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Abstract
Locally convex convolutor spaces are studiedwhich consist of those distributions
that define a continuous convolution operator mapping from the space of test
functions into a given locally convex lattice of measures. The convolutor spaces
are endowed with the topology of uniform convergence on bounded sets. Their
locally convex structure is characterized via regularization and function-valued
seminorms under mild structural assumptions on the space of measures. Many
recent generalizations of classical distribution spaces turn out to be special cases
of the general convolutor spaces introduced here. Recent topological character-
izations of convolutor spaces via regularization are extended and improved. A
valuable property of the convolutor spaces in applications is that convolution of
distributions inherits continuity properties from those of bilinear convolution
mappings between the locally convex lattices of measures.
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1 INTRODUCTION

A number of recent publications [2, 3, 9, 11, 12, 18, 34] has given significant spur and impetus toward the generalization
and unification of classical results in the theory of convolution on locally convex distribution spaces. The present study is
concerned with locally convex distribution spaces that are associated with a so-called solid regularization-invariant space,
as defined below. This vastly extends and further unifies several results from the cited works on the structure of locally
convex distribution spaces and their compatibility with convolution.
Motivated by the characterization of convolvability of distributions via regularization [20, 30] and topological char-

acterizations of certain classes of locally convex distribution spaces [2, 3, 9, 11, 12], we consider the convolutor
spaces

O ′
𝐶(D , 𝐸) ∶= {𝑓 ∈ D ′ ; (𝜙 ↦ 𝜙 ∗ 𝑓) ∈ L (D , 𝐸)} (1.1)

on ℝ𝑑, 𝑑 ∈ ℕ endowed with the topology of uniform convergence on the bounded subsets of the space of test functions
D = D(ℝ𝑑). As usual ∗ is convolution and L (D , 𝐸) denotes the continuous linear mappings D → 𝐸. In this work, 𝐸 is
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a solid regularization-invariant space. This means that 𝐸 is a locally convex lattice and a solid subspace of the space M

of Radon measures on ℝ𝑑, that continuously includes the space K of continuous functions of compact support and on
which regularizationmappings 𝑓 ↦ 𝜙 ∗ 𝑓 with 𝜙 ∈ D operate continuously (see also Section 3.2). Every solid translation-
invariant Banach space of distributions [9] is a solid regularization-invariant space.
Dividing our presentation into four parts, we prove equivalent, but simpler, characterizations of the locally convex

structure of the spacesO ′
𝐶(D , 𝐸) via regularization and function-valued seminorms in the first part. In the second part, the

structure of the spaces inEquation (1.1) is investigatedmore deeplywhen𝐸 is aweighted space, in particularwhen𝐸 = 𝐿1𝑊 ,
generalizing results from [11]. In the third part, identities with several classes of distribution spaces are established, that
were studied previously [9, 16, 28], but introduced in a different way. Finally, it is shown how the introduced distribution
spaces are perfectly adapted to establish continuity for convolution of distributions. An outline of each part is following.

1.1 Characterizing the locally convex structure of convolutor spaces

Given certain structural assumptions on 𝐸, it is a natural question whether classical regularization properties hold for
spaces of the form 𝐹 = O ′

𝐶(D , 𝐸). For example: are bounded sets (respectively relatively compact sets) of distributions
𝐻 ⊆ 𝐹 characterized by the property that 𝜙 ∗ 𝐻 is bounded (respectively relatively compact) in 𝐸 for all 𝜙 ∈ D? Does a
sequence (𝑓𝑛)𝑛∈ℕ converge in 𝐹 if and only if 𝜙 ∗ 𝑓𝑛 converges in 𝐸 for all 𝜙 ∈ D? Schwartz proved results of this kind for
the spacesD ′

𝐿𝑝 , 1 ≤ 𝑝 ≤ ∞ [28]. These were extended only recently [2, Prop. 17, 19] to normal complete distribution spaces
𝐸 and 𝐹 when 𝐸 has a complete web and 𝐹 is ultrabornological. Similar results were obtained for distribution spacesD ′

𝐸′

associated with translation-invariant Banach spaces of distributions 𝐸 [12, Thm. 3, Cor. 4, 5].
In Section 3 we establish several characterizations of the locally convex spaces 𝐹 = O ′

𝐶(D , 𝐸) in terms of regularization
under the sole assumption that 𝐸 is a solid regularization-invariant space. In our Theorem 3.11 (on p. 7), the locally convex
structure of 𝐹 can be characterized via linear regularization operators and function-valued seminorms that map into 𝐸.
For example, 𝐹 is characterized by the projective spectrum given by the mappings 𝐹 → 𝐸, 𝑓 ↦ 𝜙 ∗ 𝑓 with 𝜙 ∈ D . This
characterization of𝐹 entails the regularization propertiesmentioned above. Comparing to the earlier results, a new insight
is that the closed graph theorem plays no role here and that the restriction to sequences can be dropped.
Another characterization of the space 𝐹 = O ′

𝐶(D , 𝐸) uses the generalized absolute values that we introduce as

|𝑓|Φ ∶= sup{|𝜙 ∗ 𝑓| ; 𝜙 ∈ Φ} for 𝑓 ∈ D ′, Φ ∈ 𝔅(D), (1.2)

where 𝔅(D) denotes the bounded subsets of D . The operators | − |Φ can be interpreted as function-valued seminorms.
The topology of 𝐹 is proved in Theorem 3.11 to be generated by the seminorms 𝑓 ↦ 𝑝(|𝑓|Φ), where 𝑝 ranges over the
continuous seminorms on 𝐸 and Φ ranges over𝔅(D).
The characterizations are based on Theorem 3.2 (p. 5): given Φ ∈ 𝔅(D) one always has an inclusion

Φ ⊆ Ψ ∗ 𝜃1 +⋯+ Ψ ∗ 𝜃2𝑑 for suitable Ψ ∈ 𝔅(D) and 𝜃1, … , 𝜃2𝑑 ∈ D . (1.3)

Equation (1.3) is a stronger formulation than the more common weak factorization property 𝜙 = 𝜓1 ∗ 𝜃1 +⋯+ 𝜓2𝑑 ∗ 𝜃2𝑑

of D that was proved in [13, 25]. For more information on and applications of factorization theorems similar to Equa-
tion (1.3) we also refer to [10], and references therein. Following the terminology in [33], Equation (1.3) may be referred to
as the bounded weak factorization property of the topological algebra (D , ∗). Equation (1.3) is obtained by reexamining the
proof of Theorem 3 from [13]. In connectionwith the result (1.3), the operators (1.2) become a useful and intuitive notation.

1.2 The locally convex structure, duals and preduals of weighted distribution spaces

An important construction to obtain new locally convex spaces from old ones is to introduce weights. In Section 4,
weighted spaces 𝐸𝑊 are studied where 𝐸 is a solid regularization-invariant space and 𝑊 is a moderated cone ideal of
the space I+lb of non-negative locally bounded lower semicontinuous functions. The definition of 𝐸𝑊 is analogous to
weighted 𝐿𝑝-spaces 𝐿𝑝𝑊 . A moderated cone ideal is a lower set (that is 𝑊 ∋ 𝑤 ≥ 𝑣 ∈ I+lb implies 𝑣 ∈ 𝑊) that obeys
K + ⊆ 𝑊,𝑊 +𝑊 ⊆ 𝑊 and T𝐾𝑊 ⊆ 𝑊 for all 𝐾 ∈ 𝔎 ∶= {𝐾 ⊆ ℝ𝑑 ; 𝐾 compact}where T𝐾 denotes the 𝐾-translation shell
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1940 KLEINER and HILFER

defined as

T𝐾𝑤 ∶= sup{T𝑥𝑤 ; 𝑥 ∈ 𝐾} for all 𝑤 ∈ 𝐿
∞,+
loc

, 𝐾 ∈ 𝔎 . (1.4)

We prove that the space O ′
𝐶(D , 𝐸𝑊) can be described equivalently in terms of O ′

𝐶(D , 𝐸) and smooth weight functions
associated with𝑊 via regularization.
In a recent article [11], the spaces O ′

𝐶(D , 𝐸), as defined in (1.1) with 𝐸 = 𝐿1𝑊 , were studied in detail. The locally convex
space 𝐿1𝑊 consists of the measurable functions 𝑓 on ℝ𝑑 satisfying ‖𝑤 ⋅ 𝑓‖1 < ∞ and is endowed with the seminorms
𝑓 ↦ ‖𝑤 ⋅ 𝑓‖1, 𝑤 ∈ 𝑊. The system of weights𝑊 was assumed to be a sequence (𝑤𝑛)𝑛∈ℕ of positive continuous weights
with the property

∀𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∶ sup
𝑥∈ℝ𝑑

𝑤𝑛(𝑥 + ⋅)

𝑤𝑚(𝑥)
∈ 𝐿∞

loc
. (1.5)

Clearly, the assumption T𝐾𝑊 ⊆ 𝑊 from above generalizes the condition (1.5) and therefore these spaces are a special case
of the spaces 𝐸𝑊 .
The case of general weighted 𝐿1-spaces will be studied in Sections 4.2 and 4.3. The description of the dual space and

the predual from [11] is generalized in Theorems 4.10 and 4.15 (p. 13, 15). Instead of the short-time Fourier transform, as in
[11], we use the characterization of O ′

𝐶(D , 𝐸) in terms of the generalized absolute values (1.2) for the proof. Further, the
identity of sets O ′

𝐶(D , 𝐿1𝑊) = {𝑓 ∈ D ′ ; ∀𝜙 ∈ D ∶ 𝜙 ∗ 𝑓 ∈ 𝐿1𝑊} was derived from the closed graph theorem in [11], which
applies when 𝐿1𝑊 is a Fréchet-space. Theorem 3.11 implies this relation for a general moderated cone ideal𝑊 and does not
require the closed graph theorem. Normality and completeness ofO ′

𝐶(D , 𝐿1𝑊)were also proved in [11, Lem. 4.10, Cor. 4.3]
and we obtain these results from inheritance properties of the mapping 𝐸 ↦ O ′

𝐶(D , 𝐸) given in Section 3.

1.3 Reproducing the classical definitions for (DF)-type convolutor spaces

Because most classical distribution spaces, such as E ′,S ′, and D ′
𝐿𝑝 with 1 ≤ 𝑝 ≤ ∞, were introduced as the strong dual

of a Fréchet space of smooth functions [28], it is a natural question whether the definition (1.1) can reproduce these spaces
via suitable choices for the space 𝐸. Related results were obtained already by Schwartz [28], who proved thatD ′

𝐿𝑝 has the
same bounded sets and convergent sequences as O ′

𝐶(D , 𝐿𝑝), and Grothendieck [14], the results of whom imply that the
strong topology of O ′

𝐶 is equal to the one induced by the embedding O ′
𝐶
∋ 𝑓 ↦ (𝜙 ↦ (𝜙 ∗ 𝑓)) ∈ Lb(S ,S ) [11, p. 829].

However, to the best of our knowledge, a positive answer to the above question was obtained for a certain class of
weighted D ′

𝐿1 -spaces just recently in [11, Thm. 1.1, p. 830]. More specifically, it was obtained that the identity of locally
convex spaces

O ′
𝐶(D , 𝐿1𝑊) = D ′

𝐿1,𝑊 (1.6)

holds if and only if𝑊 satisfies the condition (Ω) [11, Equation (1.2)]. Here,𝑊 is a weight system of the form (1.5) above. The
space D ′

𝐿1,𝑊 is defined as the strong dual of the inductive limit of the spaces Ḃ𝑣𝑛 with 𝑣𝑛 ∶= 1∕𝑤𝑛, 𝑛 ∈ ℕ and (𝑤𝑛)𝑛∈ℕ
the same weight system as in Equation (1.5). The space Ḃ𝑣𝑛 is the space of smooth functions ℎ such that 𝑣𝑛 ⋅ 𝜕

𝛼ℎ vanishes
at infinity, endowed with the seminorms ℎ ↦ ‖𝑣𝑛 ⋅ 𝜕𝛼ℎ‖∞, 𝛼 ∈ ℕ𝑑

0
.

Another class of spaces of the formD ′
𝐸′ will be studied in Section 5. The spaceD ′

𝐸′ is defined as the strong dual (D𝐸)
′
b
of

the space D𝐸 of smooth functions with all derivatives contained in 𝐸, endowed with the topology generated by the semi-
norms ℎ ↦ 𝑝(𝜕𝛼ℎ) with 𝛼 ∈ ℕ𝑑

0
and 𝑝 a continuous seminorm on 𝐸. Many classical distribution spaces are of this form

[28] and this construction was generalized in [12] from classical function spaces such as 𝐸 = 𝐿𝑝 to translation-invariant
Banach spaces of tempered distributions. Generalizing the identity D ′

𝐿1,𝑤 = O ′
𝐶(D , 𝐿1𝑤) in a direction different from [11,

Thm. 1.1] we obtain in Theorem 5.6 (p. 17) that the spaces (D𝐸)
′
b
and O ′

𝐶(D , 𝐸′) are equal as locally convex spaces when
𝐸 is a solid regularization-invariant Fréchet space continuously included in 𝐿1

loc
and having K as a dense subset. As a

byproduct, we obtain the identity of locally convex spacesO ′
𝐶(D , 𝐿

𝑝
𝑤) = D ′

𝐿𝑝,𝑤 for all 1 < 𝑝 ≤ ∞ and any positive moder-
ated weight 𝑤, complementing the result for 𝑝 = 1 from [11, Thm. 5.1, p. 853]. Corresponding identities for the spaces E ′

and S ′ are given in Examples 5.7 and 5.8.
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KLEINER and HILFER 1941

The topology of uniform convergence on the compact subsets of the canonical predual space was recently characterized
for the spaceD ′

𝐿𝑝 with 1 ≤ 𝑝 ≤ ∞ using function seminorms [3, Props. 2.5, 3.2]. In order to establish the “dual” results, we
prove the identity of locally convex spaces D ′

𝐿𝑝,c = O ′
𝐶(D , (𝐿𝑝)str). Here, the subindex “c” in D ′

𝐿𝑝,c indicates, for 𝑝 ≠ 1,
the topology 𝜅(D ′

𝐿𝑝 ,D𝐿𝑞 ) with 1∕𝑝 + 1∕𝑞 = 1 and, for 𝑝 = 1, the topology 𝜅(D ′
𝐿1 , Ḃ). Further, (𝐿𝑝)str denotes the space

𝐿𝑝 with the strict topology given by the weighted seminorms 𝑓 ↦ ‖𝑓 ⋅ 𝑤‖𝑝 with 𝑤 ∈ C +
0
.

1.4 Inherited properties of bilinear convolution mappings between convolutor spaces

In the concluding section, we study the convolution of distributions [22, 32] on the spacesO ′
𝐶(D , 𝐸). Notice the following

corollary of Equation (1.3): givenΦ ∈ 𝔅(D) one can always findΨ ∈ 𝔅(D) such thatΦ is contained in the absolute convex
hull of Ψ ∗ Ψ. From this, we will derive the generalized absolute value inequality for convolution of distributions

|𝑓 ∗ 𝑔|Φ ≤ |𝑓|Ψ ∗ |𝑔|Ψ for all convolvable (𝑓, 𝑔) ∈ D ′ × D ′. (1.7)

Now, let 𝐸, 𝐹, 𝐺 be solid regularization-invariant spaces and assume that convolution is well-defined, continuous,
separately continuous, compactly hypocontinuous or boundedly hypocontinuous as a mapping ∗ ∶ 𝐸 × 𝐹 → 𝐺. Using
Equation (1.7) and the regularization properties of the spaces O ′

𝐶(D , 𝐸) obtained in Theorem 3.11 we prove that any of
these properties of ∗ ∶ 𝐸 × 𝐹 → 𝐺 implies the corresponding property for convolution of distributions ∗ ∶ O ′

𝐶(D , 𝐸) ×

O ′
𝐶(D , 𝐹) → O ′

𝐶(D , 𝐺).

