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Summary. — Stiff rod-like chain molecules with harmonic bond length potentials
and trigonometric bond angle potentials are used to model Langmuir monolayers at
high densities. One end of the rod-like molecules is strongly bound to a flat
two-dimensional substrate which represents the air-water interface. A ground-state
analysis is performed which suggests phase transitions between phases with and
without collective uniform tilt. Large-scale off-lattice Monte Carlo simulations over
a wide temperature range show in addition to the tilting transition the presence of a
strongly constrained melting transition at high temperatures. The latter transition
appears to be related to two-dimensional melting of the head group lattice. These
findings show that the model contains both, two- and three-dimensional ergodicity
breaking solidification transitions. We discuss our findings with respect to
experiment.

PACS 68.10 — Fluid surfaces and fluid-fluid interfaces.
PACS 68.15 — Liquid thin films.
PACS 01.30.Cc - Conference proceedings.

1. — Definition of the model and ground-state analysis.

Amphiphilic rod-like molecules at surfaces or interfaces play an important role in
questions as diverse as understanding complex biological membranes and their
functionality or the technology of coatings for chemical sensors. The objective of the
present paper is to present and investigate a simple model for phase transitions in
such systems. The model consists of short chain molecules attached to a flat substrate.
Due to space limitations we present here only an overview over selected results, and
refer the reader to a forthcoming simulation study[1] for more detail.

(*) Paper presented at the I International Conference on Scaling Concepts and Complex Fluids,
Copanello, Italy, July 4-8, 1994.
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Monomolecular layers of water-insoluble surfactant molecules at air-water
interfaces, so called Langmuir monolayers, have found renewed experiments]
interest due to the recent availability of X-ray diffraction methods which complement
more traditional thermodynamic measurements[2,3]. A large variety of phases and
phase transitions has been observed in these systems{4].

Despite differences in detail many fatty acids, phospholipids, alecohols and esters
exhibit a similar phase diagram. This is attributed to the similarities of these
amphiphilic molecules which consist typically of a hydrophilic head group to which
one or several hydrophobic alkane chains are attached. Often phase boundaries
depend only on very coarse properties such as the length of the hydrophobic tails, but
not on their detailed chemical nature. As an example, a rule of thumb says that
adding a CH, group to a fatty acid increases the transition temperatures by roughly
8-10 degrees Celsius. These observations as well as density functional ealculations [5]
motivate and justify the use of highly idealized coarse-grained models when studying
phase transitions in such systems by computer simulation. Further justification
derives from the law of universality in phase transitions[6,7].

Given the usefulness of coarse-grained models for monolayers we represent each
molecule through seven effective monomers labeled i = 0, ..., 6. For a typical fatty
acid with chain lengths from 12 to 30 carbons each effective monomer would then
represent roughly between two and five methyl groups. The Cartesian coordinate
system in three-dimensional space is chosen such that the head group i=0 is
restricted to move in the z = 0 plane representing the two-dimensional substrate. A
schematic cross-section for a single molecule consisting of only 4 effective monomers
is shown in fig. 1. All the effective monomers are connected through a cut-off
harmonic bond length potential Vi, (d) = ¢y, (d — dy)? for |d —dy | < dyy and V4, (d) =
= o elsewhere, where cy > 0 is the spring constant. The stiffness of the rod-like
molecules is simulated by a bond angle potential Vi, (6;) = cp, (1 + cos (6;)) where cp,

\ z=0
NI

Fig. 1. — Schematic representation of a single chain-like molecule (here depicted with only four
effective monomers). The bond angles 6; are formed by consecutive bonds along the chain. The
tilt angle 6 is defined as the angle between the surface normal and the end-end vector of the
chain.
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is the force constant and 6, is the angle formed by the three monomers ¢ —1,¢, ¢+ 1
as depicted in fig. 1 for i = 1, 2. All monomers except nearest neighbours within the
same chain interact through a Lennard-Jones potential. The Lennard-Jones potential
is truncated and shifted such that it vanishes at the truncation point. If ¢ and ¢ are
used to denote the interaction strength and range, then Vi;(d) = e((¢/d)** —
— 2(s/d)® — (1/dyp;)*? + 2(1/dy5)°) for d < dyyo where d = dyya is the truncation point,
and Vi;(d) = 0 elsewhere.

