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Abstract
The convolution of two weighted balls of measures is proved to be contained in a third
weighted ball if and only if the supremal convolution of the corresponding two weights is
less than or equal to the third weight. Here supremal convolution is introduced as a type
of convolution in which integration is replaced with supremum formation. Invoking dual-
ity the equivalence implies a characterization of equicontinuity of weight-bounded sets of
convolution operators having weighted spaces of continuous functions as domain and range.
The overall result is a constructive method to define weighted spaces on which a given set
of convolution operators acts as an equicontinuous family of endomorphisms. The result is
applied to linear combinations of fractional Weyl integrals and derivatives with orders and
coefficients from a given bounded set.

Keywords Convolution operators · Radon measures ·Weighted spaces

Mathematics Subject Classification 44A35 · 43A10 · 46E10

1 Introduction

Although necessary and sufficient conditions are known, that make fractional integration a
bounded operator between weighted (Lebesgue) spaces, (see [25,28,31–33] and references
therein), applications, extensions and generalizations of weighted convolution inequalities
continue to attract widespread interest in potential analysis and its applications to partial dif-
ferential equations [3,6,13–17,21,27,35,36]. Deviating from the traditional focus on Banach
spaces and fractional Riesz integrals, the present article studies weighted convolution alge-
bras of Radon measures and fractional Weyl integrals operating as equicontinuous families
of linear endomorphisms on weighted locally convex spaces of continuous functions.

Mathematically, themain objective of this article is to introduce and prove certainweighted
norm inequalities for convolution operators given in our Theorems 5 and 6. A known example
and special case of Theorem 5 applies to Radon measures from the set M(w) of measures
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on a locally compact group G with finite norm |||μ|||w :=
∫ •

w(x)d|μ|(x) < ∞, where
∫ •

denotes the essential upper integral of w with respect to the absolute value |μ| of μ. In [8,
Chapter 6] and [10, Section 4], the weighted norm inequality

|||μ ˚ ν|||w ≤ |||μ|||w|||ν|||w for μ, ν ∈M(w), (1.1)

is shown to be equivalent to “submultiplicativity” of the lower semicontinuous weight
w : G → R

+ := [0,∞+). One calls a weight w submultiplicative, if

w(xy) ≤ w(x)w(y) (1.2)

holds for all x, y ∈ G. Recall from [8,10], that (M(w), ||| · |||w) becomes a Banach convo-
lution algebra of measures, if inequality (1.1) or equivalently (1.2) holds. Extensions and
generalizations were obtained in [1,9,19] for L p-algebras, 1 < p < ∞, instead of measure
algebras.

Define the (multiplicative) supremal convolution of two arbitrary weight functions
w, v : G → R

+∞ as

(w �· v)(z) := sup{w(x)v(y) : z, y ∈ G, xy = z} (1.3)

with the convention 0 · ∞ = ∞ · 0 = 0, and let

w

�·

v := 1/((1/w)�· (1/v)) (1.4)

denote their infimal convolution. Expressing the inequality (1.2) equivalently in terms of
infimal convolution

w ≤ w

�·
w (1.5)

hints at the fundamental role played by supremal and/or infimal convolution for weighted
convolution inequalities. In the literature, the additive variant of infimal convolution has been
studied as “inf-convolution” or “epi-addition” in the context of convex analysis [24,30].

Given the equivalence (1.1)⇐⇒ (1.2)⇐⇒ (1.5), it is natural to investigate its extension
to triples of weights (w, v; u) or triples of sets of weights (W , V ;U ). Let w[M] denote
the subset of measures in M(w) obeying

∫ •
(1/w(x)) d|μ|(x) ≤ 1. Our Theorem 5 shows

that the inequality w �· v ≤ u is equivalent to w[M] ˚ v[M] ⊆ u[M] for locally bounded
w, v, u : G → R

+. Regarding existence of w[M] ˚ v[M], this is shown to be equivalent to
local boundedness of w �· v. In Theorem 5, the equivalence

w �· v ≤ u ⇐⇒ w[M] ˚ v[M] ⊆ u[M] ⇐⇒ w[M] ˚ Cv[u] ⊆ Cv[v] (1.6)

is proved, where Cv[w] denotes the space of all continuous functions f : G → C with
w| f | ≤ 1 and such that w| f | vanishes at infinity. Assumptions for (1.6) require that the
weights are upper semicontinuous and locally bounded away from zero. More equivalences
and inclusions are provided in the precise formulation of Theorem 5.

A preliminary formulation of Theorem 6 highlights the role played by (1.3) for the char-
acterization of convolution as a bounded bilinear operation. Let (W , V ;U ) be a triple of sets,
each consisting of upper semicontinuous functions, that contain all upper semicontinuous
functions u such that u ≤ λmax{w, v} for some λ ∈ R

+, w, v ∈ W . Convolution is a
well-defined bounded bilinear operation

˚ : (W (M),KW )× (V (M),KV )→ (U (M),KU ) (1.7a)

if and only if


W �· V � ⊆ U . (1.7b)
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Here W (M) = ⋃
w∈W w[M] is the space of W -finite measures and KW is the bornology

consisting of the sets of measures M with M ⊆ w[M] for some w ∈ W . The brackets 
 · �
denote upper semicontinuous envelope formation. Assuming χK ∈ W , V ,U for all compact
K ⊆ G, each of (1.7a) and (1.7b) is equivalent to

˚ :
(
qW (M),K

qW

)
→ {(Cv(U ),TU )→ (Cv(V ),TV )} (1.7c)

being a well-defined linear mapping such that bounded sets are mapped to equicontinuous
sets of continuous linear operators (Cv(U ),TU ) → (Cv(V ),TV ). Here Cv(W ) denotes the
set of continuous functions on G with w| f | vanishing at infinity for all w ∈ W and TW is
the locally convex topology generated by the weighted supremum norms f �→ ‖ f ‖w :=
sup{w(x)| f (x)| : x ∈ G}, w ∈ W . Reflection is denoted by qw(x) := w(x−1), x ∈ G and
χK is the characteristic function of K ⊆ G.

It is natural to regard (1.7) as a mere consequence of (1.6). But giving a proof of (1.7)
requires to drop the positivity assumption on the weights in (1.6). This forces us to deal with
convolutes (μ ˚ f )(x) that can diverge for some or even all x ∈ G, and in turn, to deal with
integrals ofC

∞-valued measurable functions that are allowed to diverge. A whole section for
notations and results concerning this difficulty has been incorporated to ensure transparency.
A byproduct of these preparations is Theorem 2. It guarantees universal measurability of
the convolute μ ˚ f whenever μ is a moderated measure and f a universally measurable
C
∞-valued function.
The paper is organized as follows. Basic notations and conventions are summarized in

Sect. 2. This includes a discussion of extended arithmetics. Section 3 treats supremal images
as preparation for Sect. 4 where basic properties of supremal convolution on locally compact
groups are summarized. Section 5 discusses deconvolution. Section 6 provides definitions
and results concerning integration of extended K

∞-valued functions that are needed for
Theorems 5 and 6. Theorem 5 is stated and proved in Sect. 7, where results on images
and tensor products of weighted balls of measures, Theorems 3 and 4, are also included.
Theorem 6 is stated and proved in Sect. 8. Section 9 applies the general results to fractional
Weyl integrals and derivatives as linear endomorphisms on weighted function spaces.

2 Notations and conventions

Let K be R or C throughout. Define K
∞ := K ∪ {∞}, R

+ := [0,∞+) and R
+∞ :=

R
+ ∪ {∞+}. The symbol ∞ stands for “divergent,” “undefined” or “infinite” in a generic

unsigned sense. The symbol∞+ stands for “positive divergent.” The extension K
∞ ⊇ K is

considered as an Alexandrov compactification, where∞ is adjoined as the point at infinity.
The extension R

+∞ ⊇ R
+ is understood as an ordering theoretic extension, where∞+ is

adjoined as the greatest element.
Addition, subtraction, multiplication and division are extended to K

∞ according to

∞+ x = x +∞ =∞, ∞ · x = x · ∞ =
{
∞ if x �= 0,

0 if x = 0,
(2.1a)

x − y := x + (−y), x/y := x · y−1 (2.1b)

for all x, y ∈ K
∞ combined with −∞ := ∞, ∞−1 := 0, and 0−1 := ∞. Note that

associativity and commutativity hold for addition and multiplication, but the distributive law
can fail, because (1−1) ·∞ �= 1 ·∞−1 ·∞. Real and imaginary parts of∞ are�∞ := ∞
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and �∞ := ∞. The absolute value of∞ is defined as |∞| := ∞+. The complex conjugate
of∞ is∞ := ∞.