2 SOME NOTATIONS

Some general notations are summarized. Notations for function-valued seminorms and locally convex lattices are found
in Sections 3.1 and 3.2.
Let 𝐹,𝐺 be a locally convex spaces. The set of continuous seminorms on 𝐹 is denoted by csn𝐹, as in [9]. The continuous

linear operators 𝐹 → 𝐺 are denoted by L (𝐹, 𝐺). The subindices in Ls and Lb indicate the topologies of simple conver-
gence and uniform convergence on the bounded sets, respectively. The bounded resp. compact subsets of 𝐹 are be denoted
by𝔅(𝐹) resp.𝔎(𝐹) and acx 𝐴 denotes the absolute convex hull of a set 𝐴 ⊆ 𝐹.
We will use the usual notations for distribution spaces from [16, p. 440] or [28]. All distribution spaces have the domain

ℝ𝑑 if nothing is stated to the contrary. Translation and reflection of a distribution 𝑓 will be denoted by T𝑥𝑓 and 𝑓. A
sequence (𝜙𝑛)𝑛∈ℕ ⊆ D will be called an approximate unit if 𝜙𝑛 → 1within E and {𝜙𝑛 ; 𝑛 ∈ ℕ} is a bounded set inB. Note
that the latter is equivalent to 𝜙𝑛 → 1 for 𝑛 → ∞ within the strict topology of B. This is the finest topology on B that
induces the same topology as E on every bounded subset of B (see [21, p. 11]). The strict topology on B will be indicated
by Bc.
Let 𝐹,𝐺 be distribution spaces on ℝ𝑑 with the property that the continuous inclusions D ⊆ 𝐹,𝐺 ⊆ D ′ hold. Here, we

use the convention that𝑇 ⊆ 𝑆 continuously for topological spaces𝑇, 𝑆means that𝑇 is a subset of 𝑆 such that the canonical
inclusion 𝑇 → 𝑆 is continuous. As usual, the notation O ′

𝐶(𝐹, 𝐺) denotes the space of convolutors 𝐹 → 𝐺 for normal 𝐹.
That is, the space of distributions 𝑘 ∈ D ′ with the property that the convolution operator 𝜙 ↦ 𝜙 ∗ 𝑘,D → 𝐺 continuously
extends to 𝐹. The space O ′

𝐶(𝐹, 𝐺) is endowed with the subspace topology induced by Lb(𝐹, 𝐺) if nothing is stated to
the contrary.

3 CHARACTERIZATION OF CONVOLUTOR SPACES VIA REGULARIZATION

The purpose of this section is to characterize the locally convex structure of the convolutor spaces O ′
𝐶(D , 𝐸) introduced

in Equation (1.1) and to prove some inheritance properties for the mapping 𝐸 ↦ O ′
𝐶(D , 𝐸).

3.1 Function-valued seminorms defined by regularization

In the following, generalized absolute values and translation shells are introduced and important properties summarized.
Proposition 3.6 will be fundamental for the characterization in Theorem 3.11.
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1942 KLEINER and HILFER

Some notations for the concept of function-valued seminorms are required. The symbol I+ will denote the lower
semicontinuous functions 𝑓 ∶ ℝ𝑑 → ℝ+, where ℝ+ = [0, +∞]. The functions from I+ that are finite-valued and locally
bounded are denoted by I+lb. A non-empty lower set𝑊 ⊆ I+lb (i.e.,𝑊 ∋ 𝑤 ≥ 𝑣 ∈ I+lb implies 𝑣 ∈ 𝑊) with the prop-
erty𝑊 +𝑊 ⊆ 𝑊 will be called cone ideal. The set of cone ideals constitutes a closure system on I+lb. That is, a set ℭ of
subsets of I+lb that contains I+lb and is closed with respect to intersection of non-empty families of sets from ℭ (such
set systems ℭ are called “Moore family” in [5, p. 111] or “topped ∩-structure” in [8, p. 145]). An absolutely homogeneous,
subadditivemapping𝐹 → I+lb on a linear space𝐹 will be calledI+lb-valued seminorm on𝐹. Two sets 𝑃,𝑄 ofI+lb-valued
seminorms on 𝐹 will be called equivalent if they generate the same cone ideal, that is, if and only if

∀𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄∃𝑃′ ⊆ 𝑃, 𝑄′ ⊆ 𝑄 finite ∶ 𝑞 ≤ sup 𝑃′, 𝑝 ≤ sup𝑄′. (3.1)

Definition 3.1. Let 𝑓 ∈ D ′ and Φ ∈ 𝔅(D). The Φ-absolute value of 𝑓 is defined as

|𝑓|Φ ∶= sup{|𝜙 ∗ 𝑓| ; 𝜙 ∈ Φ}. (3.2)

Let 𝑤 ∈ 𝐿
∞,+
loc

and 𝐾 ∈ 𝔎. The 𝐾-translation shell of 𝑤 is defined as

T𝐾𝑤 ∶= sup{T𝑦𝑤 ; 𝑦 ∈ 𝐾}. (3.3)

The suprema in Equations (3.2) and (3.3) are formed within the order complete vector lattice of real-valued measurable
functions that are essentially locally bounded. The supremum in Equation (3.2) can equivalently be understood as a point-
wise supremum.

Let us summarize some readily verified properties. The Φ-absolute value |𝑓|Φ of a distribution 𝑓, where Φ ∈ 𝔅(D), is
always a locally Lipschitz continuous function ℝ𝑑 → ℝ+. In particular, one has |𝑓|Φ ∈ I+lb and |𝑓|Φ is a regular distri-
bution. Due to the relation |(𝜙 ∗ 𝑓)(𝑥)| = |⟨𝑓, T𝑥𝜙̌⟩|, the operators | − |Φ are I+lb-valued seminorms on D ′. It can also
be proved that they are locally Lipschitz continuous. The 𝐾-translation shell operates endomorphically on the spaces
C +, I+lb, and 𝐿

∞,+
loc

and can be defined point-wise on I+lb. Note, that T𝐾 can be interpreted as a “supremal convolution
operator” with the indicator function 1𝐾 as kernel [17].
The following relations hold:

∀𝑓 ∈ D ′, 𝐾 ∈ 𝔎, Φ ∈ 𝔅(D) ∶ |𝑓|T𝐾Φ = T𝐾|𝑓|Φ, (3.4a)

∀𝑤 ∈ 𝐿
∞,+
loc

, Φ ∈ 𝔅(D) ∶ |𝑤|Φ ≤ sup{‖𝜙‖1; 𝜙 ∈ Φ}T(
⋃

suppΦ)𝑤. (3.4b)

Moreover, given 𝐾 ∈ 𝔎 with non-empty interior, one finds 𝜙 ∈ D−𝐾 such that

𝑤 ≤ |T𝐾𝑤|{𝜙} for all 𝑤 ∈ 𝐿
∞,+
loc

. (3.4c)

In connection with these inequalities, we will frequently use that

T𝐾Φ = {T𝑥𝜙 ; 𝜙 ∈ D , 𝑥 ∈ 𝐾} ∈ 𝔅(D) for all Φ ∈ 𝔅(D), 𝐾 ∈ 𝔎. (3.5)

The operators | − |Φ preserve supports up to compact sets, more precisely
supp |𝑓|Φ ⊆ supp𝑓 + 𝐾Φ for all 𝑓 ∈ D ′, Φ ∈ 𝔅(D), (3.6a)

where 𝐾Φ ∶=
⋃

suppΦ. If ℎ ∈ E is such that {ℎ = 1} ⊇ supp𝑓 + ({0} ∪ 𝐾Φ), then

|𝑓|Φ = |ℎ| ⋅ |𝑓|Φ = |ℎ ⋅ 𝑓|Φ. (3.6b)

Because integration is a monotone operation, interchanging the order of translation shells and convolutions yields

T𝐾(𝑤 ∗ 𝑣) ≤ (T𝐾𝑤) ∗ 𝑣 for all 𝐾 ∈ 𝔎, 𝑤 ∈ 𝐿
∞,+
𝔎

, 𝑣 ∈ 𝐿
∞,+
loc

, (3.7)

where 𝐿∞,+
𝔎

denotes the compactly supported elements of 𝐿∞,+
loc

. Equation (3.7) also holds for 𝐾 ⊆ ℝ𝑑 and 𝑤, 𝑣 ∈ I+.
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KLEINER and HILFER 1943

The following semifactorization theorem has important consequences for the introduced function-valued seminorms.
In particular, Corollary 3.3will be useful to derive the generalized absolute value inequality for convolution of distributions
in the last section of this article.

Theorem 3.2. Let Φ ∈ 𝔅(D). There exist Ψ ∈ 𝔅(D) and 𝜃1, … , 𝜃2𝑑 ∈ D such that

Φ ⊆ Ψ ∗ 𝜃1 +⋯+ Ψ ∗ 𝜃2𝑑 . (3.8)

Corollary 3.3. Let Φ ∈ 𝔅(D). There exists Ψ ∈ 𝔅(D) such that

Φ ⊆ acx(Ψ ∗ Ψ). (3.9)

Corollary 3.4. Let 𝜙 ∈ D . There exist 𝜓1, 𝜃1, … , 𝜓2𝑑 , 𝜃2𝑑 ∈ D such that

𝜙 = 𝜓1 ∗ 𝜃1 +⋯+ 𝜓2𝑑 ∗ 𝜃2𝑑 . (3.10)

A proof for Theorem 3.2 is obtained by examining the proof of Théorème 3.1 from [13]. For the convenience of the reader,
we present the adapted proof for the case𝐺 = ℝ𝑑 on the following lines. The proof is based on the following lemmawhich
is contained in [13, Lemme 2.5] and can be reused without change:

Lemma 3.5. Let 𝑏𝑘 > 0, 𝑘 ∈ ℕ0. There exist 𝑎𝑘 > 0, 𝑘 ∈ ℕ0 and test functions 𝜃, 𝜒 ∈ D(ℝ) such that 𝑎𝑘 ≤ 𝑏𝑘 for all 𝑘 ∈ ℕ0

and
𝑛∑

𝑘=0

(−1)𝑘𝑎𝑘𝜃
(2𝑘)

𝑛→∞
⟶ 𝛿 + 𝜒 within E ′(ℝ). (3.11)

Proof of Theorem 3.2. The boundedness of Φ guarantees the finiteness of

𝑀𝛼,𝑒,𝑘 ∶= sup{‖𝜕𝛼𝜕2𝑘𝑒 𝜙‖∞ ; 𝜙 ∈ Φ} for all 𝛼 ∈ ℕ𝑑
0
, 𝑒 = 1,… , 𝑑, 𝑘 ∈ ℕ, (3.12)

where 𝜕𝑒 denotes the partial derivative in the 𝑒-the coordinate. From Lemma 3.5, we obtain 𝑎𝑘 > 0, 𝑘 ∈ ℕ0 and 𝜃, 𝜒 ∈

D(ℝ) such that Equation (3.11) holds and

∞∑
𝑘=0

𝑎𝑘𝑀𝛼,𝑒,𝑘 < ∞ for all 𝛼 ∈ ℕ𝑑
0
, 𝑒 = 1,… , 𝑑. (3.13)

From Equation (3.11), we derive that

𝜃𝑒 ∗

𝑛∑
𝑘=0

(−1)𝑘𝑎𝑘𝜕
2𝑘
𝑒 𝜙 =

(
𝑛∑

𝑘=0

(−1)𝑘𝑎𝑘𝜕
2𝑘
𝑒 𝜃𝑒

)
∗ 𝜙

𝑛→∞
⟶ 𝜙+ 𝜒𝑒 ∗ 𝜙, (3.14)

where 𝜃𝑒, 𝜒𝑒 ∈ E ′ are the image measures of 𝜃, 𝜒 under the canonical injection ℝ → ℝ𝑑 of the 𝑒th coordinate. From
Equations (3.13) and (3.14), we conclude that

𝜃𝑒 ∗ 𝜓(𝜙) = 𝜙 + 𝜒𝑒 ∗ 𝜙 with 𝜓(𝜙) ∶=

∞∑
𝑘=0

(−1)𝑘𝑎𝑘𝜕
2𝑘
𝑒 𝜙 for all 𝜙 ∈ Φ. (3.15)

The series that defines the function 𝜓(𝜙) converges within D according to Equations (3.12) and (3.13). Equation (3.15)
yields

𝜃𝑒 ∗ Φ̃ + 𝜒𝑒 ∗ Φ̃ ⊇ Φ with Φ̃ ∶= {𝜓(𝜙) ; 𝜙 ∈ Φ} ∪ −Φ, (3.16)

Equations (3.12) and (3.13) also imply that the set Φ̃ is bounded in D . Any of the functions 𝜂1 ∗ ⋯ ∗ 𝜂𝑑 = 𝜂1 ⊗⋯⊗ 𝜂𝑑
with 𝜂𝑒 ∈ {𝜃𝑒, 𝜒𝑒}, 𝑒 = 1,… , 𝑑 belongs to D . If we denote these by 𝜃1, … , 𝜃2𝑑 and apply Equation (3.16) successively for
each dimension 𝑒 = 1,… , 𝑑 we obtain Equation (3.8) for some Ψ ∈ 𝔅(D). □
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1944 KLEINER and HILFER

We can now use Theorem 3.2 to prove

Proposition 3.6. The following three sets of mappings

{𝑓 ↦ |𝑓|Φ ; Φ ∈ 𝔅(D)}, (3.17a)

{𝑓 ↦ 1𝐾 ∗ |𝑓|{𝜙} ; 𝜙 ∈ D , 𝐾 ∈ 𝔎}, (3.17b)

{𝑓 ↦ T𝐾|𝑓|{𝜙} ; 𝜙 ∈ D , 𝐾 ∈ 𝔎}, (3.17c)

define equivalent sets ofI+lb-valued seminorms onD ′ (in the sense of Equation (3.1)).

Proof. Let Φ ∈ 𝔅(D). Choose Ψ ∈ 𝔅(D) and 𝜃1, … , 𝜃2𝑑 ∈ D such that Equation (3.8) of Theorem 3.2 holds. Then, for a
suitable constant 𝐶 ∈ ℝ+ and 𝐾 ∈ 𝔎, one obtains the inequalities

sup
𝜙∈Φ
|𝜙 ∗ 𝑓| ≤ sup

𝜓∈Ψ

||||||
2𝑑∑
𝑘=1

𝜓 ∗ 𝜃𝑘 ∗ 𝑓

|||||| ≤
2𝑑∑
𝑘=1

(
sup
𝜓∈Ψ
|𝜓|) ∗ |𝑓|𝜃𝑘 ≤ 𝐶

2𝑑∑
𝑘=1

T𝐾|𝑓|𝜃𝑘 for all 𝑓 ∈ D ′. (3.18)

The proposition follows from Equations (3.18), (3.4), and (3.5). □

Proposition 3.7. Let (𝜃𝑛) be an approximate unit and Φ ∈ 𝔅(D). Then

|(1 − 𝜃𝑛)𝑓|Φ 𝑛→∞
⟶ 0, |𝜃𝑛𝑓|Φ 𝑛→∞

⟶ |𝑓|Φ in 𝐿∞
loc
for all 𝑓 ∈ D ′, (3.19a)

and there exists Ψ ∈ 𝔅(D) such that

|(1 − 𝜃𝑛)𝑓|Φ ≤ |𝑓|Ψ, |𝜃𝑛𝑓|Φ ≤ |𝑓|Ψ for all 𝑛 ∈ ℕ and 𝑓 ∈ D ′. (3.19b)

Proof. Let 𝐾 ⊆ ℝ𝑑 compact and 𝑓 ∈ D ′. The elements of the set (1 − 𝜃𝑛)T𝐾Φ̌ converge to zero uniformly inD for 𝑛 → ∞

due to Equation (3.5) and hypocontinuity of ⋅ ∶ E × D → D [16, Prop. 3.6.4, p. 360]. Thus, continuity of 𝑓 ∶ D → ℂ yields

sup{|(1 − 𝜃𝑛)𝑓|Φ(𝑥) ; 𝑥 ∈ 𝐾} ≤ sup
{|||⟨𝑓, (1 − 𝜃𝑛)T𝑥𝜙̌

⟩||| ; 𝜙 ∈ Φ, 𝑥 ∈ 𝐾
} 𝑛→∞

⟶ 0. (3.20)

Applying the inverse triangle inequality for the I+lb-valued seminorm | − |Φ yields that |𝜃𝑛𝑓|Φ → |𝑓|Φ in 𝐿∞
loc
. Because

the set of functions 𝐵 ∶= {1 − T𝑥𝜃̌𝑛, T𝑥𝜃̌𝑛 ; 𝑥 ∈ ℝ𝑑, 𝑛 ∈ ℕ} belongs to 𝔅(B), the set of test functions Ψ ∶= 𝐵 ⋅ Φ belongs
to𝔅(D). Now, Equation (3.19b) follows by construction. □

3.2 Solid regularization-invariant spaces

In order to define solid regularization-invariant spaces, we will use some notations from the theory of ordered vector
spaces as presented in [1, 23] or [27, Chap. V]. A vector lattice (also called Riesz space) is a real vector space 𝐸 endowed
with a lattice ordering ≤ that is invariant with respect to translations and multiplication with positive scalars [1, Def. 1.1],
[23, p. 4], [27, p. 204]. In particular, absolute values are well-defined by the formula |𝑓| = sup{𝑓, −𝑓} for 𝑓 ∈ 𝐸 in any
vector lattice 𝐸. A locally convex lattice (also called locally convex-solid Riesz space) is a vector lattice endowed with a locally
convex-solid topology [1, Def. 2.16 and p. 59], [23, Def. 4.6], [27, p. 234]. That is, a locally convex topology with a base at zero
consisting of solid sets. A subset𝐴 of a vector lattice 𝐸 is called solid if 𝑓 ∈ 𝐴, 𝑔 ∈ 𝐸 and |𝑔| ≤ |𝑓| imply that also 𝑔 ∈ 𝐴 [1,
p. 8], [23, p. 35, 102], [27, p. 209]. The symbol 𝐸+ will denote the non-negative elements of a vector lattice 𝐸. A seminorm 𝑝

is called a lattice-seminorm if |𝑓| ≤ |𝑔| implies 𝑝(𝑓) ≤ 𝑝(𝑔). The continuous lattice-seminorms on a locally convex lattice
𝐸 are denoted by clsn 𝐸. The seminorms 𝑝 ∈ clsn 𝐸 generate the topology of 𝐸 [1, Thm. 2.25], [23, p. 105], [27, p. 235].
The space of Radon measures M on ℝ𝑑 will be endowed with the topology generated by the seminorms 𝜇 ↦ |𝜇|(𝜙),

𝜙 ∈ K +, where K denotes the compactly supported continuous functions on ℝ𝑑. This is the coarsest topology on M
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KLEINER and HILFER 1945

that is finer than the weak topology induced byK and that turnsM into a locally convex lattice [1, Def. 2.34, Thm. 2.35],
[27, p. 235].
A locally convex space 𝐸 will be called solid space of measures over ℝ𝑑 if 𝐸 is a solid linear subspace ofM and a locally

convex lattice such that the canonical inclusionsK → 𝐸 → M are continuous.