Lengths and energies in our simulations will be measured in dimensionless units
defined by setting o =1 and ¢=1. In these units the other parameters for the
simulations are chosen as dy = 0.7, dy; = 0. 2, dry=2. 0 and ¢, = 100, ¢, = 10. The
choice ¢y, cp, >> ¢ models stiff rod-like chains. The molecules are enclosed inside a
simulation box with side lengths L,, L,, L,. In the simulations below we investigate
two system sizes with 64 and 144 chains, respectively. The box dimensions for these
two cases are chosen commensurate with the hexagonally ordered low-temperature
phase as L, =8, L, =4 V38and L, = 12, L,=6 /3, respectively. The height L, of the
simulation box is always chosen much larger than the length of a fully stretched
chain. Periodic boundary conditions are applied in the (x, y)-directions.

The model above extends and generalizes our earlier study of a system consisting
of perfectly rigid rods grafted to a hexagonal lattice and interacting with
Lennard-Jones interactions[8,9]. Most importantly the present model does not
restrict the head groups to form a regular crystalline array at all times. This allows
for restructuring or even melting of the head group lattice. We emphasize that the
singular character of the interactions between substrate and head groups still
represents an important idealization whose validity remains open to question. While
the model is more realistic than fully discrete lattice models[10] it contains less
chemical detail than united atom models which have been investigated using
molecular-dynamics simulations[11-13]. We thus feel that our model represents a
good compromise between computational efficiency and chemical realism.

Before discussing the simulations we analyse the ground state in order to be able
to choose the model parameters in a physically interesting regime. We stress the
need for such an analysis also for chemically more realistic models with
correspondingly larger parameter spaces. Already the present simple model has too
many parameters to fully elucidate its ground-state phase diagram. At very high
densities one expects the head groups to form a hexagonal lattice and all the tails to
have the same director. The director is defined as the vector from the head group
i = 0 to the tail group 7 = 6 of the molecule. This expectation depends crucially on the
form of the substrate-head group interaction and the rod-like character (cy, cp, > ¢)
of the molecules. The question becomes how the expected ordering changes as the
model parameters are varied. Because we are interested in rodlike molecules with
Cyl, Cha>> € We idealize the bond length and bond angle potentials as infinitely rigid for
the purposes of the ground-state analysis. This eliminates the corresponding
parameters, and simplifies the analysis. Furthermore we are looking only for states
with uniform tilt and a hexagonal head group lattice of lattice constant a. This
reduces the problem to finding the tilt angle and direction which minimizes the
Lennard-Jones interactions. The minimization is carried out numerically. The
results [1] agree qualitatively with the behaviour obtained from a simple geometrical
argument. In this argument even the Lennard-Jones parameters are eliminated by
replacing the monomers with hard spheres, and then considering the system as a
stack of planes. A brief reflection shows that in this case the tilt direction must
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always be towards next-nearest neighbours, and that the collective tilt angle ¢ is
related to the lattice constant ¢ and the bond length d, through sin (6) = {a® + dZ — 1 ¥
/{V3ad,}. We expect that in other regions of the parameter space states with
non-uniform tilt could appear as ground states. This is indicated by the appearance of
discontinuities in the function 6(a, dy) obtained from energy minimization[1] as well
as from the ground-state analysis of the rigid-rod model[8].

2. — Results and discussion.

The continuum model specified above is simulated in a canonical ensemble at
constant temperature, volume and particle number. The simulation is carried out
using a Metropolis Monte Carlo procedure in which individual monomer positions are
updated in continuous space. The continuous position space requires to use methods
adapted from molecular-dynamics simulations for evaluating the interaction
energies. We have developed an adaptation of the link-cell algorithm using specially
designed linked pointer lists. In fig. 2 we show a snapshot of an equilibrated
configuration of 144 chains at temperature 7 =1.0. Each sphere of radius o/2
represents an effective monomer.

Temperature scans over two decades were performed for different box geometries
to check for the influence of commensurability effects. Only the hexagonal box
geometry described above was found to be free of hysteresis effects and was
therefore adopted in further simulations. For each temperature point the system was
first equilibrated for 20 000 Monte Carlo steps (updates per monomer). Subsequently
averages were recorded every 500th MCS over a period of 50 000 MCS. These calcula-
tions consumed several 100 hours of CPU time on IBM RS6000 370 equipment.

