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This paper discusses random walks with memory on a percolating network as a model of correlat-
ed hopping transport through a disordered system. Correlations can arise from such sources as
hard-core and Coulomb repulsions, correlated hops of groups of particles, or lattice-relaxation
effects. In general these correlations will result in a difference between the hopping probability for
return to the previously visited site and the probability to jump to another nearest neighbor of the
currently occupied site. Thus the hopping process possesses a memory of its previous hop. Such a
random walk is investigated in this paper for the case of bond percolation on a regular lattice. The
frequency-dependent conductivity o(w) is calculated using a generalized effective-medium approxi-
mation. Results are presented for the linear chain and the hexagonal lattice. New features appear
in both the real and the imaginary part of 0. These depend on the strength of the correlations and
on the concentration of bonds. As an example, the possibility of a pronounced maximum in the real
part of o(w) at finite frequencies is found, which is sometimes accompanied by a change of sign in
the imaginary part. The results are found to agree qualitatively with experimental data on ionic
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transport in Na* —B-alumina, where both disorder and correlations are known to be important.

I. INTRODUCTION

Amorphous solids and other disordered systems often
exhibit transport via a hopping mechanism. Examples
include hopping transport in amorphous semiconductors,
ionic conductivity of superionic solids, carrier recom-
bination in glasses, or excitation migration in a molecular
crystal.!

Much theoretical work has concentrated on the hop-
ping (or random walk) of a single particle in a disordered
environment without considering the effect of interac-
tions or correlations between particles. Other investiga-
tions have focused on correlations but neglected disorder.
It is the objective of this paper to investigate the case
where both disorder and correlations are present. This
study is motivated by the attempt to incorporate correla-
tion effects into the dynamic percolation model which
was developed as a model for ionic transport in mixed
Na'-Ba?*B"”alumina.? To this end it is necessary to
study first the case of correlated hopping in a disordered
system whose disorder is time independent. This will be
done in the present paper. The outcome will be applied
to Na™ —B-alumina where correlations are known to play
an important role. The extension to the case of dynamic
disorder is presented elsewhere.?

Disorder will be discussed in the framework of the
well-known bond-percolation model on a regular lattice
while correlations from sources other than the disorder
will be treated in terms of the correlated jump model of
Gillis.* The essential idea of the model is that quite gen-
erally hopping transport can be viewed as correlated if
the particle has a memory of its previous hop,’ i.e., if the
probability for a transition to a given site at step n de-
pends on the site that was occupied after step n —1.
More precisely, it is assumed that the particle returns to
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its previously occupied site with a transition rate w,
which is different from its transition rate w to all other
neighboring sites. The ratio b =w, /w is a measure of the
correlation strength. The case b =0 corresponds to com-
pletely forbidden immediate reversal, b6 =1 to the un-
correlated random walk, and b = « corresponds to a par-
ticle which oscillates persistently between two sites.

Generally there can be several distinct physical mecha-
nisms giving rise to such temporal correlations. A well-
known example is that of tracer diffusion in a hard-core
lattice gas at low vacancy concentrations.’ In this case
the tracer particle is more likely to find a vacancy at its
previous site than at any other neighboring site. Conse-
quently the particle performs many correlated forward
and backward hops before encountering another vacancy.
Coulomb interactions between charged carriers will give
rise to a similar effect. On the other hand, lattice-
relaxation effects might lead to reduced as well as
enhanced probability for return to the previous site. If
the lattice-relaxation time associated with a site is longer
than the hopping time, then the previously occupied site
will still be in a different state when the particle is ready
to jump again, and consequently the probability for re-
turn to this site will be changed. Another source of
correlations is simultaneous hops of several particles.
Such correlated hopping is well known to exist in
Na™ —B-alumina where the activation energy for correlat-
ed hopping of Na™ ions is lower than that for a single ion
hop.” In any realistic situation several or all of the
different sources for correlations may well be present and
relevant. In this paper it is assumed that their net effect
can be described as an effective correlation strength b.
Because of this approximate character the model has to
be restricted to applications where b differs from 1 only
by a small amount.
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Like for ordered systems the correlations introduced
by b7#1 can be expected to result in pronounced effects
on the frequency dependence of the electrical conductivi-
ty o(w) because both correlations and disorder are known
to give rise to a strong dependence on frequency each in
its own right. It is the objective of this paper to calculate
o(w) for such correlated random walks in a percolating
system. This will be done by developing an effective-
medium approach, which allows one to treat the correla-
tions exactly.