Definition 3.8. A solid regularization-invariant space 𝐸 is a solid space of measures over ℝ𝑑 with the property that 𝑓 ↦

𝜙 ∗ 𝑓 defines a continuous linear endomorphism of 𝐸 for all 𝜙 ∈ D , that is, 𝐸 is (continuously) regularization-invariant.

Let 𝑝 ∈ [1, +∞]. The space of locally 𝑝-integrable functions is denoted by 𝐿𝑝
loc

and 𝐿
𝑝

𝔎
denotes the functions from 𝐿𝑝

with compact support inℝ𝑑. As a locally convex space, 𝐿𝑝
𝔎
is the inductive limit of the spaces 𝐿𝑝𝐾 ∶= {𝑓 ∈ 𝐿𝑝 ; supp 𝑓 ⊆ 𝐾}

with 𝐾 ∈ 𝔎, where𝔎 denotes the compact subsets ofℝ𝑑. The norm on 𝐿𝑝 is denoted by ‖ ⋅ ‖𝑝. The norm on the space of
integrable measuresM 1 is also denoted by ‖ ⋅ ‖1.
Example 3.9. Let 𝐸 be a solid space of measures over ℝ𝑑. Then, if the translation group (𝑇𝑥)𝑥∈ℝ𝑑 defines a locally
equicontinuous C0-group on 𝐸 and 𝐸 has the convex compactness property (compare [9, Section 3]), then 𝐸 is a solid
regularization-invariant space. The converse is false as our definition does not even guarantee translation invariance.
Consider, for example, the linear span of 𝐿1 and 𝛿 endowed with the trace topology induced by M 1.
The first assertion requires a remark. First, note that (𝑇𝑥)𝑥∈ℝ𝑑 is a locally equicontinuous C0-group on the complete

spaceD ′. The convolution of𝜇 ∈ 𝐸 or𝜇 ∈ D ′ and ameasure 𝜈 ∈ M with supp 𝜈 compact can be defined as a vector-valued
integral

𝜈 ∗𝑇 𝜇 = ∫ T𝑥𝜇 d𝜈(𝑥), (3.21)

in the space 𝐸 or D ′, respectively [26, p. 77]. Due to the continuous inclusion 𝐸 ⊆ D ′, the definitions in both the spaces
𝐸 and D ′ coincide if 𝜇 ∈ 𝐸. Due to the equicontinuity of (𝑇𝑥)𝑥∈ℝ𝑑 and formula (3.21), one obtains a continuous lin-
ear operator, on 𝐸 and on D ′, that commutes with translations. On the space D ′ the operator (𝜈 ∗𝑇 −) also commutes
with partial derivatives (compare [16, Lem. 3 on p. 397]). This implies [16, Cor. on p. 399] the existence of a unique
𝜈̃ ∈ E ′ such that 𝜈 ∗𝑇 𝜇 = 𝜈̃ ∗ 𝜇 for all 𝜇, with the right-hand defined by convolution of distributions. Testing with
𝜇 = 𝜙 ∈ D yields 𝜈̃ = 𝜈. Thus, for 𝜇 ∈ 𝐸, the definition (3.21) coincides with convolution of measures and it follows that
𝐸 is continuously regularization-invariant.

Proposition 3.10. Let𝐸 be a solid regularization-invariant space. Then, the inclusion𝐿∞
𝔎

→ 𝐸 is continuous and convolution
defines a separately continuous mapping 𝐿∞

𝔎
× 𝐸 → 𝐸.

Proof. Let𝐾 ∈ 𝔎 and 𝑘 ∈ 𝐿∞𝐾 . It holds |𝑘 ∗ 𝜇| ≤ 𝜙 ∗ |𝜇| for a suitable 𝜙 ∈ D . Thus, solidity and continuous regularization-
invariance of 𝐸 imply continuity of 𝐿∞𝐾 × 𝐸 → 𝐸 in the right-hand argument. As 𝐿∞𝐾 is metrizable, consider a sequence
(𝜇𝑛) ⊆ 𝐿∞𝐾 . Then |𝜇𝑛| ≤ 𝜆𝑛𝜙 for some 𝜙 ∈ D and (𝜆𝑛) ⊆ ℝ+ with 𝜆𝑛 → 0. It follows |𝜇𝑛 ∗ 𝜈| ≤ 𝜆𝑛𝜙 ∗ |𝜈|→ 0, and thus,
continuity of 𝐿∞𝐾 × 𝐸 → 𝐸 in the left-hand argument. The continuity of 𝐿∞𝐾 → 𝐸 is established similarly. Taking the
inductive limit with respect to 𝐾 ∈ 𝔎 completes the proof. □

3.3 Characterization of the locally convex structure

Throughout this section, 𝐸 will denote a fixed solid regularization-invariant space, as introduced in Definition 3.8.

Theorem 3.11. The following sets of distributions coincide

𝐹a ∶= {𝑓 ∈ D ′ ; ∀𝜙 ∈ D ∶ 𝜙 ∗ 𝑓 ∈ 𝐸}, (3.22a)

𝐹b ∶= O ′
𝐶(D , 𝐸), (3.22b)

𝐹c ∶= {𝑓 ∈ D ′ ; ∀𝜙 ∈ D , 𝐾 ∈ 𝔎 ∶ T𝐾|𝜙 ∗ 𝑓| ∈ 𝐸}, (3.22c)

𝐹d ∶= {𝑓 ∈ D ′ ; ∀Φ ∈ 𝔅(D) ∶ |𝑓|Φ ∈ 𝐸}, (3.22d)
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1946 KLEINER and HILFER

where O ′
𝐶(D , 𝐸) was defined in Section 2. The following topologies on the space O ′

𝐶(D , 𝐸) coincide: the initial topologies
Ta,Tb,Tc induced by each of the following mappings or sets of mappings:

O ′
𝐶(D , 𝐸) → Ls(D , 𝐸) 𝑓 ↦ (𝜓 ↦ 𝜓 ∗ 𝑓), (3.23a)

O ′
𝐶(D , 𝐸) → Lb(D , 𝐸) 𝑓 ↦ (𝜓 ↦ 𝜓 ∗ 𝑓), (3.23b)

O ′
𝐶(D , 𝐸) → 𝐸 𝑓 ↦ 𝜙 ∗ 𝑓 𝜙 ∈ D , (3.23c)

and the topology Td generated by the set of seminorms

O ′
𝐶(D , 𝐸) → ℝ+ 𝑓 ↦ 𝑝(|𝑓|Φ) Φ ∈ 𝔅(D), 𝑝 ∈ clsn 𝐸. (3.23d)

Proof. Solidity implies 𝐹c ⊆ 𝐹a and from Equation (3.4a) we obtain 𝐹d ⊆ 𝐹c. Conversely, the inclusion 𝐹a ⊆ 𝐹d follows
from Proposition 3.6, solidity and the relation 𝐿∞

𝔎
∗ 𝐸 ⊆ 𝐸 from Proposition 3.10.

Let 𝑝 ∈ clsn 𝐸 and Φ ∈ 𝔅(D). The inclusion Tb ⊆ Td follows from the estimate

sup{𝑝(𝜙 ∗ 𝑓) ; 𝜙 ∈ Φ} ≤ 𝑝(sup{|𝜙 ∗ 𝑓| ; 𝜙 ∈ Φ}) = 𝑝(|𝑓|Φ) for all 𝑓 ∈ 𝐹𝑎. (3.24)

Because D is bornological the finiteness of 𝑝(|𝑓|Φ) in Equation (3.24) implies 𝑓 ∈ O ′
𝐶(D , 𝐸), thus 𝐹a = 𝐹b. Proposi-

tion 3.6, solidity, and the convolution result from Proposition 3.10 imply that for all 𝑝 ∈ clsn 𝐸 and Φ ∈ 𝔅(D) there exist
𝜙1, … , 𝜙2𝑑 ∈ D , 𝐾 ∈ 𝔎 and 𝑞 ∈ clsn 𝐸 such that

𝑝(|𝑓|Φ) ≤ 𝑝
⎛⎜⎜⎝
2𝑑∑
𝑘=1

1𝐾 ∗ |𝑓|𝜙𝑘⎞⎟⎟⎠ ≤
2𝑑∑
𝑘=1

𝑞
(|𝑓|𝜙𝑘) = 2𝑑∑

𝑘=1

𝑞(𝜙𝑘 ∗ 𝑓) for all 𝑓 ∈ 𝐹a. (3.25)

This impliesTd ⊆ Ta. The remaining inclusions are obvious, for instance,Ta = Tc is immediate from the definitions. □

Remark 3.12. It is clear thatO ′
𝐶(D , 𝐸) = O ′

𝐶(D , 𝐸 ∩ C ) and that all the statements of Theorem 3.11 hold for 𝐸 ∩ C as well
when 𝐸 ∩ C has the subspace topology induced by 𝐸. This follows from the fact that the functions 𝜙 ∗ 𝑓, |𝜙 ∗ 𝑓| and |𝑓|Φ
are continuous for all 𝑓 ∈ D ′, 𝜙 ∈ D and Φ ∈ 𝔅(D).

Example 3.13. It is immediate from the definition that the seminorms 𝑓 ↦ |𝑓|Φ(𝑥) with Φ ∈ 𝔅(D) and 𝑥 ∈ ℝ𝑑 define
the strong topology on D ′. In contrast to this, the seminorms 𝑓 ↦ |(𝜙 ∗ 𝑓)(𝑥)| with 𝜙 ∈ D and 𝑥 ∈ ℝ𝑑 define the weak
topology onD ′. Proposition 3.6 proves that the seminorms 𝑓 ↦ sup{|(𝜙 ∗ 𝑓)(𝑥)| ; 𝑥 ∈ 𝐾}with 𝜙 ∈ D and𝐾 ∈ 𝔎 generate
the strong topology onD ′. The spacesM , 𝐿∞

loc
and 𝐿1

loc
satisfy the assumptions in Theorem 3.11 (when endowed with their

usual topology). From Theorem 3.11 and Proposition 3.6 it follows thatD ′ = 𝐹a = ⋯ = 𝐹d and the strong topology onD ′

coincides with Ta = ⋯ = Td for 𝐸 ∈ {M , 𝐿∞
loc
, 𝐿1

loc
}.

Example 3.14. Consider for 𝐸 the space C endowed with the topology of point-wise convergence. This space is a locally
convex lattice but not continuously included in M . It holds D ′ = 𝐹a = ⋯ = 𝐹d and Ta = Tc coincides with the weak
topology on D ′ while Tb = Td coincides with the strong topology on D ′. The latter identity is immediate from the
equalities

|𝑓|Φ(𝑥) = sup
𝜙∈Φ
|(𝜙 ∗ 𝑓)(𝑥)| = sup

𝜙∈Φ
|⟨𝑓, T𝑥𝜙̌⟩| for all Φ ∈ 𝔅(D), 𝑥 ∈ ℝ𝑑, 𝑓 ∈ D ′, (3.26)

because translation and reflection induce bijections𝔅(D) → 𝔅(D). Considering the space E of smooth functions we find
thatD ′ = 𝐹a = 𝐹b, but {0} = 𝐹c = 𝐹d. On the other hand, for 𝐸 = D ′, one obtains thatD ′ = 𝐹a = 𝐹b = 𝐹c = 𝐹d and that
Ta = Tb = Tc = Td due to Corollary 3.4.

Lemma 3.15. The set {(𝜙 ∗ 𝑓)𝜙∈D ; 𝑓 ∈ D ′} is contained and closed in both the product spaces
∏

𝜙∈D
D ′ and

∏
𝜙∈D

E .

Proof. According to Examples 3.13 and 3.14, the strong topology onD ′ coincideswith the initial topologywith respect to the
mapping 𝑓 ↦ (𝜙 ∗ 𝑓)𝜙∈D with the codomain

∏
𝜙∈D

D ′ or
∏

𝜙∈D
E . This implies the lemma becauseD ′ is complete. □
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KLEINER and HILFER 1947

Corollary 3.16. The space O ′
𝐶(D , 𝐸) is isomorphic to a closed subspace of

∏
𝜙∈D

𝐸 via the mapping 𝑓 ↦ (𝜙 ∗ 𝑓)𝜙∈D .

Proof. Theorem 3.11 implies, first, that the space O ′
𝐶(D , 𝐸) is isomorphic to the set 𝐼 ∶= {(𝜙 ∗ 𝑓)𝜙∈D ; 𝑓 ∈ 𝐸} endowed

with the subspace topology of
∏

𝜙∈D
𝐸, and, second, that the set 𝐼 is the intersection of

∏
𝜙∈D

𝐸 and {(𝜙 ∗ 𝑓)𝜙∈D ; 𝑓 ∈ D ′},
the latter being closed in

∏
𝜙∈D

D ′ by Lemma 3.15. Therefore, 𝐼 is closed in
∏

𝜙∈D
𝐸 because 𝐸 ⊆ D ′ continuously. □

Remark 3.17. According to Theorem 3.11, and because D is bornological, the following three locally convex spaces of
distributions coincide:

1. The space {𝑓 ∈ D ′ ; ∀𝜙 ∈ D ∶ |𝜙 ∗ 𝑓| ∈ 𝐸} with the seminorms 𝑓 ↦ 𝑝(|𝜙 ∗ 𝑓|), 𝜙 ∈ D , 𝑝 ∈ clsn 𝐸.
2. The space {𝑓 ∈ D ′ ; ∀Φ ∈ 𝔅(D) ∶ |Φ ∗ 𝑓| ∈ 𝔅(𝐸)}with the seminorms𝑓 ↦ sup𝜙∈Φ 𝑝(|𝜙 ∗ 𝑓|),Φ ∈ 𝔅(D),𝑝 ∈ clsn 𝐸.
3. The space {𝑓 ∈ D ′ ; ∀Φ ∈ 𝔅(D) ∶ |𝑓|Φ ∈ 𝐸} with the seminorms 𝑓 ↦ 𝑝(|𝑓|Φ), Φ ∈ 𝔅(D), 𝑝 ∈ clsn 𝐸.

This captures, in a nutshell, the subtle differences that disappear due to the mild assumptions on 𝐸 from Definition 3.8
and the factorization property Theorem 3.2.

3.4 Conclusions from the characterization theorem

As in the previous subsection, let 𝐸 be a fixed solid regularization-invariant space and let 𝐹 = O ′
𝐶(D , 𝐸) throughout

the section. We will now derive conclusions from the characterizations provided in Theorem 3.11 such as topological
characterizations of subsets via regularization and inheritance properties of the mapping O ′

𝐶(D , −).

Corollary 3.18. Let𝐻 be a subset of 𝐹.

1. The set𝐻 is bounded (relatively compact) in 𝐹 if and only if 𝜙 ∗ 𝐻 is bounded (relatively compact) in 𝐸 for all 𝜙 ∈ D .
2. The set𝐻 is bounded in 𝐹 if and only if |𝐻|Φ is bounded in 𝐸 for all Φ ∈ 𝔅(D).
3. If𝐻 is relatively compact in 𝐹, then |𝐻|Φ is relatively compact in 𝐸 for all Φ ∈ 𝔅(D).
4. If the solid hull of |𝐻|Φ is relatively compact in 𝐸 for all Φ ∈ 𝔅(D), then𝐻 is relatively compact in 𝐹.

Proof. Corollary 3.16 and Tikhonov’s theorem imply Part 1. The continuity of 𝐹 ∋ 𝑓 ↦ |𝑓|Φ ∈ 𝐸 for allΦ ∈ 𝔅(D) implies
Parts 2 and 3. Part 1 implies Part 4 because the solid hull of |𝐻|Φ contains |𝜙 ∗ 𝐻| for all 𝜙 ∈ Φ and | ⋅ | is continuous on
𝐸. □

Remark 3.19. The third statement in Corollary 3.18 simplifies if the space𝐸 satisfies the following property: a locally convex
lattice is said to satisfy the convex-solid compactness property if and only if the convex-solid hull of every compact subset
is compact as well. The convex-solid hullmeans the smallest superset that is solid and convex. This is an analogue of the
convex compactness property [35, p. 134], [9, p. 4]. Clearly, convex-solid compactness implies convex compactness. For the
converse implication, a simple counter example is given by the complete space 𝐿∞. In this space, the solid closure of the
singleton set {1} is absolute convex and bounded, but not compact.