The operations+, · and (·)−1 are extended to R
+∞ by replacing∞ with∞+ in (2.1) and

setting (∞+)−1 := 0, and 0−1 := ∞+. The extended multiplication is also denoted as ∧· and
referred to as supremal multiplication. Subtraction and inverse elements for addition are not
defined, but the distributive law holds in R

+∞.
For any set S, the set of functions S → K is denoted by F(S). To denote functions with

values in K
∞, R

+ or R
+∞ instead of K, we replace F by F∞, F+ or F+∞.

Let S be a topological space. The topological space S is called locally compact if every of its
points has a compact neighborhood. All locally compact spaces are assumed to be Hausdorff.
The set of K-valued continuous functions on S is denoted by C(S). A function f ∈ F+∞(S)

is called upper (resp. lower) semicontinuous if { f ≥ a} (resp. { f ≤ a}) is closed for every
a ∈ R

+∞. The sets of R
+∞-valued lower, respectively, upper semicontinuous functions

are denoted by L+∞(S), respectively, U+∞(S). The upper semicontinuous envelope of w ∈
F+∞(S) is denoted by


w � := inf{u ∈ U+∞(S) : w ≤ u}. (2.2)

The setU+∞(S) is known to be a closure system [7,Definition 2.33] inF+∞(S), i.e.,U+∞(S)

is closed with respect to pointwise formation of suprema of arbitrary subsets.
Restrictions to functions that are locally bounded, uniformly bounded, vanishing at infinity

or compactly supported, are denoted using a subscriptFlb,Fb,Fv, respectively,Fc.A function
f : S → K

∞ is said to “vanish at infinity” if and only if for every ε > 0 there is a compact
set Kε ⊂ S such that | f (x)| ≤ ε for all x ∈ S\Kε.

3 Supremal image functions and upper semicontinuity

Let Φ : S → T be a mapping between sets and w : T → R
+∞ an arbitrary function.

The pullback or inverse image function Φ−1w of w under Φ can always be defined as
Φ−1w := w ◦Φ : S→ R

+∞ using the composition of mappings.
Unless Φ is bijective and thus invertible, there is no general or natural notion for a “push-

forward” or an “image function” of a function w ∈ F+∞(S) under Φ. However, a useful
construction resembling the “pushforward” of a function w : S → R

+∞ under an arbitrary
mapping Φ : S→ T arises from considering R

+∞ as an ordered set (R+∞,≤), where ≤ is
the canonical ordering.

Definition 1 The supremal image function Φ̂w of w under Φ is defined as

(Φ̂w)(t) := sup{w(s) : s ∈ Φ−1(t)}, (3.1)

for t ∈ T . A supremal image function Φ̂w is called exact if the supremum in (3.1) is a
maximum for all t ∈ Φ(S).

Supremal image formation is analogous to “epi-composition” in [30, Eq.1(17)]. Note, that

Φ̂w coincides with the pullback under the inverse mapping Φ−1, i.e., Φ̂w = (Φ−1)−1w,
whenever Φ is bijective.

Supremal image functions can be characterized in two ways. Firstly, one associates the
strict hypograph Hw := {(s, α) ∈ S × (0,∞+) : α < w(s)} ⊆ S × (0,∞+) to a function
w ∈ F+∞(S). The image of the hypograph Hw under the product mapping Φ × id : S ×
(0,∞+) → T × (0,∞+) results in a set HΦ,w ⊆ T × (0,∞+) that is precisely the strict
hypograph associated with Φ̂w.
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Secondly, the mapping Φ̂ : F+∞(S)→ F+∞(T ) associated with any mapping Φ : S→
T by Definition 1 can be seen as the (lower) adjoint to the inverse image operator
Φ−1 : F+∞(T ) → F+∞(S) in the sense of ordering theory [7, Definition 7.23], where
F+∞(S) and F+∞(T ) are endowed with the canonical pointwise ordering. This fact is
formulated as

Proposition 1 The mappings Φ̂ : F+∞(S) → F+∞(T ) and Φ−1 : F+∞(T ) → F+∞(S)

are isotone. The pair of mappings (Φ̂,Φ−1) is a Galois connection (or adjoint pair) in the
sense that the two statements

Φ̂w ≤ v ⇐⇒ w ≤ Φ−1v for all w ∈ F+∞(S), v ∈ F+∞(T ) (3.2a)

and

w ≤ Φ−1(Φ̂w) for w ∈ F+∞(S), Φ̂(Φ−1v) ≤ v for v ∈ F+∞(T ) (3.2b)

hold true.

Proof Isotony and the statement (3.2a) are proved by pointwise evaluation. This shows that
(Φ̂,Φ−1) is a Galois connection. The statement (3.2b) is a general property of Galois con-
nections [7, Lemma 7.26, p. 159]. ��

The following two results on upper semicontinuity and supremal image functions will
be useful. For the remainder of the section, Φ : S → T is a continuous mapping between
topological spaces. The brackets 
 · � will denote upper semicontinuous envelopes.

Corollary 1 Proposition 1 holds also when F+∞(T ) is replaced by U+∞(T ) and Φ̂ is
replaced by the assignment w �→ ⌈

Φ̂w
⌉
.

Proof Isotony of Φ̂ and 
 · � imply isotony of w �→ ⌈
Φ̂w

⌉
. The equivalence of

⌈
Φ̂w

⌉ ≤ v

and Φ̂w ≤ v for w ∈ F+∞(S) and v ∈ U+∞(T ) concludes the proof. ��
Lemma 1 The following relations hold:

Φ̂w ≤ Φ̂ 
w � ≤ ⌈
Φ̂w

⌉ = ⌈
Φ̂ 
w � ⌉ for all w ∈ F+∞(S). (3.3)

Proof The relations Φ̂w ≤ Φ̂ 
w � and ⌈
Φ̂w

⌉ ≤ ⌈
Φ̂ 
w � ⌉ follow from the definitions.

Further, assume Φ̂w ≤ v with v ∈ U+∞(T ). Proposition 1 yields w ≤ Φ−1v and further
Φ̂w ≤ Φ̂(Φ−1v) ≤ v where Φ−1v ∈ U+∞(S). This implies Φ̂ 
w � ≤ ⌈

Φ̂w
⌉
, and thus,⌈

Φ̂ 
w � ⌉ ≤ ⌈
Φ̂w

⌉
yields the equality. ��

Proposition 2 Assume that T is locally compact. If w : S → R
+∞ is upper semicontinuous

and the restriction of w to the preimage Φ−1(C) is vanishing at infinity for any compact
C ⊆ T , then Φ̂w : T → R

+∞ is upper semicontinuous as well. Further, the supremal image
function Φ̂w is exact.

Proof The proof is analogous to [30, Proposition 1.32]. ��

4 Supremal convolution on locally compact groups

Let G be a locally compact group and let Γ : G × G → G be its continuous multiplication
written as xy = Γ (x, y) for x, y ∈ G.
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Definition 2 Let w, v ∈ F+∞(G). The (multiplicative) supremal convolution of w and v,
denoted as w �· v, is defined by

(w �· v)(z) := sup {w(x) ∧· v(y) : x, y ∈ G, xy = z} , z ∈ G. (4.1)

Supremal convolutes w �· v are called exact, if the supremum in (4.1) is a maximum for all
z ∈ G.

Supremal convolution is an associative binary operation �· on F+∞(G) [24,30] that is
analogous to inf-convolution in [30, 1.H.]. The law χA �· χB = χAB holds for subsets
A, B ⊆ G. For x ∈ G, one has χx �· w = Lxw and w �· χx = Rxw where Lxw(y) :=
w(x−1y) and Rxw(y) = w(yx−1) denote left and right translation. Supremal convolution
respects translation in the sense that Lx (w�· v) = (Lxw)�· v and Rx (w�· v) = w�· (Rxv).
Supremal convolution is homogeneous in the sense that (λ ∧· w) �· v = w �· (λ ∧· v) =
(w �· (λ ∧· v)) = λ ∧· (w �· v) for λ ∈ R

+∞. For infimal multiplication, one obtains only
λ ∨· (w �· v) ≥ (λ ∨· w)�· v,w �· (λ ∨· v) for λ ∈ R

+∞. Thus, supremal convolution shares
many properties with convolution.

Supremal convolution can be decomposed as

�· : F+∞(G)× F+∞(G)
⊗̂−→ F+∞(G × G)

Γ̂−→ F+∞(G) (4.2)

into the supremal tensor product ⊗̂ and the supremal image Γ̂ under the group multiplication
Γ . The supremal tensor product is defined as

(w ⊗̂ v)(s, t) = w(s) ∧· v(t) (4.3)

whenever s ∈ S, t ∈ T , w ∈ F+∞(S), v ∈ F+∞(T ) and S, T are sets. It coincides with the
usual tensor product ⊗ of functions whenever the functions are finite valued.