As a result it is found in this paper that o(w) can ex-
hibit unusual features. For b > 1, which will be the case
in most applications, the real part Re[o(w)] “flattens off”
in some intermediate-frequency regime, and a similar
feature appears in the imaginary part. This flattening off
leads to an almost linear behavior on a log-log plot allow-
ing for a power-law fit Re[o(w)] * @’ with 0<y <1 over
roughly one to two decades in frequency. For
b <1 Re[o(w)] can attain a maximum while Im[o(w)]
can change sign. Results will be presented for the linear
chain and the two-dimensional hexagonal lattice. These
lattices are expected to show strong correlation effects be-
cause of their low coordination number.

The presentation proceeds as follows. First the formu-
lation of the model containing correlations and disorder
is developed. Then an effective-medium-type approxima-
tion is derived which approximates the correlated disor-
dered system by a correlated system on a regular lattice.
The solution of the correlated effective medium can then
be used to solve the regular system. This will be done
analytically for the one-dimensional linear chain. The
equations for the two-dimensional hexagonal lattice will
be solved numerically. Finally, the results will be dis-
cussed in terms of qualitative physical arguments, and a
brief discussion will relate them to experiment.

II. THE MODEL

Consider the hopping of a single particle in a disor-
dered medium. Usually this problem is approached via a
master equation with disordered (random) transition
rates for the conditional probability density P(i,#) [or
P(r;,t)] to find the particle at site i at time ¢ if it started
from the origin at time # =0. As discussed in the Intro-
duction one possibility to describe the effects of correla-
tions is to assume that the particle (random walker) has a
memory of its previous step. It is well known® that such
a Non-Markovian random walk can be mapped onto a
Markovian random walk if the memory extends only over
a finite number of steps. The trick is to enlarge the state
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dr?

P+ i"—P(i,t)=(wb—w)yP(i,t)—w2%

4
dt jli)

space by introducing internal states of the walker each of
which corresponds to a different history. In this case the
memory extends only to the previous step, and one is led
to consider the probability density P(i,j,?) to find the
walker at site i at time ¢ given that it arrived at site i via a
direct transition from site j. The different histories of the
walker are labeled by the previously occupied site j. The
symmetric probability density P(i,?) is then obtained
from P (i, j,t) by a summation over all possible histories as

P(i,t)=3, P(i,j,t) 2.1
iti}

where the sum runs over all nearest-neighbor sites j of

site i. The model will now be defined through an equa-
tion for P (i, j,1).

A transition rate w, is assigned to jumps returning to
the site occupied after the previous step, and the rate w is
assigned to transitions to any other nearest-neighbor site.
Then the ratio b =w, /w characterizes the strength of the
correlations. The case b =1 corresponds to the uncorre-
lated random walk. The conditional probability densities
P (i,j,t) must obey the master equation

%P(i,j,t)= wy [P (i, t)— P (i, j,1)]

+wS [P(j,k,t)—P(i,j,0)]
ki

(2.2)

where the sum runs over all nearest neighbors k of site j
except for site i. Equation (2.2) is valid for regular lat-
tices.

It is the objective of this paper to study Eq. (2.2) for
the case of bond percolation on a regular lattice. This is
achieved most easily if one first writes Eq. (2.2) in a more
symmetric form. Using Eq. (2.1) one can rewrite Eq. (2.2)
on a regular lattice as

%P(i,j,t)=(wb—w)P(j,i,tH—wP(j,t)—yP(i,j,t)

(2.3)

where ¥y =w, +(z —1)w, and z denotes the coordination
number of the lattice. Note that Eq. (2.3) reduces to the
master equation for a random walk on a regular lattice if
one sets b =1 and sums over all sites j which are nearest
neighbors of site i. To further symmetrize Eq. (2.3) one
differentiates it and sums over j. Then Eq. (2.3) is em-
ployed for i and j interchanged to eliminate the term
(d 7dt )P (j,i,t) and one finds