Corollary 3.20. The iteration property O ′
𝐶(D ,O ′

𝐶(D , 𝐸)) = O ′
𝐶(D , 𝐸) holds.

Proof. This is immediate from Theorem 3.11 and Corollary 3.4. □

Corollary 3.21. The space 𝐸 is continuously included in 𝐹.

Proof. This follows from Theorem 3.11 and regularization-invariance of 𝐸. □

Corollary 3.22. The continuous inclusion 𝐹 ⊆ D ′ holds.

Proof. Example 3.13 yields D ′ = O ′
𝐶(D ,M ) and O ′

𝐶(D , −) preserves continuous inclusions. □
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1948 KLEINER and HILFER

A proof for the continuous inclusion E ′ ⊆ 𝐹, that is, based on Theorem 5.6, is given in Example 5.7 on p. 18. In Propo-
sition 3.24 below, for a space of distributions 𝐺 let 𝐺𝔎 ∶= 𝐺 ∩ E ′ denote the elements from 𝐺 with compact support and
let 𝐺0 denote the topological closure of the set 𝐺𝔎 in 𝐺, endowed with the subspace topology induced by 𝐺.

Lemma 3.23. Let a sequence (𝑔𝑛) ⊆ 𝐸 be bounded by some 𝑔 ∈ 𝐸0 and such that 𝑔𝑛 → 0 in 𝐿∞
loc
. Then 𝑔𝑛 → 0 in 𝐸.

Proof. Given any 𝜖 > 0 and 𝑝 ∈ clsn 𝐸, 𝐾 can be chosen such that 𝑝(1ℝ𝑑⧵𝐾 ⋅ 𝑔𝑛) ≤ 𝑝(1ℝ𝑑⧵𝐾 ⋅ 𝑔) ≤ 𝜖∕2. This is because 𝐸𝔎

is dense in 𝐸0 and due to the inequality |𝑔 − 𝑘| ≤ |1ℝ𝑑⧵supp 𝑘 ⋅ 𝑔| for any 𝑘 ∈ 𝐸𝔎. Further, the assumption implies that
1𝐾 ⋅ 𝑔𝑛 → 0 in 𝐸 for any 𝐾 ∈ 𝔎 because 𝐿∞

𝔎
is continuously included in 𝐸. The triangle inequality implies that 𝑝(𝑔𝑛) ≤ 𝜖

for 𝑛 ∈ ℕ large enough, that is, 𝑔𝑛 → 0. □

Proposition 3.24. The space 𝐸0 is solid and regularization-invariant. The identities of locally convex spaces

O ′
𝐶(D , 𝐸0) = 𝐹0 = E ′𝐹 = D𝐹 (3.27)

hold and

𝜃𝑛𝑓 → 𝑓 in 𝐹 for all 𝑓 ∈ O ′
𝐶(D , 𝐸0) and all approximate units (𝜃𝑛). (3.28)

In particular, if 𝐸𝔎 is dense in 𝐸 thenD is dense in 𝐹.

Proof. Clearly, the set 𝐸𝔎 is solid in 𝐸 and, as 𝐸 is a locally convex lattice, the closure 𝐸0 of 𝐸𝔎 is solid in 𝐸 as well [23,
Prop. 4.8]. Further, D ∗ 𝐸𝔎 ⊆ 𝐸𝔎 and therefore D ∗ 𝐸0 ⊆ 𝐸0 by continuity. With 𝐸0 carrying the subspace topology of 𝐸,
it follows that 𝐸 is solid and regularization-invariant.
For 𝑓 ∈ 𝐸, it is clear that 𝑓 ∈ E ′ if and only if 𝜙 ∗ 𝑓 ∈ 𝐸𝔎 for all 𝜙 ∈ D . Theorem 3.11 implies thatO ′

𝐶(D , 𝐸0) is a closed
subset of𝐹 = O ′

𝐶(D , 𝐸) andProposition 3.10 yieldsE ′ ⊆ 𝐹. One concludes thatO ′
𝐶(D , 𝐸0) ⊇ 𝐹0 = E ′𝐹 = D𝐹 . For the con-

verse inclusion, one shows that 𝜃𝑛𝑓 → 𝑓 in 𝐹 for 𝑓 ∈ O ′
𝐶(D , 𝐸0) and any approximate unit (𝜃𝑛). Indeed, Proposition 3.7

and Lemma 3.23 imply that |(1 − 𝜃𝑛)𝑓|Φ → 0 in 𝐸 for all Φ ∈ 𝔅(D). Therefore, 𝜃𝑛𝑓 → 𝑓 in 𝐹 by Theorem 3.11. □

Proposition 3.25. If 𝐸 is (sequentially, quasi-) complete, or has the convex compactness property, then the same holds for 𝐹.

Proof. Let 𝑓𝑖 be a Cauchy net in𝐹 and let 𝜙 ∈ D . The net 𝑓𝑖 has a limit 𝑓 inD ′ because𝐹 ⊆ D ′ continuously. In particular,
it follows from Example 3.13 that 𝜙 ∗ 𝑓𝑖 → 𝜙 ∗ 𝑓 withinM . According to Theorem 3.11, the net 𝜙 ∗ 𝑓𝑖 is Cauchy in 𝐸 and
therefore 𝜙 ∗ 𝑓𝑖 → 𝑔 within 𝐸 if 𝐸 is complete. It holds 𝜙 ∗ 𝑓 = 𝑔 because limits in M are unique. This implies 𝑓𝑖 → 𝑓

within 𝐹. The same reasoning applies for sequential completeness. Combining this reasoning with Corollary 3.18, one
obtains the inheritance of quasi-completeness and the convex compactness property. □

4 WEIGHTED CONVOLUTOR SPACES

In this section, we consider distribution spaces of the form O ′
𝐶(D , 𝐸𝑊). For the special case 𝐸 = 𝐿1, we characterize the

dual spaces and describe a predual. The weighted space 𝐸𝑊 is defined in terms of a solid regularization-invariant space 𝐸
and a moderated cone ideal𝑊 as the linear space

𝐸𝑊 ∶= {𝜇 ∈ M ; ∀𝑤 ∈ 𝑊 ∶ 𝑤 ⋅ 𝜇 ∈ 𝐸} (4.1)

endowed with the topology generated by the solid seminorms 𝜇 ↦ 𝑝(𝑤 ⋅ 𝜇) with 𝑝 ∈ clsn 𝐸 and 𝑤 ∈ 𝑊.
Throughout this section, 𝑊 denotes a fixed moderated cone ideal, that is, a lower set 𝑊 ⊆ I+lb with the properties

K + ⊆ 𝑊,𝑊 +𝑊 ⊆ 𝑊 and T𝐾𝑊 ⊆ 𝑊 for all 𝐾 ∈ 𝔎. A single weight 𝑤 ∈ C + will be called moderated if 0 ≠ 𝑤 and for
all 𝐾 ∈ 𝔎 there exists 𝐶𝐾 ∈ ℝ+ such that T𝐾𝑤 ≤ 𝐶𝐾 ⋅ 𝑤.
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KLEINER and HILFER 1949

4.1 Description of weighted spaces by multiplication with smooth weights

In Propositions 4.5 and 4.6, the locally convex structure of the convolutor spaceO ′
𝐶(D , 𝐸𝑊) is described via the basic space

O ′
𝐶(D , 𝐸) and multiplication with smooth functions that are associated with the cone ideal𝑊.

Proposition 4.1. The space 𝐸𝑊 is a solid regularization-invariant space.

Proof. It is clear that 𝐸𝑊 is solid. Let 𝑤 ∈ I+lb, 𝜇 ∈ M+ and 𝐾 ∈ 𝔎. Using 𝑥 ∈ 𝑥 + 𝐾 − 𝐾 one obtains the estimate

(𝑤 ⋅ (1𝐾 ∗ 𝜇))(𝑥) = ∫
𝑥−𝐾

𝑤(𝑥) d𝜇(𝑦) ≤ ∫
𝑥−𝐾

(
sup

𝑧∈𝑦+𝐾
𝑤(𝑧)

)
d𝜇(𝑦) = (1𝐾 ∗ ((T−𝐾𝑤) ⋅ 𝜇))(𝑥) for all 𝑥 ∈ ℝ𝑑. (4.2)

In particular, for all 𝑤 ∈ 𝑊, 𝜙 ∈ D and 𝜇 ∈ 𝐸𝑊 , one has |𝑤 ⋅ (𝜙 ∗ 𝜇)| ≤ 𝐶 ⋅ 1𝐾 ∗ (T−𝐾𝑤 ⋅ |𝜇|)with 𝐶 = ‖𝜙‖1, 𝐾 = supp𝜙

and therefore 𝑤 ⋅ (𝜙 ∗ 𝜇) ∈ 𝐸 due to Proposition 3.10 and because 𝑊 is moderated. Applying 𝑝 ∈ clsn 𝐸 to the last
inequality one concludes that 𝐸𝑊 is continuously regularization-invariant with the same reasoning. □

We will need some notations for spaces of smooth functions. Let 𝑢 ∶ ℝ𝑑 → ℝ+ be an upper semicontinuous function
that is bounded away from zero, that is, 1∕𝑢 ∈ I+lb. The symbol B𝑢 denotes the space of smooth functions ℎ such that‖𝑢 ⋅ 𝜕𝛼ℎ‖∞ < ∞ for all 𝛼 ∈ ℕ𝑑

0
. The spaceB𝑢 is endowed with the topology induced by the seminorms ℎ ↦ ‖𝑢 ⋅ 𝜕𝛼ℎ‖∞,

𝛼 ∈ ℕ𝑑
0
and the symbol Ḃ𝑢 will denote the closure of D ∩ B𝑢 = D{𝑢<∞} in B𝑢. In the description of their dual spaces,

the normed spaces 𝐿1𝑤 andM 1
𝑤 arise, also for weights𝑤 ∈ I+lb that are not everywhere positive. We will always consider

them as Banach spaces by passing to their Hausdorff quotients. These quotients can be interpreted as spaces of measures
on {𝑤 > 0}, because the set {𝑤 > 0} is open due to the lower semicontinuity of 𝑤.
For any 𝑤 ∈ I+lb and 𝐶 ∈ ℝ+(ℕ

𝑑
0
) ∶= {ℕ𝑑

0
→ ℝ+} we introduce the notation

B(𝑤 ; 𝐶) ∶=
{
ℎ ∈ E ; ∀𝛼 ∈ ℕ𝑑

0
∶ |𝜕𝛼ℎ| ≤ 𝐶𝛼 ⋅ 𝑤

}
. (4.3)

Then, for any 𝑢 ∶ ℝ𝑑 → ℝ+ with 1∕𝑢 ∈ I+lb, one has

B𝑢 =
⋃{

B(1∕𝑢 ; 𝐶) ; 𝐶 ∈ ℝ+(ℕ
𝑑
0
)
}
. (4.4)

For 𝐵 ∈ 𝔅(B), Φ ∈ 𝔅(D) and 𝑤 ∈ I+lb it is readily seen, that

𝐵 ⋅ (Φ ∗ 𝑤) ⊆ B
(
T𝐾𝑤 ; 𝐶

)
(4.5a)

when 𝐾 is the closure of
⋃

suppΦ and 𝐶 ∈ ℝ+(ℕ
𝑑
0
) is defined by

𝐶𝛼 ∶=
∑

𝛽,𝛾∈ℕ𝑑
0

𝛽+𝛾=𝛼

(
𝛼

𝛾

)
sup
{‖𝜕𝛽𝑏‖∞ ⋅ ‖𝜕𝛾𝜙‖1 ; 𝑏 ∈ 𝐵, 𝜙 ∈ Φ

}
for 𝛼 ∈ ℕ𝑑

0
. (4.5b)

Conversely, we have the following statement:

Lemma 4.2. Let 𝐶 ∈ ℝ+(ℕ
𝑑
0
) and let 𝐾 ∈ 𝔎 with 𝐾◦ ≠ ∅. There exist 𝐵 ∈ 𝔅(B) and 𝜓 ∈ D with the following property:

for all 𝑤 ∈ I+lb there exist 𝑤1,… ,𝑤3𝑑 ∈ I+lb such that 𝑤1,… ,𝑤3𝑑 ≤ T𝐾𝑤 and such that

B(𝑤 ; 𝐶) ⊆ 𝐵 ⋅ (𝜓 ∗ 𝑤1) +⋯+ 𝐵 ⋅ (𝜓 ∗ 𝑤3𝑑). (4.6)

Proof. Without restriction one may assume that 3𝑄 ⊆ 𝐾 with 𝑄 ∶= [−1, 1]𝑑. Choose 𝜂 ∈ D𝑄 such that the series∑
𝑧∈ℤ𝑑 T𝑧𝜂 converges to 1 absolutely in Bc and let 𝑤 ∈ I+lb and 𝑓 ∈ B (𝑤 ; 𝐶). Then, the series

∑
𝑧∈ℤ𝑑(𝑓 ⋅ T𝑧𝜂)∕𝑣(𝑧),
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1950 KLEINER and HILFER

with the weight 𝑣 ∶= T𝑄𝑤, is well-defined with the convention 0∕0 = 0 and converges in Bc. Thus, we can define

𝑏𝑘 ∶=
∑

𝑧∈𝑘+3ℤ𝑑

(𝑓 ⋅ T𝑧𝜂)∕𝑣(𝑧) for 𝑘 ∈ {0, 1, 2}𝑑. (4.7)

Now, choose 𝜓 ∈ D and plateau functions 𝑤𝑘 ∈ I+lb such that

(𝜓 ∗ 𝑤𝑘)(𝑧 + 𝑥) = 𝑣(𝑧) for all 𝑥 ∈ 𝑄, 𝑧 ∈ 𝑘 + 3ℤ𝑑, 𝑘 ∈ {0, 1, 2}𝑑. (4.8)

Such functions 𝜓 and 𝑤𝑘 can be constructed by taking 𝜓 ∈ D𝑄∕8 with ∫ 𝜓(𝑥) d𝑥 = 1, 𝜓 ≥ 0 and defining 𝜃 ∶= 𝜓 ∗ 1(3∕2)𝑄

and 𝑤𝑘 ∶=
∑

𝑧∈𝑘+3ℤ𝑑 𝑣(𝑧) ⋅ T𝑧𝜃. The inequalities 𝑤𝑘 ≤ T2𝑄𝑣 = T3𝑄𝑤 ≤ T𝐾𝑤 hold, in particular, 𝑤𝑘 ∈ I+lb. It follows

𝑓 =

3𝑑∑
𝑘=1

( ∑
𝑧∈𝑘+3ℤ𝑑

(𝑓 ⋅ T𝑧𝜂)∕𝑣(𝑧) ⋅ 𝑣(𝑧)

)
=

3𝑑∑
𝑘=1

𝑏𝑘 ⋅ (𝜓 ∗ 𝑤𝑘). (4.9)

By construction, the convergence of the series in Equation (4.7) is uniformwith respect to𝑓 ∈ B (𝑤 ; 𝐶) for fixed𝑤 ∈ I+lb.
Hence, the collection 𝐵 of all possible functions 𝑏𝑘 is bounded in B. □

Lemma 4.3. Let 𝐶 ∈ ℝ+(ℕ
𝑑
0
) and Φ ∈ 𝔅(D). There exist 𝐾 ∈ 𝔎 and Ψ ∈ 𝔅(D) such that

|𝑓 ⋅ ℎ|Φ ≤ |𝑓|Ψ ⋅ T𝐾𝑤 for all ℎ ∈ B(𝑤 ; 𝐶), 𝑤 ∈ I+lb, 𝑓 ∈ D ′. (4.10)

Proof. Let 𝐾 be the closure of
⋃

suppΦ. Let ℎ ∈ B (𝑤 ; 𝐶) and 𝑤 ∈ I+lb. There exist 𝐶′
𝛼 ∈ ℝ+ such that

sup{‖𝜕𝛼(T−𝑥ℎ ⋅ 𝜙̌)‖∞ ; 𝜙 ∈ Φ} = sup{|𝜕𝛼𝑦 (ℎ(𝑥 − 𝑦)𝜙(𝑦))| ; 𝜙 ∈ Φ, 𝑦 ∈ 𝐾} ≤ 𝐶′
𝛼 ⋅ T𝐾𝑤(𝑥) for all 𝑥 ∈ ℝ𝑑, 𝛼 ∈ ℕ𝑑

0
. (4.11)

Due to Equation (4.11) and because
⋃

supp Φ̌ is relatively compact one finds Ψ ∈ 𝔅(D) such that T−𝑥ℎ ⋅ Φ̌ ⊆ Ψ̌ ⋅ T𝐾𝑤(𝑥)

for all 𝑥 ∈ ℝ𝑑. Then, one estimates

|𝑓 ⋅ ℎ|Φ(𝑥) = sup
{|||⟨𝑓 ⋅ ℎ, T𝑥𝜙̌

⟩||| ; 𝜙 ∈ Φ
}

= sup
{|||⟨𝑓, T𝑥(T−𝑥ℎ ⋅ 𝜙̌)