The adjective “supremal” refers to the fact that supremal operations (convolution, mul-
tiplication or tensor product) are characterized as the unique extensions of the finite-valued
case that preserve suprema of arbitrary subsets in each argument. This means that

sup(A© B) = sup A© sup B (4.4)

holds for © = ∧· , ⊗̂,�· . Here A, B ⊆ R
+∞ or A, B ⊆ F+∞(G) for © = ∧· , while

A, B ⊆ F+∞(G) for© = ⊗̂,�· .
Proposition 3 Let w, v ∈ F+∞(G). If w or v is lower semicontinuous, then w�· v is lower
semicontinuous as well.

Proof The proposition is an analogue of [24, 4.c.Proposition]. ��
Proposition 4 Let w, v ∈ U+(G) such that w ⊗ v is vanishing at infinity on Γ −1(C) =
{(x, y) ∈ G × G : xy ∈ C} for all compact C ⊆ G. Then, w �· v is upper semicontinuous
and the supremal convolute w �· v is exact.

Proof This follows from Proposition 2 and the fact that tensor products of R
+-valued upper

semicontinuous functions are upper semicontinuous. ��
Corollary 2 The following inclusions hold:

U+v (G)�· U+b (G) ⊆ U+b (G), (4.5a)

U+(G)�· U+c (G) ⊆ U+(G). (4.5b)

123



Convolution operators on weighted spaces of continuous… 1553

Proof This is merely checking the assumption of Proposition 4. ��
Remark 1 By means of the exponential transformation R

±∞ := [∞−,∞+] ↔ R
+∞ with

exp(−x)↔ y, where∞− := −∞+ and−∞− := ∞+, Proposition 4 is seen to be equivalent
to Proposition 1.27 from [30]. Proposition 1.27 from [30] was proved for R

d , but the proof
in [30] extends to locally compact groups without complications. The special case (4.5a) can
also be found in [24, Section 4].

Lemma 2 Let S and T be topological spaces. Upper semicontinuous envelopes 
 · �, and
tensor products ⊗ are compatible in the following sense:


w ⊗ v � = 
w � ⊗ 
 v � for all (w, v) ∈ F+lb (S)× F+lb (T ), (4.6)

where F+lb denotes locally bounded functions.

Proof Upper semicontinuous envelopes of locally bounded functions are finite valued, and
tensor products of finite-valued upper semicontinuous functions are upper semicontinuous.
Therefore, 
w ⊗ v � ≤ 
w � ⊗ 
 v � ∈ U+∞(S × T ). On the other hand, if w ⊗ v ≤
u ∈ U+∞(S × T ), then wv(t) = (w ⊗ v)(·, t) ≤ u(·, t) ∈ U+∞(S) for all t ∈ T , and
thus, 
w � ⊗ v ≤ u. With the same argument, one obtains 
w � ⊗ 
 v � ≤ u, and thus,

w � ⊗ 
 v � ≤ 
w ⊗ v �. ��
Proposition 5 Let w, v, u ∈ U+(G) such that w �· v and v �· u are locally bounded. Then,
the following associative law holds:


 
w �· v � �· u � = 
w �· v �· u � = 
w �· 
 v �· u � � (4.7)

Proof Use the definition of�· , then the upper semicontinuity of u and then Lemma 2 to get:


w �· v � �· u = Γ̂ (
w �· v � ⊗ u) = Γ̂ (
w �· v � ⊗ 
 u �) = Γ̂ (
 (w �· v)⊗ u �)
This, together with Lemma 1 and the definition of �· in reverse, gives


 
w �· v � �· u � = ⌈
Γ̂ (
 (w �· v)⊗ u �) ⌉

= ⌈
Γ̂ ((w �· v)⊗ u)

⌉ = 
 (w �· v)�· u � .
Now, use the associative law for �· and do similar steps in reverse. ��
Remark 2 Proposition 5 implies that the assignment (w, v) �→ 
w �· v � defines an associa-
tive internal binary operation U+b (G) × U+b (G) → U+b (G). Setting w = χA and v = χB ,
where χA denotes the characteristic function of a subset A ⊆ G, shows that the assignment
(A, B) �→ AB with A, B ⊆ G defines an associative internal binary operation on the closed
subsets of G. Here A denotes the topological closure of A in G.

5 Supremal deconvolution

Supremal deconvolution is an operation similar to taking the inverse of supremal convolution
(see Proposition 6). It is related to infimal convolution

�·

, the dual operation to �· , defined
as w

�·

v = 1/((1/w)�· (1/v)) for w, v ∈ F+∞(G).

Definition 3 Multiplicative supremal left/right deconvolution is defined as

(w �\ u)(z) := inf
{
(1/w(x−1)) ∨· u(y) : x, y ∈ G, xy = z

}
, z ∈ G, (5.1a)
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(u �/ v)(z) := inf
{
u(x) ∨· (1/v(y−1)) : x, y ∈ G, xy = z

}
, z ∈ G, (5.1b)

for w, v, u ∈ F+∞(G). Here “∨·” is infimal multiplication defined such that 0 ∨· ∞+ =
∞+ ∨· 0 = ∞+. The definition is analogous to the deconvolution from [22, Introduction].

Remark 3 Note that�\ preserves suprema in its left argument and infima in its right argument.
Left deconvolution can be written as w �\ v = (1/qw)

�·

v.

Proposition 6 Let w, v, u ∈ F+∞(G).

(a) The following equivalences hold:

w �· v ≤ u ⇐⇒ v ≤ w �\ u ⇐⇒ w ≤ u �/ v (5.2)

(b) The following inequalities hold:

v ≤ w �\ (w �· v), w �· (w �\ u) ≤ u, (5.3a)

w ≤ (w �· v) �/ v, (u �/ v)�· v ≤ u, (5.3b)

w ≤ u �/ (w �\ u), v ≤ (u �/ v)�\ u. (5.3c)

(c) If u is upper semicontinuous, then w �\ u and u �/ v are upper semicontinuous as well.

Proof Part (a) and (b) of Proposition 6 are analogues of Lemma I-1 and Proposition I-4 in
[22] carefully extended to the non-commutative case.

Part (c) follows from Proposition 3 by duality. ��

6 Integration of K
∞-valuedmeasurable functions

This section summarizes notations and results for measures and integration on locally com-
pact spaces [4,5]. A slight modification of essential integration is introduced [Eq. (6.2) and
(6.4)] to allow integration of arbitrary K

∞-valued measurable functions with respect to any
K-valued Radon measure consistent with the extended arithmetic from Sect. 2. This allows
to state and prove that the class of universal measurable K

∞-valued functions on G is pre-
served under left convolution with moderated Radon measures on G (Theorem 2). The result
is derived from Theorem 1 that concerns integration of universally measurable functions with
respect to factors of a product measure.

In the remaining text of the article, the “Radon” in Radon measure is dropped, because
solely this kind of measure is used.

Let S be a locally compact space. The set of K-valued continuous functions with compact
support is denoted byK(S). The set ofK-valuedmeasures on S is denoted byM(S), the set of
positive measures byM+(S). The symbols �μ, �μ and |μ| denote the real part, imaginary
part and absolute value of μ ∈ M(S), respectively. The positive/negative part of a real-
valued measure μ is denoted by μ± (See [4, Ch. III, §1,Nos. 3, 5, 6]). The upper integral,
respectively, the essential upper integral of f ∈ F+∞(S) with respect to μ ∈ M+(S) is
denoted by

123



Convolution operators on weighted spaces of continuous… 1555

μ∗( f ) =
∫ ∗

f (s) dμ(s), respectively, μ•( f ) =
∫ •

f (s) dμ(s) (6.1)

(See [4, Ch. IV,§1,No.1,Def. 1], respectively, [4, Ch.V,§1,No.1,Def. 1]).
Fix ameasureμ. The following definition of essentiallyμ-integrableK

∞-valued functions
is a useful extension of the essentiallyμ-integrable functions from [4, Ch.V,§1,No.3,Def. 3]
to K

∞. The set of essentially μ-integrable K
∞-valued functions is denoted by I∞(μ) and

defined as the set of all functions f from F∞(S) such that I f := {s ∈ S : f (s) = ∞} is a
locally μ-negligible set and f coincides on S\I f with some K-valued μ-integrable function
f ′ [4, Ch. IV,§4,No.1,Def. 1]. The essential integral of f ∈ I∞(μ) with respect to μ is then
defined as

μ( f ) =
∫

f (s) dμ(s) := μ( f ′) (6.2)

where μ( f ′) is the integral of f ′ as defined in [4, Ch. IV,§4,No.1,Def. 1]. This definition of
the essential integral μ( f ) is analogous to that in [4, Ch.V,§1,No.3,Def. 3].

