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ABSTRACT

We discuss correlated hopping motion in a dynamically
disordered environment. Particles of type A with hopping rate
l/r, diffuse in a background of B-particles with hopping rate
1/rp. Double occupancy of sites is forbidden. Without
correlations the limit r,/7,—00 corresponds to diffusion on a
percolating network, while the case rz = 1, is that of self-dif-
fusion in a lattice gas. We consider also the effect of correlations.
In general these will change the transition rate of the A-particle
to the previously occupied site as compared to the rate for
transitions to all other neighbouring sites. We calculate the
frequency dependent conductivity for this model with arbitrary
ratio of hopping rates and correlation strength. Results are
reported for the two dimensional hexagonal lattice and the three
dimensional face centered cubic lattice. We obtain our results
from a generalization of the effective medium approximation for
frozen percolating networks. We predict the appearance of new
features in real and imaginary part of the conductivity as a
result of correlations. Crossover behaviour resulting from the
combined effect of disorder and correlations leads to apparent
power laws Reo(w)~w” with 0<y<1 over roughly one to two
decades in frequency. In addition we find a crossover between a
low frequency regime where the response is governed by the
rearrangements in the geometry and a high frequency regime
where the geometry appears frozen. We calculate the correlation
factor for the d.c. limit and check our results against Monte
Carlo simulations on the#hexagonal and face centered cubic
lattices for the case r=1 and r=oo. In all cases we find good
agreement.
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1. INTRODUCTION

A large variety of dynamic phenomena in condensed systems can be

described by a lattice gas model. Examples include transport in superionic solids,

phase separation in binary alloys, kinetics of spin models, diffusion in metal-

hydrogen systems or order-disorder phenomena in chemisorbed monolayers at

surfaces. ’””” Moreover, the popular model of hopping transport on a percolating

network can be viewed as a special case. This is seen by considering a lattice gas

with two species of particles, A and B, for the case where the B particles are

frozen into some random configuration. If, as usual, the A particles are allowed

to hop only into vacant lattice sites then the problem is that of diffusion in a

frozen disordered environment. Our interest in this problem stems from a case in

which the B-particles are not completely immobile, but very slow compared to

the A-particles. The general objective in this paper will be to calculate the

transport coefficients for the A-particles.

More specifically, we are motivated by the problem of calculating the

frequency dependent conductivity of g’'’-alumina, a superionic conductor, well

knownfor its ability to transport a variety of cations.” Nat/Bat*-g"-alumina

is a layered compound where Nat-ions hop between the sites of a hexagonal

lattice forming a stack of two dimensional conduction planes.” The activation

energy for Nat is roughly 0.35eV while that for Battis approximately 0.58eV.”

Thus at sufficiently low temperatures the Ba*t-ions are essentially frozen. They

play the role of the B-particles in the lattice gas described above. At higher

temperatures the Batt become mobile. Now the Nat-ions (A-particles)

experience a dynamic instead of a frozen disordered environment. The

fundamental parameter characterizing the different time scales in the problem is

the ratio r=rp/r,4 between the charcteristic hopping time rp of the Bat* and

v4 of the Nat-ions.
>

Despite its conceptual simplicity the model’ contains many interesting

features, even if we neglect for the moment all interactions between particles,  
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except, of course, the hard core repulsion. The hard core repulsion prevents

double occupancyof lattice sites. In the limit r—1 the tracer diffusion coefficient

for the A-particle shows pronounced correlation effects.” On the other hand in

the limit roo the system will exhibit a percolation transition.” For low

concentrations of B-particles the A-particles can diffuse along an infinite network

of vacancies while at high concentrations they are confined to finite clusters, and

there will be no long range transport.

Generally the system discussed above can be described by a manyparticle

master equation.” This remains true even if interactions between particles are

included. In the case of Nat/Batt.g"-alumina the Coulomb repulsion between

the mobile ions will be important. Additional correlations can arise from lattice

relaxation effects, or from simultaneous hops of groups of ions. The latter is a

well known phenomenonfor the related f-alumina. Clearly the problem has to be

simplified even if one resorts to a computer simulation. A careful Monte-Carlo-

study of the tracer diffusion problem was carried out by Kehr, Kutner and

Binder. 27"9"”) They focussed on the case r=1 on a face centered cubic (fcc)

lattice, and considered systems with and without short range attractive/repulsive

interactions. Theoretical attempts’?'9) have also concentrated on the case r=1

and were therefore unable to reproduce the percolation transition for roo. In

this paper we present a theory for general + which allows to incorporate cor-

relation effects arising from the blocker dynamics or from other sources such as

particle interactions.