⟩||| ; 𝜙 ∈ Φ
}

≤ sup

{||||⟨𝑓, T𝐾𝑤(𝑥) ⋅ T𝑥𝜓̌
⟩|||| ; 𝜓 ∈ Ψ

}
= |𝑓|Ψ(𝑥) ⋅ T𝐾𝑤(𝑥) for all 𝑥 ∈ ℝ𝑑, (4.12)

which is Equation (4.10). □

Lemma 4.4. Let Φ ∈ 𝔅(D). There exist Ψ ∈ 𝔅(D), 𝜃 ∈ D and 𝐾 ∈ 𝔎 with the following property: for all 𝑤 ∈ I+lb there
exist 𝑤1,… ,𝑤3𝑑 ∈ I+lb with 𝑤1,… ,𝑤3𝑑 ≤ T𝐾𝑤 such that

|𝑓|Φ ⋅ 𝑤 ≤ |𝑓 ⋅ (𝜃 ∗ 𝑤1)|Ψ +⋯+ |𝑓 ⋅ (𝜃 ∗ 𝑤3𝑑 )|Ψ for all 𝑓 ∈ D ′. (4.13)

Proof. Choose suitable 𝐶 ∈ ℝ+(ℕ
𝑑
0
) such that T𝑥Φ̌ ⋅ 𝑤(𝑥) ⊆ B

(
T(
⋃

suppΦ)𝑤 ; 𝐶
)
for all 𝑥 ∈ ℝ𝑑. Lemma 4.2 yields 𝐾 ∈ 𝔎,

𝐵 ∈ 𝔅(B) and 𝜃 ∈ D with the property that for all 𝑤 ∈ I+lb one finds 𝑤1,… ,𝑤𝑑 such that 𝑤1,… ,𝑤3𝑑 ≤ T𝐾𝑤 and

T𝑥Φ̌ ⋅ 𝑤(𝑥) ⊆ B
(
T(
⋃

suppΦ)𝑤 ; 𝐶
)
⊆ 𝐵 ⋅ (𝜃 ∗ 𝑤1) +⋯+ 𝐵 ⋅ (𝜃 ∗ 𝑤3𝑑) for all 𝑥 ∈ ℝ𝑑. (4.14)
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KLEINER and HILFER 1951

Then, let 𝜒 ∈ D equal to 1 on the compact set
⋃

suppΦ ⊆ ℝ𝑑 and define the set Ψ ∶= {𝜒 ⋅ T−𝑥𝐵̌ ; 𝑥 ∈ ℝ𝑑} ∈ 𝔅(D).
Multiplying Equation (4.14) with T𝑥𝜒 yields

T𝑥Φ̌ ⋅ 𝑤(𝑥) ⊆ T𝑥Ψ̌ ⋅ (𝜃 ∗ 𝑤1) +⋯+ T𝑥Ψ̌ ⋅ (𝜃 ∗ 𝑤3𝑑 ) for all 𝑥 ∈ ℝ𝑑. (4.15)

Similar to Equation (4.12) one derives Equation (4.13) from this inclusion. □

The following two propositions are now immediate from Theorem 3.11 and the two Lemmas 4.3 and 4.4.

Proposition 4.5. Let𝐻 be one of the sets
⋃
{B1∕𝑤 ; 𝑤 ∈ 𝑊} orD ∗𝑊. Then, O ′

𝐶(D , 𝐸𝑊) is equal to the linear space{
𝑓 ∈ D ′ ; ∀ℎ ∈ 𝐻 ∶ ℎ ⋅ 𝑓 ∈ O ′

𝐶(D , 𝐸)
}

(4.16)

endowed with the initial topology with respect to the mappings 𝑓 ↦ ℎ ⋅ 𝑓 ∈ O ′
𝐶(D , 𝐸) with ℎ ∈ 𝐻.

Proposition 4.6. Let 𝑤 ∈ C + be moderated and let ℎ ∈ B𝑤 ∩ (1∕B1∕𝑤). The space O ′
𝐶(D , 𝐸𝑤) is isomorphic to ℎ ⋅

O ′
𝐶(D , 𝐸) where the latter space is endowed with the topology induced by the bijection O ′

𝐶(D , 𝐸) ∋ 𝑓 ↦ ℎ ⋅ 𝑓.

Remark 4.7. Let 𝑤 ∈ C + be moderated and 0 ≠ 𝜙 ∈ D with 𝜙 ≥ 0. One readily verifies (𝜙 ∗ 𝑤)−1 ∈ B𝑤 ∩ (1∕B1∕𝑤).

4.2 Dual spaces of weighted 𝑳𝟏 convolutor spaces

The convolutor spaceO ′
𝐶(D , 𝐿1𝑊) is considered now,where theweightedLebesgue space𝐿1𝑊 is defined as inEquation (4.1).

According to Proposition 4.1, the space 𝐿1𝑊 is a solid regularization-invariant space and Theorem 3.11 can be applied. It
follows that the topology on O ′

𝐶(D , 𝐿1𝑊) is generated by the seminorms

𝑓 ↦ ∫ |𝑓|Φ(𝑥)𝑤(𝑥) d𝑥 with 𝑤 ∈ 𝑊, Φ ∈ 𝔅(D), (4.17)

and it holds O ′
𝐶(D , 𝐿1𝑊) = {𝑓 ∈ D ′ ; ∀𝜙 ∈ D ∶ 𝜙 ∗ 𝑓 ∈ 𝐿1𝑊}. Because D is dense in 𝐿1𝑊 and 𝐿1𝑊 is complete, Proposi-

tions 3.24 and 3.25 yield that D is dense in O ′
𝐶(D , 𝐿1𝑊) and that O ′

𝐶(D , 𝐿1𝑊) is complete as well.
In Theorem 4.10, we characterize the dual space of O ′

𝐶(D , 𝐿1𝑊). The equicontinuous sets are characterized using the
description of the topology by the seminorms (4.17).

Lemma 4.8. Let 𝐶 ∈ ℝ+(ℕ
𝑑
0
) and 𝐾 ∈ 𝔎 with non-empty interior. There exists Φ ∈ 𝔅(D) such that

sup {|⟨𝑓, ℎ⟩| ; ℎ ∈ B(𝑤 ; 𝐶)} ≤ ∫ |𝑓|Φ(𝑥)T𝐾𝑤(𝑥) d𝑥 for all 𝑓 ∈ E ′, 𝑤 ∈ I+lb. (4.18)

Proof. Let 𝐵, 𝜙 and 𝑤1,… ,𝑤3𝑑 be as in Lemma 4.2. Define the bounded set Φ ∶= {3𝑑 ⋅ 𝜙̌T𝑥𝑏 ; 𝑏 ∈ 𝐵, 𝑥 ∈ ℝ𝑑}, one obtains
the estimate

|⟨𝑓, 𝑏 ⋅ (𝜙 ∗ 𝑤𝑘)⟩| = |⟨𝜙̌ ∗ (𝑏 ⋅ 𝑓), 𝑤𝑘⟩| ≤ ∫ |𝑏 ⋅ 𝑓|{𝜙̌}(𝑥) ⋅ 𝑤𝑘(𝑥) d𝑥 ≤ 1

3𝑑 ∫ |𝑓|Φ(𝑥) ⋅ 𝑤𝑘(𝑥) d𝑥 (4.19)

for all 𝑘 = 1,… , 3𝑑, 𝑓 ∈ E ′ and 𝑏 ∈ 𝐵. Now, Equation (4.18) follows from Equations (4.19) and (4.6). □

Lemma 4.9. Let Φ ∈ 𝔅(D). There exists 𝐶 ∈ ℝ+(ℕ
𝑑
0
) and 𝐾 ∈ 𝔎 such that

∫ |𝑓|Φ(𝑥)𝑤(𝑥) d𝑥 ≤ sup
{|⟨𝑓, ℎ⟩| ; ℎ ∈ B

(
T𝐾𝑤 ; 𝐶

)
∩ D
}

for all 𝑓 ∈ E ′, 𝑤 ∈ I+lb. (4.20)
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1952 KLEINER and HILFER

Proof. Let 𝑄 ∶= [0, 1]𝑑, Θ ∶= T𝑄Φ and 𝐶′
𝛼 ∶= sup{‖𝜕𝛼𝜃‖∞ ; 𝜃 ∈ Θ}. Define

𝐻 ∶=
{∑

𝑧∈ℤ𝑑 𝜆𝑧 ⋅ T𝑧𝜃̌𝑧 ; 𝜃𝑧 ∈ Θ, 𝜆𝑧 ∈ ℂ, |𝜆𝑧| ≤ T𝑄𝑤(𝑧)
}
.

The set 𝐻 consists of limits of series that converge absolutely in E . The functions ℎ ∈ 𝐻 obey |𝜕𝛼ℎ| ≤ 𝐶𝛼 ⋅ T𝐾𝑤 for all
𝛼 ∈ ℕ𝑑

0
with 𝐾 the closure of 𝑄 +

⋃
suppΘ and 𝐶𝛼 ∶= 𝐶′

𝛼 ⋅ 𝑁 with 𝑁 ∶= #{𝑧 ∈ ℤ𝑑 ; (𝑧 + 𝐾) ∩ 𝐾 ≠ ∅}. One estimates

∫ |𝑓|Φ(𝑥)𝑤(𝑥) d𝑥 ≤ ∑
𝑧∈ℤ𝑑

T𝑄|𝑓|Φ(𝑧)T𝑄𝑤(𝑧)

= sup
𝐹⊆ℤ𝑑

finite

∑
𝑧∈𝐹

sup
𝜃𝑧∈𝜃

||||⟨𝑓, T𝑄𝑤(𝑧) ⋅ T𝑧𝜃̌𝑧

⟩||||
= sup

𝐹⊆ℤ𝑑

finite

sup
𝜃𝑧∈𝛩
𝜆𝑧∈ℂ|𝜆𝑧|≤T𝑄𝑤(𝑧)
𝑧∈𝐹

||||||
⟨
𝑓,
∑
𝑧∈𝐹

𝜆𝑧 ⋅ T𝑧𝜃̌𝑧

⟩|||||| ≤ sup
{|⟨𝑓, ℎ⟩| ; ℎ ∈ B

(
T𝐾𝑤 ; 𝐶

)
∩ D
}

for all 𝑓 ∈ E ′. □

Theorem 4.10. The dual space of O ′
𝐶(D , 𝐿1𝑊) is the space of smooth functions⋃

{B1∕𝑤 ; 𝑤 ∈ 𝑊} =
{
ℎ ∈ E ; ∃𝑤 ∈ 𝑊 ∀𝛼 ∈ ℕ𝑑

0
∃𝐶𝛼 ∈ ℝ+ ∶ |𝜕𝛼ℎ| ≤ 𝐶𝛼 ⋅ 𝑤

}
. (4.21)

The duality product satisfies the formula

⟨𝑓, ℎ⟩ = lim
𝑛→∞

⟨𝑓 ⋅ 𝜙𝑛, ℎ⟩ = lim
𝑛→∞

⟨𝑓, 𝜙𝑛 ⋅ ℎ⟩ for all 𝑓 ∈ O ′
𝐶(D , 𝐿1𝑊), ℎ ∈ O ′

𝐶(D , 𝐿1𝑊)′, (4.22)

and any approximate unit (𝜙𝑛). The sets B (𝑤 ; 𝐶) with 𝑤 ∈ 𝑊 and 𝐶 ∈ ℝ+(ℕ
𝑑
0
) define a fundamental system for the

equicontinuous sets on the dual O ′
𝐶(D , 𝐿1𝑊)′.

Proof. Consider the subspace (E ′,T ) of O ′
𝐶(D , 𝐿1𝑊) endowed with the subspace topology T induced by O ′

𝐶(D , 𝐿1𝑊).
Proposition 3.24 implies that the continuous linear functionals ofO ′

𝐶(D , 𝐿1𝑊) are the unique extensions of the continuous
linear functionals of (E ′,T ). Due to Lemmas 4.8 and 4.9, the topology on E ′ is the𝔊-topology with respect to the duality⟨−,−⟩ ∶ E ′ × E → ℂ, where 𝔊 consists of the sets B (𝑤 ; 𝐶) with 𝑤 ∈ 𝑊 and 𝐶 ∈ ℝ+(ℕ

𝑑
0
). The set B (𝑤 ; 𝐶) is weakly

compact in E by the theorem of Arzelà-Ascoli. Thus, B (𝑤 ; 𝐶) is also compact in the weak completion of E . Clearly, the
sets B (𝑤 ; 𝐶) are absolute convex. Thus, Theorem 7 from [15, p. 68] implies that the set in Equation (4.21) is the dual space
of O ′

𝐶(D , 𝐿1𝑊).
As 𝐿1

𝔎
is dense in 𝐿1𝑊 , Equation (4.22) follows from Proposition 3.24. □

4.3 Predual spaces for weighted 𝑳𝟏 convolutor spaces

Generalizing [11, Thm. 4.6] the spaces O ′
𝐶(D , 𝐿1𝑊) can also be represented as the dual of the inductive limit of the

spaces Ḃ1∕𝑤, 𝑤 ∈ 𝑊 as shown in Theorem 4.15. We will require some technical results first that will also be used in
the subsequent section.
We need some lemmas for spaces of smooth functions induced by a locally convex space 𝐹. We define D𝐹 as the linear

space

{ℎ ∈ E ; ∀𝛼 ∈ ℕ𝑑
0
∶ 𝜕𝛼ℎ ∈ 𝐹} (4.23)
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KLEINER and HILFER 1953

endowed with the topology generated by the seminorms ℎ ↦ 𝑝(𝜕𝛼ℎ) with 𝑝 ∈ csn𝐹 and 𝛼 ∈ ℕ𝑑
0
. In order to deal with

spaces defined by weight systems that are not generated by a set of everywhere positive weights we use the following
notation: for any locally convex space 𝐹 in which D ∩ 𝐹 is dense we denote the set

D ′
[
𝐹′
]
∶= {𝑓 ∈ D ′ ; ∃𝑓′ ∈ 𝐹′ ∀𝜙 ∈ D ∩ 𝐹 ∶ ⟨𝑓, 𝜙⟩ = 𝑓′(𝜙)}. (4.24)

Clearly, D ′
[
𝐹′
]
= 𝐹′ holds if D ∩ 𝐹 = D , in which case D ⊆ 𝐹 is dense.

It is straightforward to prove the following proposition and its corollary:

Proposition 4.11. Let 𝐹 be a locally convex space continuously included in D ′ and such that D ∩ 𝐹 is dense in 𝐹. Then,
D ∩ D𝐹 is a dense subset ofD𝐹 and one has the representation formula

D ′
[
(D𝐹)

′
]
= span

⋃
𝑘∈ℕ0

Δ𝑘
(
D ′
[
𝐹′
])
. (4.25)

Corollary 4.12. For all 𝑤 ∈ I+lb, one has the representation formula

D ′
[
(Ḃ1∕𝑤)

′
]
= span

⋃
𝑘∈ℕ0

Δ𝑘
(
D ′[M𝑤]

)
. (4.26)

The following proposition generalizes the implication “(𝑖𝑖𝑖) ⇒ (𝑖𝑣)” of Theorem 3 from [12] from Banach spaces to
metrizable spaces. The proof is adapted from [12, 28] to the more general setting.