The set of μ-measurable K
∞-valued functions is denoted as M∞(μ) and is defined

as in [4, Ch. IV,§5,No.1,Def. 1] where K
∞ is endowed with the topology it obtains when

considered as an Alexandroff compactification of K. The set of universally measurable K
∞-

valued functions on S is defined as the intersection of the spaces M∞(μ) with μ running
over all positive measures on S [4, Ch.V,§3,No.4,Def. 2].

Proposition 7 The setsM∞(μ) with μ ∈M(S) andM∞(S) are closed under the extended
addition, multiplication and K

∞-scalar multiplication. Further, they are closed under addi-
tive andmultiplicative inverses, the formation of real/imaginary parts, positive/negative parts
(if K = R) and the absolute value.

Proof To prove the closedness with respect to extended addition and multiplication, one
uses [4, Ch. IV,§5,No.10,Prop. 16] and the following three observations: 1. The statement
of the proposition is known for K-valued functions. 2. A K

∞-valued function f is μ-
measurable if and only if the set I f := {s ∈ S : f (s) = ∞} is μ-measurable and the
restriction of f to Ff := S\I f is aμ-measurable K-valued function on Ff in the sense of [4,
Ch. IV,§5,No.10,Def. 8]. 3. The relations I f+g = I f ∪ Ig and I f ·g = (I f ∩ Pg)∪ (Pf ∩ Ig)
hold for arbitrary f , g ∈ F∞(S) where Pf := {s ∈ S : f (s) �= 0}.

The remaining statements can be proved in a similar vein. ��
Applying [4,Ch.V,§1,No.3,Prop. 9] to the definition of the essentialμ-integral, as defined

in (6.2), one obtains the following characterization:

f ∈ I∞(μ) ⇐⇒ |μ|•(| f |) <∞+ and f ∈M∞(μ). (6.3)

The extended essentialμ-integralμ( f ) of f ∈M∞(μ)with respect toμ ∈M(S) is defined
by extending the essential μ-integral as follows:

μ( f ) := ∞ whenever |μ|•(| f |) = ∞+. (6.4)

This extension is motivated by the equivalence (6.3). Due to (6.3), one obtains a well-defined
mapping μ : M∞(μ)→ K

∞.

Proposition 8 The extended essential integral obeys

μ(α f + αg) = αμ( f )+ βμ(g) (6.5a)
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for f , g ∈M∞(μ), α, β ∈ K, μ ∈M(S) if and only if

|μ|(| f |) <∞+ or |μ|(|g|) <∞+ or |μ|(|α f + βg|) = ∞+. (6.5b)

Similarly,

(αμ+ βν)( f ) = αμ( f )+ βν( f ) (6.6a)

holds for f ∈M∞(μ) ∩M∞(ν), α, β ∈ K, μ, ν ∈M(S) if and only if

|μ|(| f |) <∞+ or |ν|(|g|) <∞+ or |αμ+ βν|(| f |) = ∞+. (6.6b)

But,

∞ · μ( f ) = μ(∞ · f ) (6.7a)

for f ∈M∞(μ), μ ∈M(μ) if and only if

μ( f ) �= 0 or |μ|(| f |) = 0. (6.7b)

The standard estimate

|μ( f )| ≤ |μ|(| f |) (6.8)

holds for all f ∈M∞(μ), μ ∈M(S). When∞ and∞+ are identified with each other, one
has

μ( f ) = μ•( f ) (6.9)

for all f ∈M+∞(S), μ ∈M+(S).

Proof One uses thatμ : I∞(μ)→ K respects extended addition andK-scalarmultiplication,
the equivalence in Eq. (6.3) and distinguishes the different cases that appear according to the
definition in Eq. (6.4). ��
Corollary 3 The following decomposition formula holds:

μ( f ) =
3∑

k,l=0
ik+l(Pkμ)(Pl f ) (6.10)

for all f ∈ M∞(μ) and μ ∈ M(S), where P0 := (�·)+, P1 := (�·)+, P2 := (�·)− and
P3 := (�·)−.
Proof The estimates

1√
2

3∑

k=0
Pk f ≤ | f | ≤

3∑

k=0
Pk f

1

2

3∑

k=0
Pkμ ≤ |μ| ≤

3∑

k=0
Pkμ

hold for f ∈ F∞(S) and μ ∈M(S) [4, Ch. III, §1,No.5&6]. This yields that

|μ|(| f |) = ∞+ ⇐⇒ ∃ k, l ∈ {0, 1, 2, 3} : (Pkμ)(Pl f ) = ∞+.

This means that the conditions (6.5b), respectively, (6.6b) can be verified for the linear
combinations f = ∑3

k=0 ikPk f and μ = ∑3
k=0 ikPkμ. Using (6.5a), (6.6a) and (6.9), one

obtains (6.10). ��
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Recall the definition of products of measures: For any twomeasureμ ∈M(S), ν ∈M(T )

and f ∈ K(S × T ), let

t �→ μ( f )(t) :=
∫

f (s′, t) dμ(s′), s �→ ν( f )(s) :=
∫

f (s, t ′) dν(t ′). (6.11a)

Then μ( f ) and ν( f ) define continuous functions of compact support. The product measure
μ⊗ ν of μ and ν is defined for f ∈ K(S × T ) by [4, Ch. III, §4,No.1]:

(μ⊗ ν)( f ) =
∫ (∫

f (s, t) dμ(s)

)

dν(t) =
∫ (∫

f (s, t) dν(t)

)

dμ(s). (6.11b)

A K-valued measure μ on S is called moderated whenever S is a countable union of μ-
integrable sets [4, Ch.V,§1,No.2,Def. 2]. In this case, the support suppμ of μ is a countable
union of compact subsets of S [2, Lemma 1]. The set of moderated measures on S will be
denoted by Mσ (S).

Theorem 1 Let μ ∈ Mσ (S), ν ∈ Mσ (T ) and f ∈ M∞(S × T ). Then the functions μ( f )
and ν( f ) in (6.11a) are well defined, in a pointwise sense, as extended essential integrals of
K
∞-valued measurable functions and they fulfill μ( f ) ∈M∞(T ) and ν( f ) ∈M∞(S). In

addition, if |μ⊗ ν|(| f |) <∞+ or μ, ν and f are positive, then the formula (6.11b) holds.

Proof According to [4, Ch.V,§8,No.2,Prop. 2], one has s′ �→ f (s′, t) ∈ M∞(S) and
t ′ �→ f (s, t ′) ∈ M∞(T ) whenever f ∈ M∞(S × T ), t ∈ T , s ∈ S and this guarantees
that μ( f ) and ν( f ) are pointwise well defined in the sense of the conventions for extended
essential integration from (6.2) and (6.4). Using the decomposition formula (6.10) yields

μ( f )(t) =
3∑

k,l=0
ik+l(Pkμ)(Pl f )(t), ν( f )(s) =

3∑

k,l=0
ik+l(Pkν)(Pl f )(s) (6.12)

for all t ∈ T and s ∈ S. According to (6.9) and [4, Ch.V,§8,No.3,Prop. 7], the func-
tions (Pkμ)(Pl f ) and (Pkν)(Pl f ) are universally measurable for all k, l ∈ {0, 1, 2, 3}. From
Proposition 7 and Eq. (6.12), one concludes that μ( f ), respectively, ν( f ) are fromM∞(S),
respectively, M∞(T ).