(2.4)
jti}

Solving Eq. (2.3) for P (j,i,t) and inserting the result into Eq. (2.4) one obtains a closed second-order equation for P (i, 1),

d

d> . d .. . _
dt2P(z,t)+(7/+wb w)dtP(z,t)-—wE i

it}

[P(j,t)—P(i,)]+wy 3 [P(j,t)—P(i,1)],

(2.5)
jti}
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where the summations, as before, run over all nearest-neighbor sites j of site i. Equation (2.5) contains the same infor-
mation as Eq. (2.2) but no longer involves the directional quantities P(i,j,?). Again, upon setting b =1, it reduces to
the derivative of the ordinary master equation for an uncorrelated random walk on a regular lattice.

Equation (2.5) now lends itself easily to the introduction of disorder. For the case of bond percolation considered
here each lattice bond has a probability p of being occupied. The random walker is then restricted to move only over

occupied bonds. Equation (2.5) now becomes

2
L pli,)+(y+w,—w) PG =w 3 A4, [P(,0—P,0]+wy 3 A,[PG,0)—P(i,0)] 2.6a)
dr? dt Y ar b
[
where y =w, +w(z —1) and z is the coordination number P(i,0+)=8,, (2.7a)
of the underlying regular lattice. The symmetric quanti-
ties A;;= A represent the bond disorder and are defined and
as %P(i,0+)=[wb+w(zi—l)]—l—
1 if the bond [ij] is present Zi
4= 10 otherwise . (2.6b) X3 A;[P(j,0+)—P(;,0+)]
i}
The bonds are occupied, and thus accessible to the walk- ¥
ers with probability p. They are unoccupied (blocked) = > 4;(80—8;) , (2.7b)
with probability 1—p. Equation (2.6) represents the final iti}
mathematical formulation of the model including both where P(i,0+)=lim, 4P (i,r) from above. Note that

correlations and disorder. It describes a random walk
with temporal correlations over two steps on a bond-
disordered lattice.

Instead of disordering Eq. (2.5) it is also possible to in-
troduce disorder directly into Eq. (2.2). There are, how-
ever, some subtle problems with such an approach which
require modifications in the formulation of Eq. (2.2). The
problems arise from the fact that a naive introduction of
disorder into Eq. (2.2) will lead to an infinite memory in
the limit w, =0 at sites with z;=1. The necessary
modifications to avoid this inconsistency and the deriva-
tions of Eq. (2.6) from a modified first-order master equa-
tion with bond disorder are discussed in Ref. 9.

It remains to specify the initial conditions for Eq. (2.6).
Because Eq. (2.6) is of second order special attention has
to be paid to the condition on (d /dt)P(i,t). The correct
choice is

u(u +y+w,—w)P;(u)—(u +y+wb—w)8i0——(wb—w)i2 A;(8;0=8;0)=w(u +vy) 3 A;[Pj(u)—Pi(u)],

v/z is the average transition rate out of the starting
point.

III. CORRELATED EFFECTIVE MEDIUM

In this section an effective-medium approximation is
developed to solve Eq. (2.6) with initial conditions (2.7).
This will be done by determining a self-consistent corre-
lated effective medium. The kernel or “self-energy” ob-
tained from such a calculation has, however, no direct
physical interpretation as it does for the usual uncorrelat-
ed effective medium. Instead it is only an intermediate
result for the final solution of the correlated random walk
on a regular lattice. The exposition will proceed similarly
to the uncorrelated case.!”