Let us first discuss the general framework of our approach. Instead of

focussing on the case r=1 the basic ideais to start from the frozen problem,i.e.

r=oo. Wediscuss the diffusion of a single A-particle in the percolation geometry

produced by the immobile B-particles. Interactions between the particles lead to

correlations for the random walk of the A-particle. In general the effect of such

correlations is to change the transition probabilities to nearest neighbours of the

particle.’” In particular let us assume that the primary effect is to change the

transition rate to the site that was occupied before the last step. Thus we assume

that the A-particle has a memory ofits previous position, and consequently its

random walk no longer has the Markov property. The corresponding problem on
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a regular lattice is well known’*""") and can be solved exactly. This allows us

to formulate a generalized effective medium theory for the correlated hopping of

an A-particle on the frozen disordered network.

Finally the B-particles are allowed to move, i.e. r<oo, and the A-particle

now experiences a dynamic disordered environment. The solution to this dyna-

mic percolation problem can be expressed in terms of the solution for the frozen

problem. The result is valid for arbitrary + and allows to incorporate correlation

effects via the special transition rate for transitions to the previously occupied

site. The main advantage of this approachis its simplicity. The three main para-

meters are the concentration of B-particles, p, the ratio of attempt frequencies, 7,

and the ratio between the hopping rates for return to previously occupied sites

and transitions to other neighbours, b. The first two are essentially fixed from

the experiment, while ) can be determined from a measurement of the conduc-

tivity at any single frequency, e.g. at w=0.

The objective of this paper, as mentioned in the beginning, is the

calculation of the frequency dependent conductivity for the A-particles. In

addition we wish to evaluate the correlation factor for the self-diffusion constant

in the d.c. limit. We assume here that the B-particles do not contribute to the

conductivity. We will present results for the hexagonal and the fcc-lattice. The

first because of its low coordination numberandits relevance for Nat/Ba*t-"-

alumina. The second because of the possibility to compare with d.c.-results from

extensive Monte-Carlo simulations in the literature.

For the a.c. response we find a crossover between a low frequency regime

dominated by the effects of blocker motion, and a high frequency regime in

which the blockers, or equivalently vacancies, appear to form a frozen network.

In addition we predict the appearance of novel features in the real and imaginary

part as a result of correlations. In the d.c. limit we calculate the correlation

factor for the self diffusion coefficient. It interpolates smoothly between the case

r=1 and r-+oo. Although our theory does not contain adjustable parameters for

the uncorrelated case (b=1) we find good agreement with Monte Carlo

simulations by Kehr, Kutner and Binder.”Our results will be presented in  
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Section 5 and are then discussed in Section 6. In the next section we formulate

our model. In Section 3 we treat the correlated random walk in a frozen

disordered environment, and in Section 4 we use the result from Section 3 as

input for the dynamic problem.

2. FORMULATION OF THE MODEL

2.1 Correlated Hopping in a Frozen Percolation Network

Consider the random walk of a single particle of type A in a percolating

network on a regular lattice. We will always take the lattice constant of the

underlying lattice to be unity. For simplicity we consider the case of bond

percolation instead of site percolation. That is, the bonds of the regular lattice

are assumed to be blocked by B-particles (blockers) with probability p. If a bond

is blocked by a B-particle it cannot be crossed by the A-particle (walker). We

assume that the walker has a memory of its previous step. It returns with a

transition rate w, to the previously visited site, and jumps with a rate w to any

other of the nearest neighbour sites. The ratio b=w,/w is a measure of the

strength of the memorycorrelations. For 6>1 the walker returns preferentially to

its previously visited site, and we will refer to this case as "enhanced reversals”.

In the case 6< 1 the walker tends to avoid the previously visited site and this will

be termed "reduced reversals”. As usual, we are interested in the autocorrelation

function P(i,t)=P(?,,t/*,0), i.e. the probability density to find the walker at site

i at time ¢ if it started from site 0 at time 0. We will show below that the

problem can be formulated as a system of second order equations for the P(i,t)

which reads

£ Plit) + (4+ w, - w) 4 Pit) =
dt?

= uy As 4 [PG,t) — Plit)] + wr, > Ay [PG.t) — Pli,t)] (2.1a)
afi di}

where 7, = w,+w(z;,-1) and z, is the coordination number of site i. The

symmetric quantities A,, = A,; represent the bond disorder and are defined as
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1 if the bond /ij/ is vacant
Aj = { (2.1b)

0 if the bond /ij/ is blocked

The summation in Eq. (2.1) runs over the nearest neighboursites j of site i. Note

that in the uncorrelated case, b=1, Eq. (2.1) reduces to the usual master equa-

tion for a random walk on a bondpercolation network if one replaces P(i,t) by

the sum of P and its derivative.

