Our approach allows the use of probabilistic 
arguments to arrive at a more detailed model of the 
blocker motion encapsuled in the density t,~~. This 
constitutes the main difference between our work and 
previous work. In addition, in our model, the typical 
renewal time, T,, depends on the blocker concentra- 
tion, while it has been assumed to be constant before. 

In summary, we have analyzed the dynamic per- 
colation problem posed by ion transport in Ba*+- 
Na+-g”-alumina. The problem has been formulated 
in terms of continuous time random walks, using the 
case of frozen percolation as a starting point. For 
concentrations below the percolation threshold we 
predict a clear signature from the second time scale, 
the blocker hopping time r. An even richer behaviour 
for o(w) is expected for situations with a sequential 
deblocking mechanism. The applicability of our 
model is not limited to solid electrolytes. Dynamic 
percolation models have recently been invoked to de- 
scribe the conductivity of water in oil microemul- 
sions [ 2 11. Possible other applications include 
polymer electrolytes or transport through biomem- 
branes [ 131. 

We have presented an approximate solution for 
time (frequency) dependent response under condi- 
tions of dynamic percolation. Though we have car- 
ried out a calculation for the electrical conductivity, 
our approach is in fact considerably more general, and 
may apply to optical excitation transfer situations 
under dynamic conditions. The crossover in a(o) we 
have calculated for electrical transport translates to a 
“flattening off’ of the mean-square displacement 
roughly at the time for geometrical rearrangement of 
the surroundings (here, the blocking ion hopping 
time). This should affect excitation diffusion, and 
may be observable in experiments which measure 
optical excitation dynamics. Our precise model would 
be relevant to structures where one random compo- 
nent blocks a second (carrier) component. Finite 
concentrations of the former create a percolation net- 
work for the latter. When the blockers are allowed to 
move in time, the network seen by the carriers changes 
with time, allowing for long range transport even if 
the instantaneous carrier site availability is less than 
p. the critical percolation concentration. Our meth- 
ods should be sufficient for calculation of the corre- 
sponding expected optical excitation effect. 
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