One begins by Laplace transforming Eq. (2.6) and in-
serting the initial conditions from Eq. (2.7). This gives

(3.1
iti]

where the notation P;(u)=P(i,u)= f o e “P(i,t)dt is used for the Laplace transform. Now one introduces the corre-
lated effective medium on the regular reference lattice described by the frequency-dependent kernel A4 %) via the equa-

tion

ulu+y+w, —w)Pu)—(u+y+w, —w)d,,—(w, —w)

N|r—t

A%u)(8;0—8,0)
)
=w(u+y) 3 4%w)[PYu)—PXu)] .

jti}

(3.2)
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Subtracting Eq. (3.2) from Eq. (3.1) gives

u(u +y+w, —w)[P(u)—PXu)]—(w,

it}

=w(u+y) 3 {4;[P(u)—Pi(u)]—

Adding and subtracting a term 4°[P;(u)—

w)—z [(A;— A°)(8;0—8;0)]

A°w)[PY(w)—PXw)]} . (3.3)
jti)

P;(u)] this can be rewritten as

u wy, — 0 o —
+z |(P;—P/)— 3 (P,—P; )—————— A;(8 A,;(P;—P;), (3.4)
wA® uty Y 1'[2"} uty wzﬂzl (500 Jizt) v
where A;=(4;;— A°%)/ A° and the dependence on u has been suppressed to further shorten the notation.

One now deﬁnes the Green’s function associated with the reference lattice through the equation

u e S G, =—5 (3.5)
wAO u +7/ o Jjk ik .
Multiplication of Eq. (3.4) with G;; and utilization of Eq. (3.5) then gives
1
(Pi_Pio)z Gj —(Pi—P))8y — Gy 3 (P;—P})—Gy T e 2 Dii(8j0=8:0)=GCy X A;(P;—P;)
jti) iti) vz ) iti)
which upon summation over i simplifies to Qi =0%(G — Gy — Gy +Gy)A L, Oy
A — —w wy —w ]
(P Pk +2le +,y wz bt ij(SjO 5!'0) (Gkk le)T’}/ wZ_(GIk_G”)mE
=2 Gy A;(P;—P;) . (3.6) X Ag (80— 840) - (3.8)
ij

For bond percolation it is convenient to switch from
site related quantities to bond related ones. This is done
by writing Eq. (3.6) for a second site /, and then forming
the differences Qy; =P, —P,=—Qj. In terms of the
quantities Qy; one now has

ki kil " ik il u+

:E(Gik -G
i

Aij(sjo—sio)
)80 -
Denoting the bond between sites i and j by [ij], and

rewriting the summations as summations over bonds one
obtains

=02 3(Gy— Gy — Gy +G;)A;Q;
[ij]
wb—w 1
— (G, —G.
i )u—i-y wz (G i)
W, —w 1
T wr | B0 80) 3.7

As usual only a finite number of bonds (here only one
bond) are allowed to fluctuate while all other bonds are
given their effective-medium value.!® Thus Eq. (3.7)
reduces to

The bond [kl] can be chosen arbitrarily and should be
chosen such that it does not touch the starting point of
the random walk, i.e., k50, [40. Then Eq. (3.8) is
solved to give

1
1 =8 (G + Gy — Gy —Gy)

Ou= Q;?I . (3.9)

The solution of Eq. (3.5) is recognized as the Green’s
function for that lattice if one introduces the new spectral
variable

u W, —w

wA%u)

u= (3.10)

u-+y

instead of u.

The one bond effective-medium approximation now
demands a choice of 4%u) such that it reproduces on
average the behavior of the original system, i.e., one re-
quires {Q,;;)=(Q%), where ( ) denotes the average
over all possible configurations of the bond [k/]. Using
this condition in Eq. (3.9) yields

R

2u

1+Ay 4zG~(ﬁ)

=< (3.11)
where the symmetry of the Green’s function and Eq. (3.5)
were used to express G;;(#) in terms of G;;(#). The aver-
age in Eq. (3.11) has to be taken with respect to the prob-
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ability density f(Ay;) which was given in Eq. (2.6) as W — 1w

f(Ay)=pd( Ay —1)+(1—p)8(Ay,). Performing the Flu, A%9=p, % b

average and introducing the notation p, =2 /z for the per- w uty

colation threshold one finds from Eq. (3.11) the self- u wy, —w

consistent equation (3.12b)
wA%u) uty

Ao(u):p—pc—pcﬁG(ﬁ)

1—p,—p.0G(@)
with # given by Eq. (3.10), and G (u)=G;(u). Partially

solving for A° then leads to the functional equation

_p—pc—Fu, 4°)