The additional statements follow from [4, Ch.V,§8,No.2,Prop. 2] and [4, Ch. V, §8, No.
4, Th. 1]. ��

Convolution is now defined as the image of a product: For any continuous mapping
Φ : S→ T between locally compact spaces andμ ∈M(S), the image ofμ underΦ is defined
by (Φμ)( f ) := μ( f ◦ Φ), f ∈ K(T ) whenever it exists, i.e., whenever |μ|( f ◦ Γ ) <∞+
for all f ∈ K+(S) [4, Ch.V,§6,No.4,Def. 2]. For two measures μ, ν ∈M(G) on a locally
compact group G, one defines the convolution

μ ˚ ν := Γ [μ⊗ ν] (6.13)

of μ and ν whenever μ and ν are convolvable, i.e., whenever the image of μ ⊗ ν under Γ

exists [4, Ch.VIII, §3,No.1]. The left convolution of a function f ∈M∞(G)with a measure
μ ∈M(G) is defined as

(μ ˚ f )(x) :=
∫

f (y−1x) dμ(y), x ∈ G. (6.14)

This defines a binary operation ˚ : M(G) ×M∞(G) → F∞(G). Linearity holds with
restrictions similar to those for the binary operation of extended essential integrationM(G)×
M∞(G)→ K

∞ as seen in Proposition 8.
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Theorem 2 Left convolution (6.14) is well defined as a binary operation

˚ : Mσ (G)×M∞(G)→M∞(G). (6.15)

The transposition law

(μ ˚ ν)( f ) = ν(μ ˚ f ) (6.16a)

holds for f ∈ M∞(G) and μ, ν ∈ Mσ (G) whenever μ and ν are convolvable and one of
the following two expressions is finite:

(|μ| ˚|ν|)(| f |), |ν|(|μ| ˚| f |). (6.16b)

Proof Both statements follow from Theorem 1 and the fact that (x, y) �→ f (y−1x) defines
an element of M∞(G × G) whenever f ∈M∞(G). ��

For a sequence of positive numbers xn ∈ R
+∞, n ∈ N, their series is declared to be

∑

n∈N
xn = sup

m

m∑

n=1
xn (6.17)

while for a sequence with xn ∈ K
∞

∑

n∈N
xn =

⎧
⎪⎨

⎪⎩

lim
m→∞

m∑

n=1
xn, if

∑
n∈N |xn | <∞+,

∞, if
∑

n∈N |xn | = ∞+.

(6.18)

With this definition, linearity
∑

n∈N(αxn+β yn) = α
∑

n∈N xn+β
∑

n∈N yn holds always for
positive sequences (xn)n∈N, (yn)n∈N in R

+∞ and α, β ∈ R
+∞. For α, β ∈ K and (xn)n∈N,

(yn)n∈N from K
∞ linearity holds if and only if

∑
n∈N|xn | < ∞+, or

∑
n∈N|yn | < ∞+, or∑

n∈N|αxn + β yn | = ∞+. The relation
∑

n∈N∞ · xn = ∞ ·
∑

n∈N xn holds if and only if∑
n∈N xn �= 0, or xn = 0 for all n ∈ N. The standard estimate |∑n∈N xn | ≤∑

n∈N|xn | holds
for all sequences (xn)n∈N in K

∞.

Remark 4 With these specifications, Theorem 1 can be applied to the situation where T = N

and ν ∈Mσ (N) =M(N) is given by the counting measure

ν(g) :=
∑

n∈N
g(n) (6.19)

for g ∈ M∞(N) = F∞(N). The function set M∞(S × N) is identified with the set of
sequences ( fn)n∈N with fn ∈ M∞(S). For F = ( fn)n∈N ∈ M∞(S × N), the pointwise
defined function s �→ ν(F)(s) obeys

ν(F) =
∑

n∈N
fn ∈M∞(S). (6.20)

7 Operations on weighted balls characterized by weights

This section characterizes the action of image, product and convolution operations on
weighted balls of measures and functions in terms of supremal operations on the weight func-
tions. The symbols S and T will denote locally compact spaces, Φ : S→ T is a continuous
mapping, and G is a locally compact group with multiplication mapping Γ : G × G → G.
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Definition 4 For w ∈ F+∞(S), the w-ball of measures is defined as

w[M] := {μ ∈M(S) : |μ|•(1/w) ≤ 1}. (7.1a)

The strict w-ball of Dirac measures w[Ds] is defined as
w[Ds] := {αδs : s ∈ S, α ∈ K, |α| < w(s)}, (7.1b)

where δs( f ) := f (s), f ∈ K(S) is the Dirac measure associated with s ∈ S.

Remark 5 Let w, v ∈ F+∞(S).

(a) The set w[M] is vaguely bounded iff w is locally bounded.
(b) The set w[M] is vaguely closed iff w is upper semicontinuous.
(c) If w is locally bounded, then the ball w[M] consists of moderated measures (see

Lemma3) and the inequality |μ|•(1/w) ≤ 1 in (7.1a)maybe replaced by |μ|∗(1/w) ≤ 1.
(d) The inclusion v[Ds] ⊆ w[M] holds iff v ≤ w.

Lemma 3 Let μ be a measure on S and h : S → R
+∞ a function that is bounded away

from zero on each compact subset of S and assume |μ|•(h) ≤ 1. Then, there exist measures
μn ∈ M(S) with compact support and numbers αn ∈ R

+, such that |μn |•(h) ≤ 1, n ∈ N,∑∞
n=1 αn ≤ 1 andμ =∑∞

n=1 αnμn in the sense of a vaguely converging series. The following
estimate holds:

∣
∣
∣
∣
∣
μ−

n∑

k=1
αkμk

∣
∣
∣
∣
∣

•
(h) ≤

∞∑

k=n+1
αk for all n ∈ N. (7.2)

As a consequence μ is moderated.

Proof The assumptions on h guarantee that the lower semicontinuous envelope "h# of h is
strictly positive everywhere. The sets Hn := {"h# > 1/n}, n ∈ N are μ-integrable, because
they are open and

|μ|•(Hn) = n|μ|•((1/n)χHn ) ≤ n|μ|•("h#) = n|μ|•(h) ≤ n <∞+. (7.3)

Their union is S. Thus, μ is moderated. By [2, Lemma 1], its support is the union of a
sequence of compact subsets of S. Therefore, there exist functions fn ∈ K+(S), n ∈ N such
that f · μ = μ, where f := ∑∞

n=1 fn . Define the measures νn := fn · μ and the numbers
αn := |νn |•(h) = |μ|•( fnh) ∈ R

+. Then, let μn := (1/αn) · νn if αn �= 0 and μn = 0
otherwise. The numbers αn and the measures μn fulfill the statements in the theorem. Using
[4, Ch.V, §1, No.1, Prop.1 d)& e)] and [4, Ch.III, §1, No.4], one estimates

∣
∣
∣
∣
∣
μ−

n∑

k=1
αkμk

∣
∣
∣
∣
∣

•
(h) =

∣
∣
∣
∣
∣
f · μ−

n∑

k=1
fk · μ

∣
∣
∣
∣
∣

•
(h) =

∣
∣
∣
∣
∣

(

f −
n∑

k=1
fk

)

μ

∣
∣
∣
∣
∣

•
(h)

=
∣
∣
∣
∣
∣

( ∞∑

k=n+1
fk

)

μ

∣
∣
∣
∣
∣

•
(h) = |μ|•

( ∞∑

k=n+1
fkh

)

≤
∞∑

k=n+1
|μ|•( fkh)

≤
∞∑

k=n+1
αk

which concludes the proof. ��
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Definition 5 Let w ∈ F+∞(S). The w-weighted ball of K
∞-valued universally measurable

functions is defined as

M∞[w] := { f ∈M∞(S) : ‖ f ‖w ≤ 1} (7.4a)

where the w-supremum norm is

F∞(S) $ f �→ ‖ f ‖w := sup{w(s)| f (s)| : s ∈ S} ∈ R
+∞. (7.4b)

The w-weighted ball of w-continuous functions is defined as

C∼v [w] :=M∞[w] ∩K(S)
‖·‖w

, (7.4c)

where the formula for C∼v [w]means the closure ofM∞[w] ∩K(S) inM∞[w] with respect
to the pseudo-metric ( f , g) �→ ‖ f − g‖w on M∞[w]. Let

Xs[w] := {αχs : s ∈ S, α ∈ K, |α| < 1/w(s)} (7.4d)

denote the strict w-weighted ball of functions supported on a single point.

Remark 6 Let w, v ∈ F+∞(S).

(a) For any f ∈ K(S), one finds ε > 0 with ε f ∈ C∼v [w] iff w is locally bounded.
(b) The set C∼v [w] consists ofK∞-valued universallymeasurable functions that areK-valued

on the set {w > 0}, such that its restrictions to the sets {w ≥ λ}, λ > 0 are continuous
and w| f | is vanishing at infinity on the subspace {w > 0}.

(c) The inclusion Xs[v] ⊆M∞[w] holds iff w ≤ v.

Lemma 4 The following equations hold:

Φ(w[Ds]) = (Φ̂w)[Ds] for w ∈ F+∞(S), (7.5a)

w[Ds] ⊗ v[Ds] = (w ⊗ v)[Ds] for w ∈ F+∞(S), v ∈ F+∞(T ), (7.5b)

w[Ds] ∗ v[Ds] = (w �· v)[Ds] for w, v ∈ F+∞(G), (7.5c)

qw[Ds] ∗ Xs[u] = Xs[w �\ u] for w, u ∈ F+∞(G). (7.5d)

Proof The results follow from the definitions by straightforward calculation. ��
Theorems 3, 4 are now stated and proved in preparation for the main results stated in

Theorem 5.