Figure 3 shows the results of an extensive temperature scan for the average tilt
angle (|6|) (see fig. 1) for two different system sizes. The results suggest the
presence of two phase transitions, one tilting transition between T'=1 and T =2 in
which the tilt angle vanishes, and a melting transition around 7 =8 in which the
fluctuations of the average tilt angle increase. Note that the average tilt angle is
never zero due to thermal fluctuations. This picture is confirmed by the probability
density for the projection of the director into the (x, y)-plane as well as other
orientational correlation functions[1]. The low-temperature transition from a tilted
to an untilted state is well anticipated by theoretical and experimental evidence.

Fig. 2. — Snapshot of an equilibrated configuration with 144 chains at temperature T = 1. Each
monomer is represented as a sphere of radius /2.
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Fig. 3. — Average tilt angle as a function of temperature. Different symbols (£ and &,

respectively) denote system sizes 64 and 144.

It corresponds to a restoration of ergodicity for the tails which are frozen into their
crystalline positions at low temperatures but move freely in a much larger
configuration space at high temperatures. The phase transition at high temperatures,
however, has to our knowledge not been observed or predicted in models for
Langmuir monolayers. It corresponds to a restoration of ergodicity in the strictly
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Fig. 4. — Probability density functions for the bond angles «;= |= —6;| at temperatures
T=0.1(), 1.0(@), 20(>) and T=8.0(a). The inlay shows the same data scaled with
the variance o of the bond angle distribution. The solid line is the curve op(a/s) = (a/c)
exp[ — (a/a)? /2] expected for small Gaussian deviations from linearity.
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two-dimensional layer of head groups. In fact the intermediate dimensionality of our
system allows to view it as a highly constrained three-dimensional film or as a strictly
two-dimensional system of head groups with internal degrees of freedom
representing the influence of the tails. The high transition temperature of the
two-dimensional melting transition appears to be somewhat at variance with the
small temperature range for phase transitions in Langmuir layers, and suggests that
this transition might be more likely observed on solid substrates.

In fig. 4 we display the distribution of the bond angles «; = |z — 6, |, where 6, was
defined above (see fig. 1). This distribution appears to be of experimental interest
(Ch. Wéll, private communication). Not unexpectedly the bond angle distribution is
always peaked at non-zero values, and broadens with temperature. In fact, if the
deviations from striet linearity («; = 0 for all 7) are small and Gaussian, we expect all
distributions to collapse onto a master curve p(x) x aexp[—a?/2] after rescaling
with the variance. As shown in the inlay to fig. 4 this expectation is indeed borne out.
The agreement between the master curve and the scaled data indicates that the bond
angle distribution reflects mainly thermal fluctuations, but does not correlate
strongly with the microscopic structure of different phases.

More insight is gained from plotting the total monomer density profiles as a
function of the distance z from the flat substrate. Figure 5 shows the corresponding
plots for temperatures T = 0.1,1.0,2.0,8.0. At low T =0.1, 1.0 the structure of the
monolayer is crystalline, and the fluctuations within a layer are small. As the
temperature is raised the layer starts to melt from the free surface inwards. At T' =2
the peak of the layer of tail groups (i = 6) has completely vanished indicating that the
fluctuations in the z-coordinates of the tail groups are of the same order as the
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Fig. 5. — Total monomer density profiles as a function of the distance z from the substrate. The
densities are normalized to 6. The head group monomer (i = 0) at z = 0 is not included in the plot.
T=01(——), T=10(=+-), T=2.0(-3-), T=80(x").
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distance to the layer below. At high T the layer of tail groups and the next three
monomer layers have merged into a fluid film. This restoration of ergodicity
propagates even to the head group lattice. Appropriately measured head group
structure factors indicate a melting of the head group lattice at the highest
temperatures [1]. The transition between ergodic and non-ergodic behaviour in the
present case is particularly interesting in view of the strong internal constraints
introduced by the large spring constant c,; = 100 and the hard cut-off in the harmonic
bond length potential. It is only thanks to these strong internal constraints that the
layer can still be identified and studied in the high-temperature ergodic phase, a
feature which is otherwise absent.
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