This formulation has the advantage that it displays ex-
plicitly the two different branches of the solution. The
decision of which branch to use is made by enforcing the
correct limiting behavior. This requires one to show first
how to obtain the frequency-dependent conductivity o (w)
from the solution of Eq. (3.12). This will be done in the

A%u)= 2(0—p,) next section.
c
4(1—p,)F(u, A 0 172 IV. SOLUTION FOR THE CORRELATED MEDIUM
c ’

X |1+ [1+ [F(u, 4% —p +p, ] , (3.122) In order to utilize 4° for the calculation of o(w) one
has to solve Eq. (2.5) first. Laplace transforming Eq. (2.5)

where and using the initial conditions of Eq. (2.7) gives

J
u Wy — o ; 1 w, —w 1 1 w, —w 1 .
1+ +2z | PU,u)— —|—===1]|- — 3 8,0=3 P(j,u), 4.1

%) iy z | PO(i,u) wA%w) | uty w| A° I uty wz j{Eﬂ j0 j{Ei} (j,u) 4.1

where the sum runs over all nearest neighbors of site i on the underlying regular lattice. This equation can be solved by
Fourier transformation to yield

T e P QLY
wA®  u+ty w | A° uty w
P(k,u)= R (4.2)
u Wy —
+z—zp(k
wA° uty |0 )

where k=(k,, . . ., k;) denotes the wave vector, and p(k)
is the characteristic function of the random walk for the
lattice under consideration, e.g., p(k)=1/d 3¢_ cosk;
for the d-dimensional simple cubic lattices.

From Eq. (4.2) one can calculate the frequency-
dependent conductivity o(w) in standard fashion via the
formulas!!

2
= PC
glw) kBTD(co), (4.3a)
2
—_ bl - 2 —iwt )
D(w)=—" fo S (r;—10)% TP (r;,tlr)dt ,  (4.3b)

;T

where p is the carrier density, e the carrier charge, kp the
Boltzmann constant, T the temperature, and D () the
generalized frequency-dependent diffusion coefficient.

P(r,-’tlro)=P(i, t), the inverse Fourier-Laplace transform
of P (k,u), is the probability density to find the particle at
site i at time ¢ if it started from the origin ry at t =0. Us-
ing the fact that p(k)|,—o=1 and V,p(k)|,—,=0 one
finds after a straightforward calculation of the second
moment from Eq. (4.2)

u/w+z
u/w+z+2b—-2"

(4.4)

D(u)=p”(0)A°(u)~f—(b —1+42)

where p’’(0) denotes Vip (k)|y—oand u =iw.

Equation (4.4) combined with Eq. (4.3a) and the solu-
tion of Eq. (3.12) now allows one to calculate the
frequency-dependent conductivity. Note that the solu-
tion of Eq. (3.12) enters multiplicatively in Eq. (4.4). In
order to proceed one has to specify a particular lattice
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Green’s function for G (x), and to solve Eq. (3.12). This
will be done in the next section for two particular cases,
the one-dimensional chain, and the two-dimensional hex-
agonal lattice.

V. RESULTS

Correlation effects are expected to be most pronounced
for lattices of low coordination number z. Thus it is in-
teresting to consider the cases z =2 (linear chain), and
z =3 (hexagonal lattice). The latter is particularly impor-
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tant for applications to - and 5"’-alumina where conduc-
tion occurs in two-dimensional hexagonal lattices. From
now on the frequencies will be normalized by setting
w=1.

In one dimension Eq. (3.12) can be solved exactly. The
functional form of the Green’s function at the origin in
this case is given by

G(x)=—[x(x+4)]"12

and one finds

b—1
D = " -+ T 1
(u) (p )b +1)(u +2) /' |26 +2bu 14— ”
. . b ) 2 1/2
— V1 o —
X [u |1+ = [+201—-pP—(1 p)l w|lt—— e [+2| +4pip 2>|

(5.1)

which is proportional to the conductivity via Eq. (4.3a) It is instructive to expand the result for low and high frequen-

cy. In the high-frequency limit, @ — o, one has
D(u)=C

where C =1p"”(0)(b +1). Similarly for ©—0

p(2—p)

2 p(2—p) ut
4(1—p)%(b +1)?