Theorem 3 Let w ∈ F+lb (S), v ∈ F+lb (T ). The images Φμ, μ ∈ w[M] exist if and only if
Φ̂w is locally bounded. The following are equivalent:

(a) The inequality Φ̂w ≤ v holds.
(b) The inclusion Φ(w[M]) ⊆ v[M] holds.
Proof Characterization of existence: If Φ̂w is not locally bounded, then, by local com-
pactness of S, there exists a sequence (sn)n∈N ⊆ S and a compact subset C ⊆ T such
that 2n ≤ w(sn) and Φ(sn) ∈ C for all n ∈ N. Define the positive measure μ by
μ( f ) :=∑∞

n=1 2−nw(sn) f (sn) for f ∈ K(S). Becausew is locally bounded, {sn : n ∈ N} is
necessarily a discrete subset of S. This guarantees that μ is a well-defined positive measure,
because it renders the sum finite. Then

μ•(1/w) =
∞∑

n=1
2−nw(sn) · (1/w(sn)) ≤

∞∑

n=1
2−n = 1;
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thus, μ ∈ w[M], but

μ•(g ◦Φ) =
∞∑

n=1
2−nw(sn)g(Φ(sn)) ≥

∞∑

n=1
g(Φ(sn)) (7.6)

for g ∈ K+(T ). If g = 1 onC , then the expression on the right in (7.6) must be infinite. Thus,
the image of μ under Φ does not exist. The reverse implication follows from the estimate
(7.8).

For the converse, assume that v := Φ̂w is locally bounded and let μ ∈ w[M]. Then
1/(v ◦ Φ) ≤ 1/w holds by Proposition 1. For f ∈ K+(T ), one finds ε > 0 such that
ε f ≤ 1/v because v is locally bounded. Then, one obtains

|μ|•( f ◦Φ) ≤ ε−1|μ|•(1/(v ◦Φ)) ≤ ε−1|μ|•(1/w) <∞+ (7.7)

proving the existence of Φμ.
“(a)⇐⇒ (b)”: Let μ ∈ w[M] and assume Φ̂w ≤ v. Using properties of image measures [4,
Ch.V,§6,No.4, (8) & No.2,Prop. 2] and (3.2a), one obtains

|Φμ|• (1/v) ≤ (Φ|μ|)• (1/v) = |μ|•(1/(v ◦Φ)) ≤ |μ|•(1/w) ≤ 1. (7.8)

The converse follows from Remark 5(d) and Eq. (7.5a). ��
Theorem 4 Let w ∈ F+lb (S), v ∈ F+lb (T ) and u ∈ F+lb (S× T ). The following are equivalent:

(a) The inequality w ⊗ v ≤ u holds.
(b) The inclusion w[M] ⊗ v[M] ⊆ u[M] holds.
Proof If (μ, ν) ∈ w[M] × v[M] and w ⊗ v ≤ u, then, by properties of product measures
[4, Ch. III, §4,No.2,Prop. 3 & Ch.V,§8,No.3,Prop. 8]:

|μ⊗ ν|• (1/u) ≤ (|μ| ⊗ |ν|)• (1/(w ⊗ v)) = |μ|•(1/w) · |ν|•(1/v) ≤ 1.

The converse follows from Remark 5(d) and Eq. (7.5b). ��
Lemma 5 Let w ∈ U+(S), (αn)n∈N a sequence of numbers αn ∈ K such that

∑∞
k=1|αk | ≤ 1

and ( fn)n∈N a sequence of functions fn ∈ C∼v [w]. Then the function f :=∑∞
k=1 αk fk , that

is defined pointwise by this series (in the sense of Sect. 2), fulfills f ∈ C∼v [w].
Proof First note that f ∈M∞(S) because of Remark 4 and becauseM∞(S) is closed under
pointwise formation of arbitrary series of sequences. One has

‖ f ‖w =
∥
∥
∥
∥
∥

∞∑

k=1
αk fk

∥
∥
∥
∥
∥

w

≤
∞∑

k=1
|αk |‖ fk‖w ≤

∞∑

k=1
|αk | ≤ 1, (7.9)

and thus, f ∈M∞[w]. For each fixed n ∈ N, choose a sequence gn,m ∈ K(S)∩M∞[w] such
that gn,m → fn with respect to ‖·‖w whenm →∞. Clearly,

∑n
k=1 αkgk,m ∈ K(S)∩M∞[w]

for each n ∈ N and the limit for m → ∞ coincides with
∑n

k=1 αk fk on each point s ∈ S
where w(s) > 0. (This follows from the fact that αn, fn(s) ∈ K for all n ∈ N and s ∈ S
with w(s) > 0.) Therefore,

∑n
k=1 αk fk ∈ C∼v [w]. As (7.9) implies the convergence of∑n

k=1 αk fk → f in M∞[w] with respect to ‖·‖w for n →∞ and C∼v [w] is, by definition,
a closed subset of M∞[w] with respect to ‖·‖w one can finally conclude f ∈ C∼v [w]. ��
Theorem 5 Let w, v, u ∈ F+lb (G). All pairs (μ, ν) ∈ w[M] × v[M] are convolvable if and
only if w �· v is locally bounded. The following statements are equivalent:
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(a) The inequality w �· v ≤ u holds.
(b) The inclusion w[M] ∗ v[M] ⊆ u[M] holds.
(c) The inclusion qw[M] ∗M∞[u] ⊆M∞[v] holds.
In addition, the following statements are equivalent to (a)–(c) if u is upper semicontinuous:

(a’) The inequality 
w �· v � ≤ u holds.
(c’) The inclusion qw[M] ∗ C∼v [u] ⊆ C∼v [v] holds.
Proof Characterization of existence: Assume that w�· v is not locally bounded. One finds a
sequence (zn)n∈N in G and a compact subset C of G such that (w �· v)(zn) ≥ 5n and such
that C is a neighborhood of the set {zn : n ∈ N}. One finds sequences (xn)n∈N and (yn)n∈N
in G such that w(xn)v(yn) ≥ 4n and xn yn = zn for all n ∈ N. Passing to a subsequence and
using symmetry, if necessary, one may assume that w(xn) ≥ 2n . Then, the set {xn : n ∈ N}
is discrete because w is locally bounded, and therefore, one may assume that the sets x−1n C ,
n ∈ N are disjoint (again, by passing to a subsequence if necessary). By construction,
x−1n C is a neighborhood of yn for all n ∈ N. Thus, the set {yn : n ∈ N} is discrete as well.
Now the formulas μ( f ) :=∑∞

n=1 2−nw(xn) f (xn) and ν( f ) :=∑∞
n=1 2−nv(yn) f (yn) with

f ∈ K(G) define positive measures μ and ν, and one calculates that μ ∈ w[M] and
ν ∈ v[M].

On the other hand, the estimate

(μ⊗ ν)•(g ◦ Γ ) ≥
∞∑

n=1
4−nw(xn)v(yn)g(zn) ≥

∞∑

n=1
g(zn) (7.10)

holds for any g ∈ K+(G). Choosing g = 1 onC , one obtains an infinite expression, and thus,
the image ofμ⊗ν under Γ does not exist. The reverse implication follows from Theorems 3
and 4.
“(a)⇐⇒ (b)”: This follows from Theorems 3 and 4, Remark 5(d) and Eq. (7.5c).
“(a)⇒ (c)”: From (a), one needs to show

qμ ˚ f ∈M∞(G) and ‖qμ ∗ f ‖v ≤ ‖ f ‖u for all μ ∈ w[M], f ∈M∞(G). (7.11)

The first statement follows from Remark 5(c) and Theorem 2. For the second statement, let
y′ ∈ G and set ν := v(y′)δy′ ∈ v[M]. One estimates

v(y′)|(qμ ∗ f )(y′)| ≤
∫ • (∫ •

| f (xy)| d|μ|(x)
)

dν(y)

=
∫ •
| f (xy)| d(|μ| ⊗ ν)(x, y)

=
∫ •

u(xy)| f (xy)| 1

u(xy)
d(|μ| ⊗ ν)(x, y)

≤ ‖ f ‖u ·
∫ • 1

w(x)v(y)
d(|μ| ⊗ ν)(x, y)