Proposition 4.13. Let 𝐹 be a metrizable locally convex space such that 𝐹 ∩ D is dense in 𝐹 and let 𝐾 ∈ 𝔎 with non-empty
interior. Then, all distributions 𝑓 ∈ D ′ satisfy the implication

∀𝜓 ∈ D𝐾 ∶ 𝜓 ∗ 𝑓 ∈ D ′
[
𝐹′
]

⇒ ∃𝑘 ∈ ℕ0 ∶ 𝑓 ∈ Δ𝑘(D ′
[
𝐹′
]
) + D ′

[
𝐹′
]
. (4.27)

Proof. Assume that 𝜓 ∗ 𝑓 ∈ D ′
[
𝐹′
]
for all 𝜓 ∈ D𝐾 and let 𝐵 ⊆ 𝐹 ∩ D be bounded in 𝐹. Then, {⟨𝜙̌ ∗ 𝑓, 𝜓̌⟩ ; 𝜙 ∈ 𝐵} is

bounded for all 𝜓 ∈ D𝐾 because ⟨𝜙̌ ∗ 𝑓, 𝜓̌⟩ = ⟨𝜓 ∗ 𝑓, 𝜙⟩. It follows that {𝜙̌ ∗ 𝑓 ; 𝜙 ∈ 𝐵} is an equicontinuous subset of
(D−𝐾)

′, which means that there exist 𝑛 ∈ ℕ and 𝐶 ∈ ℝ+ such that

|⟨𝜌 ∗ 𝑓, 𝜙⟩| ≤ 𝐶 ⋅ max{‖𝜕𝛼𝜌‖∞ ; Σ𝛼 ≤ 𝑛} for all 𝜙 ∈ 𝐵, 𝜌 ∈ D𝑛
𝐾. (4.28)

Let 𝑛𝐵 denote the smallest integer such that Equation (4.28) holds for some 𝐶 ∈ ℝ+. The space 𝐹 ∩ D , endowed with the
subspace topology, is metrizable and thus bornological. If the least upper bound of {𝑛𝐵 ; 𝐵 ∈ 𝔅(𝐹 ∩ D)} was infinite we
could derive a contraction from the fact that in a metrizable space every sequence of bounded subsets is absorbed by a
single bounded subset from the space. Therefore, 𝑛 ∈ ℕ can be chosen independently of 𝐵 in Equation (4.28).
Let 𝜌 ∈ D𝑛

𝐾 be arbitrary. Because 𝐹 ∩ D , endowed with the subspace topology induced by 𝐹, is a bornological space
Equation (4.28) implies that the functional 𝜙 ↦ ⟨𝜌 ∗ 𝑓, 𝜙⟩ is continuous on 𝐹 ∩ D and can be extended in a unique way
to a continuous functional 𝑓 on 𝐹. This means 𝜌 ∗ 𝑓 ∈ D ′

[
𝐹′
]
by the definition ofD ′

[
𝐹′
]
. The proof is completed via the

parametrix method as in the proof of “(𝑖𝑖𝑖) ⇒ (𝑖𝑣)” in Theorem 3 from [12]. □

Lemma 4.14. Let 𝑤, 𝑣 ∈ I+lb and 𝐾 ∈ 𝔎. The inequality 1−𝐾 ∗ 𝑤 ≤ 𝑣 implies the inclusion

D𝐾 ∗ D ′
[
(Ḃ1∕𝑣)

′
]
⊆ D ′[M𝑤]. (4.29)

Proof. The inclusion 1𝐾 ∗ ||D ′ [M𝑣]|| ⊆ D ′ [M𝑤] holds. Indeed, transposing the convolution operator (1𝐾 ∗ −) yields

∫ (1𝐾 ∗ |𝜇|)(𝑥)𝑤(𝑥) d𝑥 = ∫ (1−𝐾 ∗ 𝑤)(𝑥) d|𝜇|(𝑥) ≤ ∫ 𝑣(𝑥) d|𝜇|(𝑥) for all 𝜇 ∈ M and 𝑤 ∈ I+. (4.30)

Due to Corollary 4.12 and because all 𝜙 ∈ D𝐾 satisfy |𝜙| ≤ 𝐶 ⋅ 1𝐾 for some 𝐶 ∈ ℝ+ this inclusion proves the lemma. □
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1954 KLEINER and HILFER

Theorem 4.15. The convolutor space O ′
𝐶(D , 𝐿1𝑊) is the dual space of the inductive limit of the weighted spaces of smooth

functions Ḃ1∕𝑤 with 𝑤 ∈ 𝑊. The topology on O ′
𝐶(D , 𝐿1𝑊) coincides with the topology of uniform convergence on those sets

that are contained and bounded in Ḃ1∕𝑤 for some 𝑤 ∈ 𝑊.

Proof. Let𝑓 ∈ O ′
𝐶(D , 𝐿1𝑊). Then, by Theorem 3.11,𝜙 ∗ 𝑓 ∈ M 1

𝑤 for all𝑤 ∈ 𝑊,𝜙 ∈ D𝐾 and all𝐾 ∈ 𝔎. According to Propo-
sition 4.13, applied to the Banach space 𝐹 = C0,1∕𝑤, there exists 𝑘 ∈ ℕ such that 𝑓 ∈ Δ𝑘(D ′

[
M 1

𝑤

]
) + D ′

[
M 1

𝑤

]
. According

to Corollary 4.12, this entails 𝑓 ∈ D ′
[
(Ḃ1∕𝑤)

′
]
for all 𝑤 ∈ 𝑊 and thus

𝑓 ∈
⋂
𝑤∈𝑊

D ′
[
(Ḃ1∕𝑤)

′
]
= D ′

⎡⎢⎢⎣
(

lim
⟶
𝑤∈𝑊

Ḃ1∕𝑤

)′⎤⎥⎥⎦ =
(

lim
⟶
𝑤∈𝑊

Ḃ1∕𝑤

)′

.

In the second equality, it was used that K + ⊆ 𝑊. Conversely, it is immediate from Theorem 3.11, Lemma 4.14 and the
relation 𝐿

∞,+
𝔎

∗𝑊 ⊆ 𝑊 that every 𝑓 ∈
⋂

𝑤∈𝑊
(Ḃ1∕𝑤)

′ is contained in O ′
𝐶(D , 𝐿1𝑊). Here, 𝐿∞,+

𝔎
∗𝑊 ⊆ 𝑊 follows from the

condition T𝐾𝑊 ⊆ 𝑊 for all 𝐾 ∈ 𝔎. The characterization of the topology on O ′
𝐶(D , 𝐿1𝑊) is just a reformulation of its

description in Theorem 4.10. □

5 NEW IDENTITIES FOR LOCALLY CONVEX DISTRIBUTION SPACES

In this section, two classes of distribution spaces, given by their classical definitions, will be represented in the form
O ′

𝐶(D , 𝐸) with 𝐸 a solid regularization-invariant space.

5.1 Duals of solid regularization-invariant Fréchet spaces

Let 𝐸 be a fixed solid regularization-invariant space that satisfies 𝐸 ⊆ 𝐿1
loc
, hasK as a dense subset and is a Fréchet space.

The primary purpose of this section is to prove the identity of locally convex spaces D ′
𝐸′ = O ′

𝐶(D , 𝐸′). We also prove the
existence of a moderated cone ideal𝑊(𝐸) such that (D𝐸)

′
𝜎 = O ′

𝐶(D , 𝐿1
𝑊(𝐸)

)𝜎 with 𝜎 indicating weak topologies.
The space D ′

𝐸′ = (D𝐸)
′
b
is the strong dual of the space D𝐸 , as defined in Equation (4.23), and 𝐸′ = (𝐸)′

b
is the strong

dual of 𝐸. Because 𝐸 is a solid subspace ofM , the space D𝐸 can be represented as the union

D𝐸 =
⋃{

B1∕𝑤 ; 𝑤 ∈ 𝐸+
}
. (5.1a)

The topology of D𝐸 is generated by the increasing fundamental system of seminorms (𝑝𝑛)𝑛∈ℕ0
, given by

ℎ ↦ 𝑝𝑛(ℎ) ∶= ‖max{|𝜕𝛼ℎ| ; Σ 𝛼 ≤ 𝑛}‖𝐸,𝑛, (5.1b)

where (‖ ⋅ ‖𝐸,𝑛)𝑛∈ℕ denotes a fixed increasing fundamental system of seminorms for 𝐸 and Σ𝛼 ∶=
∑𝑑

𝑖=1
𝛼𝑖 . Here, conti-

nuity of binary supremum formation, see Proposition 4.5 from [23, p. 103] (see also [27, p. 234], [1, Thm. 2.17]), allows to
write the maximum inside of the norm.
Let us summarize some facts about the dual space 𝐸′. The assumptions on 𝐸 guarantee that 𝐸′ is a (DF)-space that

satisfies the continuous inclusions 𝐿∞
𝔎

⊆ 𝐸′ ⊆ M , but 𝐿∞
𝔎
is not necessarily dense in 𝐸′. According to Proposition 4.17

from [23, p. 108] (see also [27, p. 237], [1, p. 80]) 𝐸′ is a locally convex lattice. Duality implies thatD operates continuously
and linearly on 𝐸. In particular, 𝐸′ is a solid regularization-invariant space.
Every positive linear functional on 𝐸 is continuous because 𝐸 satisfies the assumptions of Proposition 2.16 from [23,

p. 86] (see also [27, Thm. p. 228], [1, Thm. 5.23]). In particular, one has the equation

𝐸′ ∩ I+lb = (𝐸+)∗ (5.2)
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KLEINER and HILFER 1955

with the notation

𝑀∗ ∶=

{
𝑤 ∈ I+lb ; ∀𝜇 ∈ 𝑀 ∶ ∫ 𝑤(𝑥) d𝜇(𝑥) < ∞

}
for𝑀 ⊆ M+. (5.3)

The duality product ⟨−,−⟩ ∶ 𝐸′ × 𝐸 → ℂ satisfies

⟨𝑤, 𝜇⟩ = ‖𝑤 ⋅ 𝜇‖1 = ∫ 𝑤(𝑥) d𝜇(𝑥) for all 𝑤 ∈ 𝐸′ ∩ I+lb, 𝜇 ∈ 𝐸+. (5.4)

According to Proposition 4.3 from [23, p. 102] (see also [27, p. 212], [1, p. 80]) the seminorms

𝑔 ↦ 𝑞𝐵(𝑔) = sup{⟨|𝑔|, |𝜇|⟩ ; 𝜇 ∈ 𝐵} with 𝐵 ∈ 𝔅(𝐸) (5.5)

constitute a fundamental system of seminorms for 𝐸′.
The set of weights𝑊(𝐸) is defined as the largest moderated cone ideal contained in 𝐸+, that is,

𝑊(𝐸) ∶= (𝐸+)T =
{
𝑤 ∈ I+lb ; ∀𝐾 ∈ 𝔎 ∶ T𝐾𝑤 ∈ 𝐸+

}
(5.6)

with the notation

𝑀T ∶=
{
𝑤 ∈ I+lb ; ∀𝐾 ∈ 𝔎 ∃𝜇 ∈ 𝑀 ∶ T𝐾𝑤 ≤ 𝜇

}
for𝑀 ⊆ M+. (5.7)

Before proving the main result, we establish some relations that involve Equations (5.3) and (5.7).

Lemma 5.1. Let𝑀 ⊆ M+. The relation (𝑀∗)T = ((K + ∗ 𝑀)∗)T holds.

Proof. Let 𝑤 ∈ I+lb, 𝜇 ∈ M+ and 𝜙 ∈ K +. Transposing the convolution operator (𝜙 ∗ −) yields

∫ T𝐾𝑤(𝑥) ⋅ (𝜙 ∗ 𝜇)(𝑥) d𝑥 = ∫
(
𝜙̌ ∗ T𝐾𝑤

)
(𝑥) d𝜇(𝑥). (5.8)

The functions 𝜙 ∗ T𝐾𝑤 with 𝑤 ∈ 𝑀, 𝐾 ∈ 𝔎, 𝜙 ∈ K + generate the same lower set as the functions 𝐶 ⋅ T𝐾𝑤 with 𝑤 ∈

𝑀, 𝐾 ∈ 𝔎, 𝐶 ∈ ℝ+ (compare Equations (3.4b) and (3.4c)). Together with Equation (5.8), this concludes the proof of the
lemma. □

Lemma 5.2. If𝑀 ⊆ M+, thenK + ∗ 𝑀 ⊆ (K + ∗ 𝑀)T.

Proof. One has the inequality T𝐾(𝜙 ∗ 𝜇) ≤ (T𝐾𝜙) ∗ 𝜇 and T𝐾𝜙 ∈ K + for all 𝜙 ∈ K +, 𝜇 ∈ M+ and 𝐾 ∈ 𝔎. □

Lemma 5.3. Let𝑀 ⊆ M+ be such thatK + ∗ 𝑀 ⊆ 𝑀. Then, (𝑀∗)T = ((𝑀T)
∗)T.

Proof. Clearly, any function from𝑀T is bounded by somemeasure from𝑀 and therefore (𝑀∗)T ⊆ ((𝑀T)
∗)T. Conversely,

(𝑀∗)T = ((K + ∗ 𝑀)∗)T ⊇ (((K + ∗ 𝑀)T)
∗)T ⊇ (((𝑀)T)

∗)T (5.9)

follows from Lemma 5.1, Lemma 5.2, and the assumption on𝑀. □

Lemma 5.4. Any lower set𝑀 ⊆ M+ satisfies

{𝑓 ∈ D ′ ; ∀Φ ∈ 𝔅(D) ∶ |𝑓|Φ ∈ 𝑀} = {𝑓 ∈ D ′ ; ∀Φ ∈ 𝔅(D) ∶ |𝑓|Φ ∈ 𝑀T}. (5.10)

Proof. This follows from Equations (3.4a) and (3.5). □
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1956 KLEINER and HILFER

Proposition 5.5. The following sets ofI+lb-valued seminorms on E are equivalent (in the sense of Equation (3.1))

{ℎ ↦ T𝐾(max{|𝜕𝛼ℎ| ; Σ 𝛼 ≤ 𝑛}) ; 𝑛 ∈ ℕ0, 𝐾 ∈ 𝔎}, (5.11a)

{ℎ ↦ 1𝐾 ∗ (max{|𝜕𝛼ℎ| ; Σ 𝛼 ≤ 𝑛}) ; 𝑛 ∈ ℕ0, 𝐾 ∈ 𝔎}. (5.11b)

Proof. Let 𝑓 ∶ ℝ → ℝ be continuously differentiable. Integrating 𝑓(𝑥) = 𝑓(𝑦) − ∫ 𝑦

𝑥
𝑓′(𝑧) 𝑑𝑧 over [𝑥 − 1, 𝑥] gives

|𝑓(𝑥)| ≤ 𝑥

∫
𝑥−1

|𝑓(𝑦)| + 𝑦

∫
𝑥

|𝑓′(𝑧)|𝑑𝑧 𝑑𝑦 ≤
𝑥

∫
𝑥−1

|𝑓(𝑦)| + 𝑥

∫
𝑥−1

|𝑓′(𝑧)|𝑑𝑧 𝑑𝑦 =

𝑥

∫
𝑥−1

|𝑓(𝑦)| + |𝑓′(𝑦)|𝑑𝑦 for all 𝑥 ∈ ℝ. (5.12)

For a function ℎ ∈ E , this estimate is now applied successively in each dimension, which gives

|𝜕𝛼ℎ| ≤ ∑
𝛽∈{0,1}𝑑

1[0,1]𝑑 ∗
|||𝜕𝛼+𝛽ℎ|||, for all ℎ ∈ E . (5.13)

This estimate and Equation (3.7) applied to 𝑤 = 1𝐾 with 𝐾 ∈ 𝔎 complete the proof. □

We are now ready to prove

Theorem5.6. Let𝐸 be a solid regularization-invariant space that satisfies𝐸 ⊆ 𝐿1
loc
, hasK as a dense subset and is a Fréchet

space. Let𝑊(𝐸) be the set from Equation (5.6). Then, the following identities of locally convex spaces hold:

(D𝐸)
′
b
= O ′

𝐶(D , 𝐸′), (5.14)

(D𝐸)
′
𝜎 = O ′

𝐶(D , 𝐿1
𝑊(𝐸)

)𝜎. (5.15)

Here, on the left-hand side of Equation (5.15), 𝜎 indicates the weak topology induced on the dual space and, on the right-hand
side of Equation (5.15), 𝜎 indicates the weak topology associated with the given topology.