D(u)=C b+1 4(p—1)

The low-frequency expansion, Eq. (5.3), implies that
D (0)=0 and ReD (w)>0, ImD (w)>0 for @2 0. On the
other hand, the high-frequency expansion, Eq. (5.2),
shows that for certain values of the parameters p and
b <1 the imaginary part, ImD (w), can become negative,
and ReD(w) can approach its limiting value Cp from
above. By continuity this implies that ImD () will have
at least one zero, and ReD (w) will have at least one max-
imum. More precisely, one finds that ImD () must have
zero if

b<p (5.4)
and ReD (w) must have a maximum if
b<ip+1). (5.5)

The different possible behaviors of D (@) are summarized
in a “phase diagram” in Fig. 1. In the figure a (dashed)
line has also been drawn to separate the regions of
enhanced (b > 1) from those of reduced (b <1) reversal.
Although D (w) remains monotonous for b <1 this does
not imply that it will not exhibit new features. In fact
one finds that for b > 1 the real part flattens off at inter-
mediate frequencies of the order of b. This can be seen in

p+2p(p —b)%+2p[(p ~1)(p —b—1)+2b(b —1)+2(p — 1)(1—b)]—= + - - -

, (5.2)
u?
2
- |1 TR SRR O (5.3)
(p—1)
T T T T T T T T T

1.8 1

L 4

b L 4

O === = e
0.2- b
0 0.2 0.4 0.6 0.8 1.0
p

FIG. 1. “Phase diagram” for the linear chain. Below the

line from O to 1 the imaginary part of D (w) has a zero. Below
the line from % to 1 the real part of D (w) has a maximum. The
dashed line separates regions of reduced reversals (above) from
regions of enhanced reversals (below).
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0.63f b=1.8 .
L ____b=to___|]
| === =09 ]
—_— 7z -
3 o35 7 b=06 ]
o
> | IIf b=03 ]
a
0.07F .
0 2 4 6 8 10
w

FIG. 2. ReD(w) vs o for the linear chain with p =0.5 and
b =0.3,0.6,0.9,1,1.8.

Figs. 2 and 3 where the real and imaginary parts for
p =0.5 and a range of b values, b =0.3,0.6,0.9,1.8 are
displayed. These values have been chosen to provide an
example for each of the four regions in the phase dia-
gram.

For the two-dimensional hexagonal lattice the Green’s
function at the origin is given by

2(34+x)
m(2+x)3"2(6+x)17?

16(x +3)

Gx)=—
(x) (x +2)x +6)

’

where K (m) denotes the complete elliptical integral of
the first kind,

K(m)= [ "(1—m sin’) "' *dg .

For this case Eq. (3.12) can no longer be solved exactly.
Instead one has to resort to a numerical solution. This is
done iteratively. The iteration is stopped if the maximal
relative change between two consecutive iterations over
the predefined frequency range falls below 10™°. The re-

0.90

0.50

Re D (w)

0.10 4

0 2 4 6 8 10

FIG. 4. ReD(w) vs w for the hexagonal lattice with
p=0.5,0.9 and b =0.5,1,2.

0.28

0.12

Im D (w)

004+ b=0.3

FIG. 3. ImD(w) vs o for the linear chain with p =0.5 and
b=0.3,0.6,0.9,1,1.8.

sult is inserted into Eq. (4.4). The primary difference to
the one-dimensional case is the appearance of a percola-
tion threshold. This is not affected by memory correla-
tions. It follows that D(0) must vanish below p. =2,
while D (0) is different from zero above the percolation
threshold. This is consistent with Eq. (3.12) if one em-
ploys the + sign above and the — sign below p,.