= ‖ f ‖u · |μ|•(1/w) · ν•(1/v) ≤ ‖ f ‖u
and this proves (7.11). The standard estimate in the first step is valid because f ∈M∞(G),
and therefore, (6.8) can be applied. Resolving the double integral in the second step is
justified by Theorem 1 because | f | ◦ Γ ∈ M+∞(G × G) and |μ|, ν are positive and
moderated by Remark 5(c). The insertion of “1” in the third step is valid because u is
finite valued and the zero set of u ◦ Γ is locally |μ| ⊗ ν-negligible. This follows because
|μ| ⊗ ν ∈ w[M] ⊗ v[M] ⊆ (w ⊗ v)[M] by Theorem 4 and w ⊗ v ≤ u ◦ Γ .
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“(c)⇒ (a)”: This follows from (7.5d), Remark 6(c) and Proposition 6.
“(a)⇒ (c’)”: The estimate (7.11) implies

(qw[M] ∩Mc(G)) ∗ (M∞[u] ∩K(G)) ⊆M∞[v] ∩K(G) (7.12)

where Mc(G) denotes the set of all measures on G with compact support. Equation (7.11)
implies that the inclusion in Eq. (7.12) holds also after the right factor on the left-hand side
is replaced by its closure in M∞(G) with respect to ‖·‖u and likewise for the term on the
right-hand side:

(qw[M] ∩Mc(G)) ∗ C∼v [u] ⊆ C∼v [v]. (7.13)

By Lemma 3, every element μ ∈ qw[M] can be represented by a vaguely convergent series

μ =∑∞
n=1 αnμn

where αn ∈ R
+, μn ∈ qw[M] ∩Mc(G) for n ∈ N and

∑∞
n=1 αn = 1. It will be shown in the

following paragraph that

(μ ˚ f )(x) =
∑

k∈N
αk(μk ˚ f )(x) for all f ∈ C∼v [u], x ∈ G with v(x) > 0. (7.14)

Then Eq. (7.13) implies thatμn ∗ f ∈ C∼v [v] for all n ∈ N. Thus, the inclusion in (c’) follows
from Lemma 5.

Finally, to prove (7.14), let x ∈ G such that v(x) > 0 and f ∈ C∼v [u]. Using (6.6) and the
premise w �· v ≤ u reformulated as

∀x, y ∈ G : v(x) ∧·
(

1

Rx−1u(y)

)

≤ 1

w(y)
,

one obtains, for n ∈ N, that
∣
∣
∣
∣
∣
(μ ˚ f )(x)−

n∑

k=1
αk(μk ˚ f )(x)

∣
∣
∣
∣
∣
∧· v(x)

=
∣
∣
∣
∣
∣

(

qμ(Rx−1 f )−
n∑

k=1
αk qμk(Rx−1 f )

)

v(x)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

(

qμ−
n∑

k=1
αk qμk

)
(
v(x)Rx−1 f

)
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
qμ−

n∑

k=1
αk qμk

∣
∣
∣
∣
∣

(
v(x)|Rx−1 f |

) ≤
∣
∣
∣
∣
∣
qμ−

n∑

k=1
αk qμk

∣
∣
∣
∣
∣

(

v(x) ∧· 1

Rx−1u

)

≤
∣
∣
∣
∣
∣
qμ−

n∑

k=1
αk qμk

∣
∣
∣
∣
∣

(
1

w

)

≤
∞∑

k=n+1
αk

which proves (7.14) because
∑∞

k=n+1 αk → 0 for n→∞. The last inequality uses Lemma 3,
Eq. (7.2).
“(c’)⇒ (a)”: Let f ∈ K+(G) with f ≤ 1/u and x ∈ G. By assumption,

qw(x)(δx ˚ f ) = qw(x)Lx f ∈ C∼v [v].
This statement is equivalent to qw(x)Lx−1v ≤ 1/ f and, in turn, to w(x)Lxv ≤ 1/ f . Taking
the infimum over f , one obtains w(x)Lxv ≤ u by the upper semicontinuity of u. Taking the
supremum over x ∈ G, one obtains w �· v ≤ u. ��
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8 Convolution as a bounded bilinear operation

With the results of Sect. 7, the main objective of this work can now be achieved. First
some notations are introduced, and some basic facts on the weighted spaces of measures or
continuous functions are summarized. Throughout the section, S is a locally compact space
and G is a locally compact group. The elements of U+(S) will be called weights on S.

Definition 6 Let W be a set of weights on S. The linear space of W-vanishing-at-infinity
continuous functions [26, Section 22] is

Cv(W ) :=
{
f ∈ C(S)

∣
∣
∣ ∀w ∈ W : w| f | ∈ F+v (S)

}
. (8.1a)

The space of W-vanishing-at-infinity W-continuous functions is introduced as

C∼v (W ) :=
⋂

w∈W
C∼v (w), C∼v (w) :=M∞(w) ∩ K(S)

‖·‖w (8.1b)

where M∞(w) := { f ∈ M∞(S) : ‖ f ‖w < ∞+}, w ∈ U+(S) and the formula for
C∼v (w) means the closure of M∞(w) ∩K(S) in M∞(w) with respect to the pseudo-metric
( f , g) �→ ‖ f −g‖w onM∞(w). TheW-weighted topologyTW on Cv(W ) orT ∼

W on C∼v (W )

is generated by the pseudo-metric

(e, f ) �→ ‖e − f ‖w, w ∈ W . (8.1c)

Introducing the set C∼v (W ) allows a more elegant formulation of Theorem 6. The relation
Cv(W ) = C∼v (W ) ∩ C(S) holds. The topology TW is the subspace topology induced on
Cv(W ) byT ∼

W . Remark 6(b) implies that Cv(W ) = C∼v (W )wheneverχK ∈ W for all compact
K ⊆ G. The functions ‖·‖w,w ∈ W are seminorms on Cv(W )making (Cv(W ),TW ) a locally
convex space. In general, C∼v (W ) is not even linear, but the natural Hausdorff quotients of
(Cv(W ),TW ) and (C∼v (W ),T ∼

W ) are isomorphic as locally convex spaces.

Definition 7 Those sets W of weights on S such that

u ≤ λ sup{w, v} ⇒ u ∈ W (8.2a)

for all u ∈ U+(S), w, v ∈ W , λ ∈ R
+ are called cone ideals of weights on S (or cone ideals

on S for short). The cone ideal generated by a set V of weights on S is denoted by 〈V 〉 and
given by

〈V 〉 = {
u ∈ U+(S)| ∃n ∈ N, λ ∈ R

+, v1, . . . , vn ∈ V : u ≤ λ sup{v1, . . . , vn}
}

(8.2b)

for non-empty V , while 〈∅〉 = {0}.
For any set W of weights on S, the cone ideal 〈W 〉 is the largest set V of weights on S

such that TV = TW . It follows that the assignment W �→ (Cv(W ),TW ) defines a bijection
between cone ideals W and the locally convex spaces of W -vanishing continuous functions
(Cv(W ),TW ). Working with cone ideals instead of general Nachbin families allows a con-
venient formulation of Theorem 6.

Definition 8 Let W be a cone ideal of weights on S. The linear space of measures with
W-finite measure is defined as

W (M) :=
{
μ ∈M(S)

∣
∣
∣ ∃w ∈ W : |μ|•(1/w) <∞+}

. (8.3a)

123



Convolution operators on weighted spaces of continuous… 1565

The bornology KW is defined as

KW :=
{
M ⊆ W (M)

∣
∣
∣ ∃w ∈ W : M ⊆ w[M]

}
. (8.3b)

It was shown in [29, p. 152] (see also [34, Theorem 3.1]) thatW (M) is the topological dual
of (Cv(W ),TW ) where the pairing 〈·, ·〉W : Cv(W )×W (M)→ K is given by the integration

( f , μ) �→ 〈 f , μ〉W := μ( f ) =
∫

f (s) dμ(s). (8.4)

It is immediate from the definitions that w[M] is the polar set of Cv(W ) ∩ Cv[w] whenever
w ∈ W . The latter is the unit ball of ‖·‖w in Cv(W ). Conversely, Cv(W ) ∩ Cv[w] is the polar
set of w[M]. Therefore,KW is the equicontinuous compactology onW (M) associated with
TW [12,18] (see also [34, Section 4]). The space (W (M),KW ) by itself is a linear space
with convex vector bornology [12, Def. 1.1].