Proof. First, the spaces (D𝐸)
′, O ′

𝐶(D , 𝐸′) and O ′
𝐶(D , 𝐿1

𝑊(𝐸)
) are equal as linear spaces: The inclusion (D𝐸)

′ ⊇ O ′
𝐶(D , 𝐸′)

follows from Propositions 4.11 and 4.13 and (D𝐸)
′ ⊆ O ′

𝐶(D , 𝐸′) follows from Proposition 4.11 and Corollary 3.21. We note
that Theorem 3.11 and Lemma 5.4 imply

O ′
𝐶(D , 𝐸′) = {𝑓 ∈ D ′ ; ∀Φ ∈ 𝔅(D) ∶ |𝑓|Φ ∈ ((𝐸′)+)T}, (5.16a)

O ′
𝐶(D , 𝐿1

𝑊(𝐸)
) = {𝑓 ∈ D ′ ; ∀Φ ∈ 𝔅(D) ∶ |𝑓|Φ ∈ ((𝑊(𝐸))∗)T}. (5.16b)

Then, from (i) the inclusion 𝐸′ ∩ I+lb ⊆ (𝐸′)+ and the definition of𝑀T, (ii) equation (5.2), (iii) the inclusionK + ∗ 𝐸+ ⊆

𝐸+ and Lemma 5.3, and, (iv) Equation (5.6), we derive

((𝐸′)+)T
(i)
= (𝐸′ ∩ I+lb)T

(ii)
= ((𝐸+)∗)T

(iii)
= (((𝐸+)T)

∗)T
(iv)
= ((𝑊(𝐸))∗)T. (5.17)

Finally, Equations (5.16) and (5.17) yield O ′
𝐶(D , 𝐸′) = O ′

𝐶(D , 𝐿1
𝑊(𝐸)

).
Second, the identity (D𝐸)

′
𝜎 = O ′

𝐶(D , 𝐿1
𝑊(𝐸)

)𝜎 from Equation (5.15) holds: the dual spaces of both the spaces in this
identity are given in Equations (5.1a) and (4.21) of Theorem 4.10, respectively. Proposition 5.5 in connection with solidity
and regularization-invariance of 𝐸 implies that the sets in these equations are equal.
Third, the subspace topologiesT1 andT2 induced on E ′ byD ′

𝐸′ andO ′
𝐶(D , 𝐸′), respectively, are equal: let 𝐾 ∈ 𝔎with

non-empty interior. Proposition 5.5 and the regularization-invariance of 𝐸 imply that 𝐵 ⊆ D𝐸 is bounded if and only if

sup

{‖‖‖T𝐾(max{|𝜕𝛼𝑏| ; Σ 𝛼 ≤ 𝑛})
‖‖‖𝐸,𝑛 ; 𝑏 ∈ 𝐵

}
∶= 𝐶𝑛 < ∞ for all 𝑛 ∈ ℕ0. (5.18)
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KLEINER and HILFER 1957

Assume now, that 𝐵 is bounded. Let 𝜆𝑛 > 0, 𝑛 ∈ ℕ0 such that∑
𝑛∈ℕ0

𝐶𝑛𝜆𝑛 < ∞ (5.19a)

and define

max {|𝜕𝛼𝑏| ; Σ 𝛼 ≤ 𝑛} ∶= 𝑤𝑏,𝑛, 𝑤𝑏 ∶=
∑
𝑛∈ℕ0

𝜆𝑛𝑤𝑏,𝑛 for 𝑏 ∈ 𝐵. (5.19b)

By construction it holds 𝑤𝑏,𝑛 ≤ (1∕𝜆𝑛) ⋅ 𝑤𝑏 for all 𝑛 ∈ ℕ0. This results in the inclusion

𝐵 ⊆
⋃{

B
(
𝑤𝑏 ; 𝐶

′
)
; 𝑏 ∈ 𝐵

}
with 𝐶′

𝛼 ∶= 1∕𝜆Σ𝛼 for 𝛼 ∈ ℕ𝑑
0
, (5.20)

where the notation from Equation (4.3) is used. It follows from Equations (5.18) and (5.19a) that 𝐵̃ ∶= {T𝐾𝑤𝑏 ; 𝑏 ∈ 𝐵} is a
bounded subset of 𝐸. Using Lemma 4.8 and then Equations (5.5) and (5.4), one finds Φ ∈ 𝔅(D) such that

|⟨𝑓, 𝑏⟩| ≤ ∫ |𝑓|Φ(𝑥)T𝐾𝑤𝑏(𝑥) d𝑥 = 𝑞{T𝐾𝑤𝑏}
(|𝑓|Φ) for all 𝑓 ∈ E ′, 𝑏 ∈ 𝐵. (5.21)

Taking the supremum over 𝑏 ∈ 𝐵 proves T1 ⊆ T2.
The estimate 𝜙 ∗ |𝑓|Φ ≤ |𝑓|Ψ for Ψ = ‖𝜙‖1 ⋅ Tsupp𝜙Φ, Equation (3.5), Proposition 3.6, and Theorem 3.11 applied to 𝐸′

imply that the topology of O ′
𝐶(D , 𝐸′) is generated by the seminorms

𝑓 ↦ 𝑞(𝜙 ∗ |𝑓|Φ) with 𝜙 ∈ D , 𝜙 ≥ 0, Φ ∈ 𝔅(D), 𝑞 ∈ clsn 𝐸′. (5.22)

Therefore, for the proof of the converse inequalities, let 𝜙 ∈ D with 𝜙 ≥ 0, Φ ∈ 𝔅(D) and 𝐵̃′ a bounded solid subset of 𝐸.
Using Equations (5.4) and (5.5) and then Lemma 4.9 one finds 𝐿 ∈ 𝔎 and 𝐶′′ ∈ ℝ+(ℕ

𝑑
0
) such that

𝑞{|𝜇|}(𝜙 ∗ |𝑓|Φ) = ‖|𝑓|Φ(𝜙̌ ∗ |𝜇|)‖1 ≤ sup
{|⟨𝑓, 𝑏⟩|; 𝑏 ∈ B

(
T𝐿(𝜙̌ ∗ |𝜇|) ; 𝐶′′

)}
for all 𝑓 ∈ E ′, 𝜇 ∈ 𝐵̃′. (5.23)

The boundedness of 𝐵̃′ in 𝐸 entails boundedness in D𝐸 for the set

𝐵′ ∶=
⋃{

B
(
T𝐿(𝜙̌ ∗ |𝜇|) ; 𝐶′′

)
; 𝜇 ∈ 𝐵̃′

}
, (5.24)

because T𝐿(𝜙̌ ∗ |𝜇|) ≤ (T𝐿𝜙̌) ∗ |𝜇| and because 𝐿∞𝔎 operates continuously and linearly on 𝐸 by convolution according to
Proposition 3.10. Thus, taking the supremum over 𝜇 ∈ 𝐵̃′ in Equation (5.23) proves T1 ⊇ T2.
Fourth, the inequalities (5.21) and (5.23) hold also for 𝑓 ∈ O ′

𝐶(D , 𝐿1
𝑊(𝐸)

) = (D𝐸)
′: Let (𝜃𝑛) be an approximate unit.

Because K + is dense in 𝐿1
𝑊(𝐸)

Proposition 3.24 and the last statement of Theorem 4.10 imply that ⟨𝜃𝑛𝑓, ℎ⟩→ ⟨𝑓, ℎ⟩
uniformly on ℎ ∈ B (𝑤 ; 𝐶) with fixed 𝑤 ∈ 𝑊(𝐸) and 𝐶 ∈ ℝ+(ℕ

𝑑
0
). On the other hand, Proposition 3.7 and Lebesgue’s

theorem of dominated convergence can be applied to Equations (5.21) and (5.23). As a result, these inequalities extend to
distributions 𝑓 ∈ O ′

𝐶(D , 𝐿1
𝑊(𝐸)

). Again, taking suprema over extended estimates (5.21) and (5.23), as done in step three of
the proof, it follows that the strong topology onD ′

𝐸′ is equal to the topology ofO ′
𝐶(D , 𝐸′). This completes the proof of the

identity (5.14). □

Example 5.7. Recall, that E ′ = (E )′
b
. The space 𝐿∞

𝔎
is the strong dual of 𝐿1

loc
, the largest space 𝐸 to which Theorem 5.6

applies. From Proposition 5.5, one derives E = D𝐿1
loc
. Therefore, Theorem 5.6 yields the identity of locally convex spaces

E ′ = O ′
𝐶(D , 𝐿∞

𝔎
). (5.25)

By Proposition 3.10 and monotony of O ′
𝐶(D , −), all solid regularization-invariant spaces 𝐸 satisfy the continuous

inclusion

E ′ ⊆ O ′
𝐶(D , 𝐸). (5.26)
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1958 KLEINER and HILFER

Example 5.8. The space of tempered distributions S ′ is defined as the strong dual of the Schwartz-space S , which is
a Fréchet space. Let 𝐿1𝑃 denote the weighted 𝐿1-space, in the sense of Section 4, with the moderated cone ideal 𝑃 that is
generated by the non-negative polynomials. Then, the identity D𝐿1,𝑃 = S is immediate from the definitions. The dual
space of 𝐿1𝑃 is the weighted Lebesgue space 𝐿∞𝑃∗ , in the sense of Section 4, where 𝑃

∗ consists of the rapidly decreasing
functions fromI+lb. Theorem 5.6 implies the identity of locally convex spaces

S ′ = O ′
𝐶(D , 𝐿∞𝑃∗). (5.27)

Example 5.9. The assumptions imposed on 𝐸 at the beginning of this section cover the distribution spacesD ′
𝐸′ associated

with solid translation-invariant Banach spaces of distributions from [9]. Special cases of these are the Lebesgue spaces 𝐿𝑝
with 1 < 𝑝 ≤ ∞. Thus, the case 𝑝 = 1 being covered by Theorem 5.1 from [11], Theorem 5.6 completes the identity of
locally convex spaces

D ′
𝐿𝑝 = O ′

𝐶(D , 𝐿𝑝) for all 1 ≤ 𝑝 ≤ ∞. (5.28a)

Let 𝐿∞
0
denote the closure of 𝐿∞

𝔎
in 𝐿∞. Then, 𝐿∞

0
∩ C = C0 and Proposition 3.24 yields

Ḃ′ = O ′
𝐶(D , 𝐿∞

0
) = O ′

𝐶(D ,C0). (5.28b)

Example 5.10. Let 𝑤 be a moderated weight and 1 ≤ 𝑝 ≤ ∞. Then, 𝐿𝑝𝑤 is a solid regularization-invariant space by
Proposition 4.1. As in Example 5.9, Theorem 5.6 completes the identity of locally convex spaces

D ′
𝐿𝑝,𝑤 = O ′

𝐶(D , 𝐿
𝑝
𝑤). (5.29)

Further, the spaceD ′
𝐿𝑝,𝑤 is isomorphic to ℎ ⋅ D ′

𝐿𝑝 via themapping 𝑓 ↦ ℎ ⋅ 𝑓 for any fixed ℎ ∈ B1∕𝑤 ∩ (1∕B𝑤), according
to Proposition 4.6 andExample 5.9. As a consequence,D ′

𝐿𝑝,𝑤 inherits the ultrabornologicity ofD ′
𝐿𝑝 , which is proved in [19,

p. 592] for instance. This extends the statements (i) and (iii) of Theorem 5.1 from [11] to 𝑝 ≠ 1. According to Theorem 3.11,
the topology on D ′

𝐿𝑝,𝑤 is generated by the set of seminorms 𝑓 ↦ ‖|𝑓|Φ ⋅ 𝑤‖𝑝 with Φ ∈ 𝔅(D).
An important special case are the spaces D ′

𝐿𝑝,𝜇,𝑘
∶= D ′

𝐿𝑝,𝑤𝜇;𝑘 with 1 ≤ 𝑝 ≤ ∞, 𝜇 ∈ ℝ and 𝑘 ∈ ℤ that arise as maxi-
mal domains for distributional convolution operators with quasi-homogeneous kernels [19, 21, 34]. The corresponding
weighted Lebesgue spaces are denoted by 𝐿𝑝

𝜇,𝑘
∶= 𝐿

𝑝

𝑤𝜇;𝑘
. Here, 𝑤𝜇;𝑘 denotes the power-logarithmic weight

𝑤𝜇;𝑘(𝑥) ∶= (1 + |𝑥|2)𝜇∕2(log(e + |𝑥|2))𝑘 for all 𝑥 ∈ ℝ𝑑, 𝜇 ∈ ℝ, 𝑘 ∈ ℤ, (5.30)

and with the power weights as special case 𝑤𝜇 ∶= 𝑤𝜇;0. The weights 𝑤𝜇;𝑘 are moderated and satisfy 𝑤𝜇;𝑘 ∈ B1∕𝑤𝜇;𝑘 ∩

(1∕B𝑤𝜇;𝑘 ). Note that these space are defined via multiplication 𝑓 ↦ 𝑤𝜇;𝑘 ⋅ 𝑓 in [19, p. 582] and [21, Def. 3.1.1]. Convolution
on these spaces was studied in [19, 21, 34] and will be reconsidered in this work in Examples 6.6 and 6.7 of Section 6.

5.2 Lebesgue spaces with strict topologies

In the following, let D ′
𝐿𝑝,c

denote the space D ′
𝐿𝑝

endowed with the topology of uniform convergence on the compact
subsets ofD𝐿𝑞 for 𝑝 > 1where 1∕𝑝 + 1∕𝑞 = 1 and of Ḃ for 𝑝 = 1 [3]. The locally convex space (𝐿𝑝)str is the linear space 𝐿

𝑝

endowedwith the topology induced by the seminorms 𝑔 ↦ ‖𝑤 ⋅ 𝑔‖𝑝 with𝑤 ∈ C +
0
. The locally convex space (𝐿𝑝)str is equal

to the weighted space 𝐿𝑝𝑊0
, as defined in Equation (4.1), where𝑊0 is the moderated cone ideal that consists of the lower

semicontinuous functions vanishing at infinity. According to Proposition 4.1, (𝐿𝑝)str is a solid regularization-invariant
space.

Theorem 5.11. The following identity of locally convex spaces holds:

D ′
𝐿𝑝,c = O ′

𝐶(D , (𝐿𝑝)str) for all 1 ≤ 𝑝 ≤ ∞. (5.31)

Proof. We already know from Example 5.9 that Equation (5.31) holds as an identity of linear spaces. Set 𝑞 ∶= 1∕(1 − 1∕𝑝)

and let 𝐾 ∈ 𝔎 be a fixed neighborhood of zero. If 𝑝 = 1 let 𝐻 be a bounded subset of Ḃ, otherwise let 𝐻 be a bounded
subset of D𝐿𝑞 .
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KLEINER and HILFER 1959

For 𝑝 = 1, we will use the relation O ′
𝐶(D , 𝐿1) = O ′

𝐶(D , (C0)
′): recall that a subset 𝐹 ⊆ C0 is relatively compact if and

only if sup{|𝑓| ; 𝑓 ∈ 𝐹} is vanishing at infinity. Because T𝐾 ∶ I+ → I+ is increasing and T𝐾 |C0| ⊆ C0 it follows that
𝐻 ⊆ Ḃ is relatively compact if and only if there exist 𝑔𝛼 ∈ C0 such that

T𝐾|𝜕𝛼ℎ| ≤ 𝑔𝛼 for all ℎ ∈ 𝐻, 𝛼 ∈ ℕ𝑑
0
. (5.32)

In the case 𝑝 > 1, where 𝑞 < ∞, Propositions 3.10 and 5.5 yield that the set {T𝐾 |𝜕𝛼ℎ| ; ℎ ∈ 𝐻} is bounded in 𝐿𝑞 for all
𝛼 ∈ ℕ𝑑

0
. Due to the inequality

|T𝑥𝑓 − 𝑓| ≤ 𝑟 ⋅ T𝐵𝑟 |∇𝑓|2 for all 𝑓 ∈ C , 𝑥 ∈ 𝐵𝑟, 𝑟 > 0, (5.33)

where 𝐵𝑟 ∶= {𝑦 ∈ ℝ𝑑 ; |𝑦|2 ≤ 𝑟} and | − |2 is the Euclidean norm onℝ𝑑, this implies that the conditions (i) and (iii) of the
criterion for relative compactness in 𝐿𝑞, 𝑞 < ∞ from [29, Thm. 6.4.12, p. 140] hold. Therefore, the remaining condition (ii)
of [29, Thm. 6.4.12] implies that𝐻 is relatively compact if and only if there exist 𝑔𝛼 ∈ C0 and 𝐶𝛼 ∈ ℝ+ such that

sup
ℎ∈𝐻

‖‖‖‖(T𝐾|𝜕𝛼ℎ|)∕𝑔𝛼‖‖‖‖𝑞 ≤ 𝐶𝛼 for all 𝛼 ∈ ℕ𝑑
0
. (5.34)

Given 𝑔𝛼 ∈ C0,𝛼 ∈ ℕ𝑑
0
one finds 𝑔 ∈ C0 and𝐶′

𝛼 ∈ ℝ+ such that 𝑔𝛼 ≤ 𝐶′
𝛼 ⋅ 𝑔 for all𝛼 ∈ ℕ𝑑

0
. Then, for general𝑝, it follows

from Equations (5.32) and (5.34) that𝐻 is relatively compact if and only if there exist 𝑔 ∈ C0 and 𝐶′′
𝛼 ∈ ℝ+ such that

sup
ℎ∈𝐻

‖‖‖‖(T𝐾|𝜕𝛼ℎ|)∕𝑔‖‖‖‖𝑞 ≤ 𝐶′′
𝛼 for all 𝛼 ∈ ℕ𝑑

0
. (5.35)

With this result, we can proceed analogously to the proof of Theorem 5.11 and show that for all𝐻 ⊆ D𝐿𝑞 (𝐻 ⊆ Ḃ) relatively
compact, 𝑔 ∈ C +

0
and 𝜙 ∈ D there exist 𝑔′ ∈ C +

0
and𝐻′ ⊆ D𝐿𝑞 (𝐻′ ⊆ Ḃ) relatively compact such that the inequalities

sup {|⟨𝑓, ℎ⟩| ; ℎ ∈ 𝐻} ≤ ‖‖|𝑓|Φ ⋅ 𝑔′‖‖𝑝 (5.36a)

‖(𝜙 ∗ |𝑓|Φ) ⋅ 𝑔‖𝑝 ≤ sup
{|⟨𝑓, ℎ⟩| ; ℎ ∈ 𝐻′

}
(5.36b)

hold for all 𝑓 ∈ O ′
𝐶(D , (𝐿𝑝)str). This concludes the proof. □

The following corollary of Theorems 5.11 and 3.11 contains the dual result to Propositions 2.5 and 3.2 from [3]:

Corollary 5.12. The topology ofD ′
𝐿𝑝,c

, 1 ≤ 𝑝 ≤ ∞ is induced by the seminorms

𝑓 ↦ ‖𝑔 ⋅ |𝑓|Φ‖𝑝 with Φ ∈ 𝔅(D), 𝑔 ∈ C +
0
, (5.37)

or, equivalently, by the seminorms

𝑓 ↦ ‖𝑔 ⋅ (𝜙 ∗ 𝑓)‖𝑝 with 𝜙 ∈ D , 𝑔 ∈ C +
0
. (5.38)

6 CONVOLUTION ON DISTRIBUTION SPACES AND REGULARIZATION

In this section,we study convolution on distribution spaces of the formO ′
𝐶(D , 𝐸). First, wewill characterize convolvability

and describe a usefulmapping property of convolution via generalized absolute values in Theorems 6.2 and 6.3. Combining
this with Theorem 3.11 one obtains Theorem 6.4, which allows to transport several continuity properties of bilinear convo-
lutionmappings ∗ ∶ 𝐸 × 𝐹 → 𝐺 with solid regularization-invariant spaces 𝐸, 𝐹, 𝐺 to the associated convolutionmappings
∗ ∶ O ′

𝐶(D , 𝐸) × O ′
𝐶(D , 𝐹) → O ′

𝐶(D , 𝐺).