The results for the frequency dependence of D (w) are
not changed qualitatively compared to the one-
dimensional case. The main difference appears above the
percolation threshold in that the dc conductivity can rise
above the high-frequency value if b <1, i.e., for the case
of reduced reversals. This had to be expected as it is
known to hold also for p =1, i.e., on the regular lattice.
In Figs. 4 and 5 the real and imaginary part of D (w) for
two concentrations p (one above and one below p.) in the
frequency regime between w=0 and 10 have been
displayed. For each value of p =0.5 and 0.9 three
different curves corresponding to b =0.5,1.0,2.0 are
shown where the uncorrelated case, b =1.0, is represent-

0.25

o 005
€
—
- 0415 4
0 2 4 6 8 10
w
FIG. 5. ImD(w) vs » for the hexagonal lattice with

p=0.5,0.9 and b =0.5,1,2.
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FIG. 6. log;s[ReD(w)] vs log,o(w) for the hexagonal lattice
with p =0.9 and b=1,2,3. The straight line has a slope of
~0.5.

ed by the dashed line. Figures 6 and 7 present the solu-
tions for p =0.9 and b =1,2,3 over a wide frequency
range spanning six orders of magnitude on a log-log plot.
Again the dashed line corresponds to the uncorrelated
case with b =1.0, and p =0.9. Let me now turn to a dis-
cussion of these results.

VI. DISCUSSION

At high frequencies the particles experience only the
conductance of a single bond which, as in every hopping
model, is assumed to be constant. Consequently there
will be no effects from the existence of a percolation
threshold, and the conductivity must approach a limiting
value which for the uncorrelated case is well known'® to
be proportional to the elementary jump rate w, the mean
square displacement of a single step, and the concentra-
tion p. If correlations are present then the conductance
of the bond that was just passed is increased or decreased
by a factor b. Thus the limiting high-frequency value has
to be increased for enhanced reversal, b > 1, respectively,
decreased for reduced reversal, b <1. This is indeed
borne out by the solutions as can be seen from Figs. 2, 4,
and 6.

At low frequencies the difference between concentra-
tions p above and below p, becomes important because
the walker explores a much larger region. Consider first
the case p >p,.. In this case the charge carriers can al-
ways get through the network and the dc conductivity is
nonzero. For the uncorrelated case (b =1.0), the con-
ductivity is well known to be proportional to
(p —p.)/(1—p,) within the effective-medium approxima-
tion (EMA). For b1 the same proportionality can be
expected to hold, however, now with an additional b-
dependent correlation factor. To estimate whether the
correlation factor will lead to an increased or decreased
value for the dc conductivity it is instructive to consider
the effect of b5*1 for the linear chain in the limits 5 —0,
respectively, b — . In both cases the random walk be-
comes deterministic. In the first case the particle will
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FIG. 7. log,o[ImD(w)] vs log;o(w) for the hexagonal lattice
with p =0.9 and b =1,2,3.

move with constant velocity to the right or to the left de-
pending upon its initial velocity, in the second the parti-
cle oscillates between two sites. Thus for b <1 the dc
transport through the system will be enhanced, for b > 1
it will be reduced. This remains true for higher dimen-
sions and can thus be expected to hold also for the disor-
dered case if p > p,.. Again this reasoning is confirmed by
the numerical solution.

The case p <p,., however, will be different. This origi-
nates from the fact that now there is no connected path
through the system, and the dc conductivity must be
zero. On time scales short compared to the time neces-
sary to explore the finite clusters the correlations will
have the same effect as above p,. On longer times scales,
however, restricted reversals will tend to decrease the
overall mobility of the particle because they make it more
difficult to exit from dead ends or singly connected re-
gions of the cluster. On the other hand, for b >1 the
walker oscillates more rapidly, and escapes more easily
from singly connected regions. These considerations sug-
gest that the conductivity at very low frequencies is in-
creased for b > 1, and decreased for b <1. Such a behav-
ior is indeed found numerically although it is a more sub-
tle effect.

The fact that the low-frequency conductivity below p,
will be decreased for b <1, respectively, increased for
b > 1 can also be found mathematically from Eq. (5.3) for
the one-dimensional case. Equation (5.3) shows that the
coefficient of w> becomes larger for b > 1 and smaller for
b <1. This carries over to the hexagonal lattice for
p <p. as verified by the numerical solution. From the
preceding discussion it follows by continuity that for
p>p. ReD(w,b=1) and ReD (w,b7#1) must have at
least one point of intersection. For p <p, there will be ei-
ther no point of intersection or an even number of them.