Theorem 6 Let W , V ,U be cone ideals of weights on G. The following statements are equiv-
alent:

(a) The following inclusion holds:


W �· V � ⊆ U . (8.5)

(b) The following two conditions hold:

∗: W (M)× V (M)→ U (M) is well defined, (8.6a)

KW ∗KV ⊆ KU . (8.6b)

(c) The mapping

L : qW (M)→ {C∼v (U )→ C∼v (V )} (8.7a)

μ �→ Lμ : C∼v (U )→ C∼v (V ) (8.7b)

f �→ Lμ f = μ ˚ f (8.7c)

is well defined. Here Lμ f = μ ∗ f denotes the left convolution of f with μ as given
in Eq. (6.14). Images of bounded subsets of ( qW (M),KW ) under L are equicontinuous
sets of continuous mappings

(C∼v (U ),T ∼
U )→ (C∼v (V ),T ∼

V ). (8.7d)

Proof Equation (8.5) is equivalent to

∀w ∈ W , v ∈ V , ∃u ∈ U : w �· v ≤ u. (8.8a)

Equations (8.6a) and (8.6b) are equivalent to the following statement:

∀w ∈ W , v ∈ V , ∃u ∈ U : w[M] ˚ v[M] exists and
w[M] ˚ v[M] ⊆ u[M]. (8.8b)

The statement in part (c) means that

qW (M) ˚ C∼v (U ) ⊆ C∼v (V ) (8.8c)

and that for all ε > 0,w ∈ qW , v ∈ V there exist δ > 0, u ∈ U such that for all f , g ∈ C∼v (U )

the following implication holds

‖ f − g‖u < δ and μ ∈ w[M] ⇒ ‖μ ˚ f − μ ˚ g‖v < ε. (8.8d)
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Whenever the conditions

‖μ ˚ f ‖v <∞+ and ‖μ ˚ g‖v <∞+ (8.8e)

hold, the distributive law can be applied inside the norm on the right-hand side in (8.8d).
[Using Eq. (6.5) in Proposition 8 and 0 · ∞+ = 0.] In this case, Eq. (8.8d) turns into

‖ f − g‖u < δ and μ ∈ w[M] ⇒ ‖μ ˚( f − g)‖v < ε. (8.8f)

The condition (8.8e) for this replacement is fulfilled if (8.8c) holds. Statements (8.8c) and
(8.8f) in turn are equivalent to the more concise formula

∀w ∈ W , v ∈ V , ∃u ∈ U : qw[M] ˚ C∼v [u] ⊆ C∼v [v]. (8.8g)

This statement, in turn, implies (8.8c). Thus, the statement in part (c) is equivalent the
statement (8.8g).

By Theorem 5 the statements (8.8a), (8.8b) and (8.8g) are equivalent which concludes the
proof. ��

The sets C∼v (U ) and C∼v (V ) in statement (c) of Theorem 6 can be replaced by the sets
Cv(U ) and Cv(V ), if the assumption χK ∈ V for all compact K ⊆ G is added. Then the
mapping L with domain qW (M) is a linear mapping with continuous linear operators between
locally convex spaces as co-domain.

The implication “(b)⇒ (a)” in Theorem 6 fails if the condition (8.6b) is dropped. The
reason is that the assignmentW �→ KW , withW a cone ideal, is injective, but the assignment
W �→ W (M) is not. For example, one obtains W (M) = V (M) = U (M) = Mf (G) for
W = V = U+b (G), U = U+v (G), but W �= U if G is non-compact. This shows that (8.6a)
by itself does not imply (8.5), because

⌈U+b (G)�· U+b (G)
⌉

� U+v (G) contradicts (8.5), but
convolution ∗ is known to be a well-defined internal operation onMf (G) in agreement with
(8.6a).

9 Application to fractional Weyl integrals

Following [23], the space E :=
{
f ∈ C∞(R)

∣
∣
∣ ∀m, n ∈ N : tn f (m)(t)→ 0 for t →∞+

}

denotes complex valued smooth functions that vanish rapidly at ∞+. Such functions are
called “good” in [23]. The generalized fractional Weyl integral of order α ∈ C for a function
f ∈ E is defined as [11,20,23]

(Iα f )(t) :=
∫ ∞+

t

(t − s)α−1

Γ (α)
(−1)m f (m)(s) ds for t ∈ R, (9.1)

where m ∈ N0 is such that α+m ∈ H with H := {z ∈ C : �z > 0}. It is known that (9.1) is
well defined and the Iα are linear endomorphisms, even automorphisms, on E . Further, the
index law

Iα ◦ Iβ = Iα+β for all α, β ∈ C, (9.2)

holds. An alternative proof for these facts based on Theorem 6 is given below. Using our
theorem, continuity of the fractional integrals with respect to a suitable weighted topology
is obtained in addition. Furthermore, sets of linear combinations of generalized fractional
integrals are seen to be equicontinuous whenever coefficients and orders are bounded.
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Let P denote the set of upper semicontinuous functions u : R → R
+ with the property

that u(t) ≤ λ(1 + |t |p), t ∈ R for some λ ∈ R
+. Let U++ (R) denote the set of upper

semicontinuous functions u : R → R
+ such that supp u ⊆ [t,+∞) for some t ∈ R. Then

define P+ := P ∩ U++ (R). The sets U++ (R), P and P+ are cone ideals. Define the weights
w+,p , p ≥ 0 as

w+,p(t) :=

⎧
⎪⎨

⎪⎩

(t/p)p for t ≥ 0, p > 0,

1 for t ≥ 0, p = 0,

0 for t < 0.

(9.3)

It is calculated that

w+,p �· w+,q = w+,p+q (9.4)

for all p, q ≥ 0. The elements of P+ are characterized as being less or equal than a translate
of w+,p for some p ≥ 0 large enough. Together with Proposition 4 and (9.4), this implies
that the inclusion


 P+ �· P+ � = P+ �· P+ ⊆ P+ (9.5)

holds and that P+ is invariant under translations. Observe that Cv(P+) is a continuous variant
for the space E .

For α ∈ H, let μα denote the measure on R with Lebesgue density

λα(t) :=
{
tα−1/Γ (α) for t > 0,

0 for t ≤ 0,
(9.6)

and let μ0 = δ0 be the Dirac measure at the origin. Note that

μα ˚μβ = μα+β for all α, β ∈ H ∪ {0}, (9.7)

corresponding to the index law for the operators Iα ,α ∈ H∪{0}. Using (1+t)p ≥ max{1, t p},
the following uniform estimate can be proved

∫
d|μα|(t)

w+,p(t + 1)
= 1

|Γ (α)|
∫ +∞

0

t�α−1

(t + 1)p
dt ≤ 1

|Γ (α)| ·
p

�α(p −�α)
≤ Cβ,φ,ε (9.8)

for all α ∈ H with �α ≤ β and |argα| ≤ φ where β < p, φ < π/2 and ε > 0 are fixed and
Cβ,φ,ε <∞. This translates to the fact that the set {qμα : α ∈ H∩{0}, �α ≤ β, |argα| ≤ φ}
is contained in a scalar multiple of a translate of the weighted ball qw+,p[M] for p > β.

Using Theorem 6 and the above remarks, one arrives at the following conclusion. For
C <∞, φ < π/2 and d ∈ N, the set

{λ1Iα1 + · · · + λd Iαd : αi ∈ H ∪ {0}, λi ∈ C, |λi |, |αi | ≤ C, |argαi | ≤ φ} (9.9)

is an equicontinuous set of continuous linear endomorphisms of Cv(P+). For d = 1, this is
referred to as Iα , α ∈ H∪{0} being an equicontinuously parameterized family of continuous
linear convolution endomorphisms of Cv(P+). The result is readily extended to general orders
from C using the following construction.

For any set of weightsW onR, the space of smooth functions with W-vanishing-at-infinity
derivatives is defined as

C∞v (W ) :=
{
f ∈ C∞(R)

∣
∣
∣ ∀m ∈ N : f (m) ∈ Cv(W )

}
(9.10)
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and endowed with the weighted topology T ∞
W that is generated by the seminorms f �→

max{‖ f (k)‖w : m ≥ k ∈ N0} with w ∈ W , m ∈ N0. Clearly, classical derivatives define
continuous linear endomorphisms of C∞v (W ).

The linear space C∞v (P+) coincides with the space E . Note that Iα , α ∈ C is defined as the
composition of a classical derivative of order m, a multiplication with the constant (−1)m
and a convolution with the measure μα+m . The index law for α, β ∈ C is obtained from the
case α, β ∈ H ∪ {0} by interchanging derivatives and integration. This is permitted due to
the properties of functions in E . Therefore, the results above carry over to the case α ∈ C.
For C <∞ and d ∈ N, the set

{λ1Iα1 + · · · + λd Iαd : αi , λi ∈ C, |λi |, |αi | ≤ C} (9.11)

is an equicontinuous set of continuous linear endomorphisms of C∞v (P+). Using the index
law for β = −α ∈ C and the fact that I0 is the identity operator, it follows that the operators
Iα , α ∈ C are also automorphisms.
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License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
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