Remark 6.1. Convolution products of non-negative lower semicontinuous functions 𝑤, 𝑣 ∈ I+ can be defined point-wise
via upper integrals [7]. BecauseI+ is closed under supremum formation it follows 𝑤 ∗ 𝑣 ∈ I+. The following inequality
holds:

T𝐾+𝐿(𝑤 ∗ 𝑣) ≤ T𝐾𝑤 ∗ T𝐿𝑣 for all 𝑤, 𝑣 ∈ I+, 𝐾, 𝐿 ∈ 𝔎 . (6.1)
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1960 KLEINER and HILFER

In the following theorem, we will consider Condition (a) as the definition of convolvability for two distributions 𝑓, 𝑔 on
ℝ𝑑. For definitions and fundamental properties of convolution of distributions, we refer to [21, 22, 30, 32].

Theorem 6.2. Let 𝑓, 𝑔 ∈ D ′. The following conditions are equivalent:

(a) The distribution 𝜃Δ ⋅ (𝑓 ⊗ 𝑔) belongs to the spaceD ′
𝐿1(ℝ

2𝑑) for all 𝜃 ∈ D where 𝜃Δ(𝑥, 𝑦) ∶= 𝜃(𝑥 + 𝑦).
(b) The function |𝑓 ⊗ 𝑔|Φ is integrable over𝐾Δ for all𝐾 ∈ 𝔎 andΦ ∈ 𝔅(D(ℝ2𝑑))where𝐾Δ ∶= {(𝑥, 𝑦) ∈ ℝ2𝑑 ; 𝑥 + 𝑦 ∈ 𝐾}.
(c) Theℝ+-valued function |𝑓|Φ ∗ |𝑔|Φ is locally integrable for all Φ ∈ 𝔅(D).
(d) Theℝ+-valued function |𝑓|Φ ∗ |𝑔|Φ is locally bounded for all Φ ∈ 𝔅(D).
(e) Theℝ+-valued function |𝑓|𝜙 ∗ |𝑔|𝜓 is finite-valued for all 𝜙, 𝜓 ∈ D .
(f) The tuple (𝜙 ∗ 𝑓, 𝜓 ∗ 𝑔) is convolvable for all 𝜙, 𝜓 ∈ D .

Proof. We prove “(a) ⇒ (b) ⇒ (c) ⇒ (d)”. The remaining implications are either trivial or proved in [30]. According to
Example 5.9, Condition (a) is equivalent to

∀𝜃 ∈ D , Φ ∈ 𝔅(D(ℝ2𝑑)) ∶ ||𝜃Δ ⋅ (𝑓 ⊗ 𝑔)||Φ ∈ 𝐿1(ℝ2𝑑). (6.2)

Using Equation (3.6), one concludes that Equation (6.2) is equivalent to

∀𝜃 ∈ D , Φ ∈ 𝔅(D(ℝ2𝑑)) ∶ ||𝜃Δ|| ⋅ |𝑓 ⊗ 𝑔|Φ ∈ 𝐿1(ℝ2𝑑). (6.3)

Clearly, Equation (6.3) is equivalent to Condition (b). According to [31, Theorem 51.7], Equation (6.3) is equivalent to

∀𝜃 ∈ D , Ψ ∈ 𝔅(D) ∶ ||𝜃Δ|| ⋅ |𝑓 ⊗ 𝑔|Ψ⊗Ψ ∈ 𝐿1(ℝ2𝑑). (6.4)

Using |𝑓 ⊗ 𝑔|Ψ⊗Ψ = |𝑓|Ψ ⊗ |𝑔|Ψ, it is seen that Equation (6.4) is equivalent to
∀𝜃 ∈ D , Ψ ∈ 𝔅(D) ∶ ∫ |𝜃(𝑥 + 𝑦)||𝑓|Ψ(𝑥)|𝑔|Ψ(𝑦) 𝑑(𝑥, 𝑦) < ∞. (6.5)

The integral in Equation (6.5) is rewritten as

∫ |𝜃(𝑥 + 𝑦)||𝑓|Ψ(𝑥)|𝑔|Ψ(𝑦) 𝑑(𝑥, 𝑦) = ∫ |𝜃(𝑥)|(|𝑓|Ψ ∗ |𝑔|Ψ)(𝑥) 𝑑𝑥 (6.6)

and therefore Equation (6.5) is equivalent to |𝑓|Ψ ∗ |𝑔|Ψ ∈ 𝐿1
loc

for all Ψ ∈ 𝔅(D), which is Condition (c). In connection
with Equations (3.4a) and (6.1), Condition (c) implies |𝑓|Ψ ∗ |𝑔|Ψ ∈ 𝐿∞

loc
for all Ψ ∈ 𝔅(D), which is Condition (d). □

Theorem 6.3. For all Φ ∈ 𝔅(D), there exists Ψ ∈ 𝔅(D) such that

|𝑓 ∗ 𝑔|Φ ≤ |𝑓|Ψ ∗ |𝑔|Ψ for all convolvable 𝑓, 𝑔 ∈ D ′. (6.7)

Proof. Let Φ ∈ 𝔅(D) and choose Ψ ∈ 𝔅(D) such that Φ ⊆ acx(Ψ ∗ Ψ), which is possible by Corollary 3.3. Using the
associative law [24, Prop. 1], one obtains

|𝑓 ∗ 𝑔|Φ ≤ |𝑓 ∗ 𝑔|Ψ∗Ψ = sup
𝜓1,𝜓2∈Ψ

|(𝜓1 ∗ 𝑓) ∗ (𝜓2 ∗ 𝑔)| ≤ |𝑓|Ψ ∗ |𝑔|Ψ
for all convolvable pairs of distributions 𝑓 and 𝑔. □

In the following theorem, a bilinear mapping is called compactly respectively boundedly hypocontinuous if it is (𝔈,𝔉)-
hypocontinuous, in the sense of [16, p. 358], for (𝔈,𝔉) = (𝔎(𝐸),𝔎(𝐹)) respectively (𝔈,𝔉) = (𝔅(𝐸),𝔅(𝐹)).

Theorem 6.4. Let 𝐸, 𝐹, 𝐺 be solid regularization-invariant spaces. If convolution of measures ∗ ∶ 𝐸 × 𝐹 → 𝐺 has the
property (𝑃), where (𝑃) stands for either “well-defined”, “separately continuous”, “compactly hypocontinuous”, “bound-
edly hypocontinuous” or “continuous”. Then, convolution of distributions ∗ ∶ O ′

𝐶(D , 𝐸) × O ′
𝐶(D , 𝐹) → O ′

𝐶(D , 𝐺) has the
property (𝑃) as well.
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KLEINER and HILFER 1961

Proof. Let (𝑓, 𝑔) ∈ O ′
𝐶(D , 𝐸) × O ′

𝐶(D , 𝐹). If 𝐸 ∗ 𝐹 is well-defined and 𝐸 ∗ 𝐹 ⊆ 𝐺, then |𝑓|Φ ∗ |𝑔|Φ ∈ 𝐺 for all Φ ∈ 𝔅(D).
In particular, |𝑓|Φ ∗ |𝑔|Φ ∈ 𝐿1

loc
. Theorem 6.2 implies that 𝑓 and 𝑔 are convolvable and Theorem 6.3 implies |𝑓 ∗ 𝑔|Φ ∈ 𝐺

for all Φ ∈ 𝔅(D). Further, it follows that for all Φ ∈ 𝔅(D) there exists Ψ ∈ 𝔅(D) such that

𝑝(|𝑓 ∗ 𝑔|Φ) ≤ 𝑝(|𝑓|Ψ ∗ |𝑔|Ψ) for all 𝑓 ∈ 𝐸, 𝑔 ∈ 𝐹, 𝑝 ∈ clsn𝐺. (6.8)

The theorem is now immediate from this inequality, Theorem 3.11, and Corollary 3.18. □

Corollary 6.5. Convolution of distributions defines a separately continuous bilinear mapping ∗ ∶ E ′ × O ′
𝐶(D , 𝐸) →

O ′
𝐶(D , 𝐸) for any solid regularization-invariant space 𝐸.

Proof. This is immediate from Theorem 6.4, Example 5.7, and Proposition 3.10. □

Example 6.6. Continuity of convolution of distributions between the power weighted spaces D ′
𝐿𝑝,𝜇 from Example 5.10

was studied in [19, 21, 34]. Proposition 2.5 from [34] states that ∗ ∶ D ′
𝐿𝑝,𝜇 × D ′

𝐿𝑞,𝜈 → D ′
𝐿𝑝,𝜇 is continuous if

𝜈 > max

{|𝜇|
𝑞

+
𝑑

𝑞′
, 𝜇 +

𝑑

𝑝𝑞′
, −𝜇 +

𝑑

𝑝′𝑞′

}
, (6.9)

where 𝜇, 𝜈 ∈ ℝ, 1 ≤ 𝑝, 𝑝′, 𝑞, 𝑝′ ≤ ∞ with 1∕𝑝 + 1∕𝑝′ = 1 = 1∕𝑞 + 1∕𝑞′ and 𝑑 denotes the dimension.
Examining the proof of Proposition 2.5 from [34], which uses the proof of Proposition 2.1 in [34] and the proof of

Proposition 9 in [19], we notice that the following two claims are established therein along the way:

(1) The convolution 𝑓 ∗ 𝑔 exists for all (𝑓, 𝑔) ∈ D ′
𝐿𝑝,𝜇 × D ′

𝐿𝑞,𝜈.
(2) The mapping ∗ ∶ 𝐿

𝑝
𝜇 × 𝐿

𝑞
𝜈 → 𝐿

𝑝
𝜇 is well-defined, bilinear and continuous.

In [34], well-definedness and continuity of ∗ ∶ D ′
𝐿𝑝,𝜇 × D ′

𝐿𝑞,𝜈 → D ′
𝐿𝑝,𝜇 are then derived from these two claims.

The proof of claim (1), given in Part (a) of the proof of Proposition 2.1, is based on the convolvability condition (𝜑-CPS)
[20, p. 315] and themultiplication relationD𝐿𝑝,𝜇 ⋅ D ′

𝐿𝑞,𝜈
⊆ D ′

𝐿1,𝜇+𝜈
⊆ D ′

𝐿1
[19, Prop. 9(i)]. The proof of claim (2) is contained

in Parts (a) and (b) of the proof of Proposition 2.5 in [34], while referring to Parts (b)–(e) of the proof of Proposition 2.1 in
[34]. The proof is based on interpolation theorems from [4]. Only the proof for continuity in one variable of this mapping
is explicitly described in [34]. However, continuity follows when taking into account the estimates for the norms of the
functions 𝐹𝑝 [34, Equation (2.3)] and 𝐹𝑞 [34, p. 476], that are provided by Theorem 1.1.1 and Corollary 5.5.4 from [4].
After establishing claims (1) and (2), it is proceeded as follows: from a representation formula of the form (4.25) and

claims (1) and (2) it is concluded that ∗ ∶ D ′
𝐿𝑝,𝜇 × D ′

𝐿𝑞,𝜈 → D ′
𝐿𝑝,𝜇 is a well-defined bilinear mapping. The separate con-

tinuity of this mapping is then established using the closed graph theorem and the reasoning from [19, p. 592]. This
reasoning is based on the hypocontinuity ofmultiplication ⋅ ∶ D𝐿𝑝,𝜇 × D ′

𝐿𝑞,𝜈
→ D ′

𝐿𝑟,𝜇+𝜈 for 1∕𝑝 + 1∕𝑞 ≥ 1∕𝑟 [19, Prop. 9(i)]
and on the fact thatD ′

𝐿𝑝,𝜇 is ultrabornological. Finally, Proposition 1.4.3 from [21] is applied, according towhich separately
continuous bilinear mappings defined on topological products of two barreled (DF)-spaces are continuous.
Using Theorem 6.4 and the description of the spaces D ′

𝐿𝑝,𝜇 from Example 5.10, the proof from [34] can be simplified
drastically. The continuity of ∗ ∶ D ′

𝐿𝑝,𝜇 × D ′
𝐿𝑞,𝜈 → D ′

𝐿𝑝,𝜇 is just a consequence of Theorem 6.4, the identity (5.29) from
Example 5.10 and the continuity of ∗ ∶ 𝐿

𝑝
𝜇 × 𝐿

𝑞
𝜈 → 𝐿

𝑝
𝜇 , given in claim (2) above. In this way, it becomes superfluous to

prove claim (1) above separately, because this is a consequence of Theorem 6.4. Also, it is not necessary to apply the
closed graph theorem and [21, Prop. 1.4.3], which requires to know that D ′

𝐿𝑝,𝜇
is an ultrabornological (DF)-space. Also,

the representation formula (4.25) is not needed.

Example 6.7. Let 1 ≤ 𝑝, 𝑞, 𝑟, 𝑡 ≤ ∞ such that 1∕𝑝 + 1∕𝑞 = 1∕𝑟 + 1∕𝑡 and 1 ≤ 𝑡 ≤ min{𝑝, 𝑞, 𝑟} ≤ ∞. Let𝑝′, 𝑞′, 𝑟′, 𝑡′ denote
the corresponding conjugate Hölder exponents. Let𝑤, 𝑣, 𝑢 ∈ C + bemoderatedweights and𝐶 ∈ ℝ+ a constant such that

𝑤−𝑡′ ∗ 𝑣−𝑡
′ ≤ 𝐶𝑢−𝑡

′ if 𝑡′ < ∞, 𝑢(𝑥) ≤ 𝐶𝑤(𝑦)𝑣(𝑥 − 𝑦) for all 𝑥, 𝑦 ∈ ℝ𝑑 if 𝑡′ = ∞. (6.10a)
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1962 KLEINER and HILFER

Using a modified convolution ∗𝑡′ the condition (6.10a) can be written in a unified form (by reformulating Equation (4) in
[6])

1

𝑤
∗𝑡′

1

𝑣
≤ 𝐶

1

𝑢
with (𝑓 ∗𝑡′ 𝑔)(𝑥) ∶= ‖𝑓 ⋅ T𝑥𝑔̌‖𝑡′ for 𝑓, 𝑔 ∈ I+, 𝑥 ∈ ℝ𝑑. (6.10b)

According to Proposition 2.2 from [6] Equation (6.10b) is a sufficient condition for convolution of measures being a well-
defined continuous bilinear mapping ∗ ∶ 𝐿

𝑝
𝑤 × 𝐿

𝑞
𝑣 → 𝐿𝑟𝑢. Theorem 6.4 and Example 5.10 entail then that convolution of

distributions defines a continuous bilinear mapping ∗ ∶ D ′
𝐿𝑝,𝑤 × D ′

𝐿𝑞,𝑣 → D ′
𝐿𝑟,𝑢.

In the case of power weights, as in Example 6.6, the condition (6.10b) yields Proposition 3.15 from [6]. From this
proposition, applied with 𝜙 = 1 and 𝑡 > 1, one obtains the three sufficient conditions

max{𝜇, 𝜈} < 𝑑∕𝑡′, 𝜌 ≤ 𝜇 + 𝜈 − 𝑑∕𝑡′, 𝜇 + 𝜈 > 𝑑∕𝑡 (6.11a)

max{𝜇, 𝜈} = 𝑑∕𝑡′, 𝜌 < min{𝜇, 𝜈}, 𝜇 + 𝜈 > 𝑑∕𝑡 (6.11b)

max{𝜇, 𝜈} > 𝑑∕𝑡′, 𝜌 ≤ min{𝜇, 𝜈}, 𝜇 + 𝜈 > 𝑑∕𝑡 (6.11c)

for the continuity of ∗ ∶ 𝐿
𝑝
𝜇 × 𝐿

𝑞
𝜈 → 𝐿𝑟𝜌 with the power weighted Lebesgue spaces 𝐿

𝑝
𝜇 from Examples 5.10 and 6.6.

In order to compare these conditions to Example 6.6, assume 𝜌 = 𝜇 and 𝑝 = 𝑟. This results in the sufficient conditions

1 < 𝑞 ≤ 𝑝, 𝜈 > 𝑑∕𝑞′, 𝜈 ≥ 𝜇 (6.12)

for the continuity of ∗ ∶ 𝐿
𝑝
𝜇 × 𝐿

𝑞
𝜈 → 𝐿

𝑝
𝜇 . Comparing to Example 6.6, note, thatmax{𝑑∕𝑞′, 𝜇} is always strictly less than the

right-hand side of Equation (6.9). On the other hand, the criterion (6.9) can always be satisfied by choosing 𝜈 large enough,
for any given 𝜇 ∈ ℝ and 1 ≤ 𝑝, 𝑞 ≤ ∞.
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