The intermediate-frequency regime can also be dis-
cussed qualitatively by considering the limiting cases for
b. For b>>1 a second frequency scale enters into the
problem. In this case the motion of the particle consists
of many correlated forward-backward jumps before on
the average after b jumps a new nearest neighbor is
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reached. The correlation factor b determines the oscilla-
tion frequency. Thus one may view the oscillating parti-
cle as delocalized over two sites. The bond between these
two sites may in turn be viewed as performing a random
walk with a rate reduced by a factor 1/b. Consequently
there must be a low-frequency regime in which the con-
ductivity is reduced. This fact is now combined with the
discussions of the preceding paragraphs. It was shown
there that, for p <p,, ReD (w,b >1) is increased for very
low frequencies. One concludes that there are two points
of intersection with ReD(w,b =1) in this case. For
p >p., on the other hand, ReD (w,b > 1) should remain
smaller than ReD (w,b =1) down to w=0. Consider now
the case b << 1. In this case it is not possible to identify b
as an oscillation frequency, but obviously the particle is

"most likely to be pushed away from its previously occu-
pied site and will thus explore its environment more
efficiently in some low-frequency range. Again if p >p,
this remains true down to w=0, while for p <p, it only
holds down to a crossover frequency corresponding to
the time needed to explore all the finite clusters.

Thus one arrives at the following picture: Below p,
one has ReD(w,b <1)<ReD(w,b =1) for low frequen-
cies as well as for high frequencies, and
ReD (w,b <1)>ReD (w,b =1) at intermediate frequen-
cies. The reversed inequalities hold for b > 1, and there
are always two points of intersection. In the case p >p,
one has ReD(w,b <1)>ReD(w,b =1) at low frequen-
cies, and ReD (w,b <1)<ReD (w,b =1) at high frequen-
cies with an additional crossover at intermediate frequen-
cies. Again the reverse is true for b >1, and the two
curves intersect only in one point.

Let me conclude the discussion with a suggestive simi-
larity between the behavior of the present model and
some experimental results for S-alumina. It was the ob-
jective of this work to study the combined effects of disor-
der and correlations on hopping transport in a simple set-
ting. 'The motivation arose from the problem of ion
transport in materials such as 3-alumina where both dis-
order and correlations are known to be important. In
fact the theoretical model reproduces certain low-
frequency features of the experiment. This is found when
one plots o(w) on a log-log plot. Figures 6 and 7 present
such plots for the case p =0.9 and b =1,2,3 over a fre-
quency range spinning six decades. The parameter values
could be well realized in Na* —B-alumina where the dis-

order results from roughly 9% of the interstitial oxygen.
The interesting point is that ReD (w) shows power-law
behavior over roughly one to two decades in frequency.
A straight line with slope ~0.5 has been drawn in Fig. 6
to illustrate this point. The experimental studies at room
temperature have shown similar low-frequency behavior
with similar power laws over a comparable frequency
range.'? Of course these results are relevant only if it is
possible to relate the correlation parameter b of the mod-
el to the microscopic conduction mechanism of Na™ -
alumina. This was not attempted here. The results show,
however, that correlations in general can give rise to ap-
parent power laws in the frequency-dependent conduc-
tivity for hopping transport in a disordered environment.

In summary, this paper has investigated the case of
correlated hopping transport in disordered systems. The
problem has been approached as that of a correlated ran-
dom walk with two-step memory on a bond-percolation
lattice. The problem was formulated in terms of an
infinite system of randomly coupled second-order
differential equations which resembles the master equa-
tion for an ordinary random walk. These equations were
then solved using a generalized effective-medium approxi-
mation within which the correlations could be treated ex-
actly. The frequency-dependent conductivity was calcu-
lated for the case of bond percolation on the linear chain
and the hexagonal lattice. The real part of o(w) was
found to exhibit unusual behavior. In particular Reo(w)
can exhibit a maximum for reduced reversal to the previ-
ous site (b <1). The imaginary part can change sign in
this parameter regime. For enhanced reversals (b > 1)
the real part remains a monotonous function of frequency
but shows a new crossover behavior which may appear as
a power law over more than a decade in frequency. As a
general conclusion it is found that the low-frequency be-
havior of o(w) is mainly determined by correlations re-
sulting from the disorder, while at high frequencies the
memory correlations become dominant.
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