Equation (2.1) has to be supplemented by initial conditions for P(i,t) and

its derivative. Special attention has to be paid to the condition on 4 P(i,t). The

correct choice is

P(i,0+) = 6; (2.2a)

4 P(i,0+) = fw, + w(z,-1)] d > A;[P(G,0+) — P(i,0+)]

= 7,/%; » Ai; (59 — 559) (2.2b)

where the symbol 0+ stands for the limit t+0 from above. Note that 7,;/z, is

the average transition rate out of the starting point.

We now derive Eq. (2.1) as the equations of motion for our correlated

random walk. This will be done by a suitable reformulation of the equations for

the correlated random walk on the regular lattice,” and subsequent generali-

zation to the disordered case. Consider therefore the random walker on a regular

lattice. The random walker has a memory of its previous step and as a

consequence its walk is not markovian, i.e. the transition probabilities are not

completely determined by the currently occupied site. However a markovian

description can be obtained by introducing an enlarged state space with internal

states which correspond to the previously occupied sites.’” Therefore the central

quantity is the probability density P(z,j,t) to find the walker at site i at time t

given that it arrived at i via a direct transition from site 7. Thus j labels the

previously occupied site or history. Then the symmetric probablity density P(i,t)  
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is obtained from P(i,j,t) by a summation over all possible histories

P(i,t) “2, P(i,j,t) (2.3)

where the sum runs overall nearest neighbour sites j of site 1. The conditional

probability densities P(t,j,t) obey the master equation

4. Plij,t) = wv, [ PG,i,t) - P(ij,t) ] + ue LPGKY — POIY I (2.4)
ki

where the sum runsoverall nearest neighbours k of site j except for site ion the

regular lattice. This is the starting point for deriving Eq. (2.1)

Equation (2.4) can now be reformulated by first writing it in a more

symmetric form. Using Eq. (2.3) we can rewrite Eq. (2.4) as

4 P(ij,t) = (w, - w) P(i,t) + w PGt) — 7 Plij,t) (2.5)

where y = w, + (z—1) w, and z denotes the coordination numberof thelattice.

Note that Eq. (2.5) reduces to the master equation for a random walk on a

regular lattice if one sets b=1 and sums overall sites j which are nearest

neighbours of site t. Next we differentiate Eq. (2.5) and sum over j. We then

employit for i and j interchanged to eliminate the term 4 P(j,1,t) and find

2 . .EPlisth+y 4P(i,t) =

= (m,—w)rPO)05SPG!) (mw)PGA) (2.6)

Solving Eq. (2.5) for P(j,,t) and inserting the result into Eq. (2.6) one obtains a

closed second order equation for P(i,t)

£ Pit) + (7 + w, -— w) £ Pit) =

>4 [PG,t) - P(it)] + wySIPGt) ~ PCat) (2.7)
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where the summations, as before, run over all nearest neighbour sites j of site +.

Eq. (2.7) contains the same information as Eq. (2.4) but no longer involves the

directional quantities P(i,j,t). This form can now be used to introduce disorder

and it leads directly to Eq. (2.1). We now turn to the introduction of a

timedependent network.

2.2 Correlated Hopping in a Dynamic Percolation Network

Consider a system where the configuration of accessible sites fluctuates in

time. We are interested in the case where the B-particles perform a random

walk. Because we are dealing with bond percolation this random walk occurs on

the dual lattice. In an elementary step a blocking bond swings around either one

of its end points through an angle +.2x/z where z is the coordination number of

the underlyinglattice. It then occupies the new bond position if it is vacant. This

process is repeated on the average after a time rg which is the characteristic

time scale for the blocker motion. In Fig. 1 we depict the possible rotations of a

B-particle for the case of a hexagonal lattice. This model has been termed

"dynamic bond percolation” model.”” The characteristic hopping time for a

single B-particle is called rg. The ratio r=r,/r, between the typical hopping

time of the blockers and the walker will be the main variable charcterizing the

dynamics of the environment.

Equation (2.1) must be generalized to allow for time dependent transition

rates. Therefore we have to consider an equation of the form

2 . .
g P(i,t) + (7, + w, -— wv) 4 P(i,t) =

= uy AG) 4 (P(t) — Pi,t)] + wr; > A,,(t) [PG,t) - P(t] (28a)
att ati

where now the coefficients A are time dependent,

1 if the bond /1j/ is vacant at time ¢ ,
A;(t) = { (2.8b)

0 if the bond is occupied by a blocker at time ¢.  
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FIGURE 1: Blocker motion on the hexagonal lattice. Three possible elementary rotations of
a blocking bond around either one of its endpoints are indicated by arrows. Full
lines represent blocked bonds, dashed lines represent open bonds.

The time dependenceof these coefficients could in principle be determined from

the many particle master equation for all blockers. However, because that

equation is much too complicated we will approximate the true timedependence

by a simple renewal model in Section 4. Equation (2.8) completes the formula-

tion of the model. We remark here that other forms of a two step memory ‘are

possible and may be useful for applications. For example one can consider

enhanced or reduced transitions continuing in the same direction as the last step.

Such correlations lead to more complicated equations, but they can be treated by

the same general approach presented here.

We conclude this section with the formulas that will be used to calculate

the frequency dependent conductivity o(w) from P(i,t). This is done via a

generalized Einstein relation which reads

o(w) = bp D(w) (2.98)
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where p is the carrier density, e their electric charge, kg, the Boltzmann con-

stant, I’ the absolute tempreature, and D(w) the generalized frequency depen-

dentdiffusion coefficient. D(w) will be calculated in standard fashion from”

D(w) = -¥ | Ye F,-7,)? eo! P(R,,t/F9,0) dt (2.9b)
t.Fro

where P(?,,t/*,,0) is the solution to Eq. (2.8) or Eq. (2.1) for the frozen case.

Thelatter will be determined in the next section.

3. FROZEN DISORDER: CORRELATED EFFECTIVE MEDIUM

In this section we develop an effective medium approximation to solve

Eq. (2.1) with initial conditions (2.2) describing the correlated random walk of

an A-paricle in the frozen background of blockers. This is possible because the

correlated walk on the regular lattice can again be solved exactly. We will derive

a selfconsistent equation similar to that for the generalized diffusion coefficient in

the well known effective medium treatment of random walks on a frozen

percolating network.” In our case, however, the solution of the selfconsistent

equation is only an intermediate step from which the generalized diffusion

coefficient has to be calculated.””

We start by Laplace transforming Eq. (2.1) and inserting the initial

conditions. This gives

u(ut+y,+w,—w) P;(u) — (uty, +0,-w)6,, — (w,—w)d > A5(6;9—5io) =
* at)

= w(uty,) SA, [P,(u) — Pica)] (3.1)
iti)

where we have written P;(u) = P(i,u) =f e™! P(i,t) dt to shorten the notation.

For a selfconsistent treatment of the disorder we have to compare Eq. (3.1) with

the same equation for the regular reference lattice where we allow the kernel

A°(u) to be frequency dependent. The equation for the regular reference lattice  
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then reads

u(uty,+w—w) Po(u) — (ut7,+u,—w)b,, — (w)—w)Z, x A? (t) (5;9-5ig) =
att

= w(uty;) x A°(u) [P?(u) — Pfcu)] . (3.2)

Wesubtract Eq. (3.2) from Eq. (3.1) and insert a term A?/P.(u) — P;(u)]. This

gives us

 aiohea) + ad (PPL) ~(PPS) — Steve,FMS) =

=> A,(P,-P,) (3.3)
iti}

where we have introduced A,, = (A,,-A°)/A° and suppressed the dependence on

u to further shorten the notation. We now define the lattice Greens function

associated with the reference lattice by

(14) + 2] Oy --¥ Gy =-5y - - (3.4)

Multiplication of Eq. (3.3) by G,,, summation over i, and use of Eq. (3.4) allows

us to rewrite Eq. (3.3) as

(P, —Pi) + » Giztyuf, A;5 5;9~5io) = > Gi 4,,(P;-P;) (3.5)
iy

As we are dealing with bond percolation it is convenient to switch from

site related quantities to bond related ones. This is done by writing Eq. (3.5) for

a secondsite J, and then forming the differences Q,, = P,-P, = —Q,. In terms

of the quantities Q,, one now has

Qn= W 2 (Gy- Gy- Gat Gy JO; -

7 2 [(G,- G,) 2TFT,=be, -- (Gy -G;) wry,we 4;(5;5) (3.6)
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where the summations run overall bonds /ijj. As usual’”” one allows only a finite

number of bonds (here only one bond) to fluctuate while all other bonds are

given their effective medium value. In this 1-bond-approximation the bond /kl/

can be chosen arbitrarily, and we choose it such that it does not touch the

starting point of the random walk, ie. k#0, 140. Then Eq (3.6)is easily solved

to give

a 3.7
On 1-A,(G+ Gy—- G,—- Gy) Gs (3-7)

Up to this point we have not made use of the fact that the reference lattice is

regular. We assume now regular lattice for the effective medium such that z,=z

for all sites. In this case the solution of Eq. (3.4) is recognized as the Greens

function for that lattice if one introduces the new spectral variable

 +a) (3.8)

instead of u.

The self consistent equation is obtained by demanding to choose a

frequency dependent medium A®(u) such that it reproduces on average the

behaviour of the original system. ie. we demand <Q,,>=<Q?,> where < . >

denotes the average over all possible configurations of the bond /ki/. Using this

condition in Eg. (3.7) we find

l= <a,RVG (3.9)
14A, 4+ 2G,(t)]

where we have also used the symmetry of the Greens function and Eq. (3.4) to

express G,,(#) in terms of G,,(i). The average in Eq. (3.9) has to be taken with

respect to the probablity density f(A,,) which was given in Eq. (2.1) as f(A,,) =

(1—p)5(A,,—1)+p6(A,,). Performing the average and introducing the notation

p-=2/z for the percolation threshold one finds from Eq. (3.9) the selfconsistent

equation

0/4) = ITP — Pe — pet G(tt)
A (y) ~ T= Pe— pet G(t)  
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with % given by Eq. (3.8), and G(u)=G,;(u). Partially solving for A® then leads

to the functional equation

0 _— I—p- e—F(u,A) 4(1- <)F(u,A°) isA®(u) = PORTAWize.j {144 1+eaaTeeth. } ‘| (3.10a)

where

F(u,A°) = pe %(14%8$ya) G{ -rthtttty} (3.10b)

This formulation has the advantage that it displays explicitly the two different

branches of the solution. The decision which branch to use is made by enforcing

the correct limiting behaviour of «. This requires that we calculate first the gene-

ralized diffusion coefficient D. For that we must solve Eq. (2.7). Fourier-Laplace

transforming Eq. (2.7) and using the initial conditions of Eq. (2.1). We obtain

wu, w -

Jat uty b(fo-U+tb p(k)

(1+mer) +2— p(k)

 

 (3.11)

where k= (k,,.--,ky) denotes the wave vector, and p(k) is the usual characteristic

function of the random walk for the lattice under consideration, e.g. p(k) =

1s cos k, for the d-dimensional simple cubic lattices.
t=]

Now Equation (2.9) can be employed to calculate the conductivity ¢ (w).

A straightforward calculation using PR)owl and ViP(E)ly_=0 leads to the

generalized diffusion coefficient?”

+242b—
Daf) = B'(0)A*(u) $0145)gO (3.12)

as a function of u=iw. Here p’' (0) denotes vi PRIs_,p and we have used the

index 0 to indicate that Eq. (3.12) is valid for the frozen case, i.e. r=00. With

Equations (3.12) and (3.10) we have now derived the set of selfconsistent

equations for the frozen diffusion coefficient D,(u). It remains to specify a
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particular lattice, and to solve Eq. (3.10) for the case of interest. That will be

done in Section 5 after we have discussed how to make use of these results for

the dynamic disorder problem.

4. DYNAMIC DISORDER: RENEWAL APPROACH

So far we have discussed Equation (2.1). We now turn to Equation (2.8),

i.e. we consider dynamic disorder. The difficulty lies not so much in solving Eq.

(2.8) but in specifying the stochastic coefficients A(t). They are determined by

the random motion of all blockers. Our general strategy will be to assume a

simpler form for the random process A(t), and then to find a solution for Eq.

(2.8) which makes use of the solution for the frozen case, i.e. Eq. (2.1).

The basic idea is to approximate the actual correlated dynamics of the

environment by a simple exponential renewal process. Consider a single bond. It

is either occupied or vacant, and switches randomly between these two states.

This can be modelled by a two state Markov chain as suggested by Harrison and.

Zwanzig’”” . Let 1/r, be the switching frequency between the twostates, i,e. rr is

an effective renewal time. Then the probability to find the bond occupied by a

blocker at time ¢ is easily seen to relax as p+pgexp(—t/r,), where pg is either

1—p or —p depending upon whether at time 0 the bond was occupied or not.

Thus, in this model, the bonds flip randomly and independently between the two

states. Using a 1-bond effective medium approximation, as the one described

above, Harrison and Zwanzig’” have shown that for this model the generalized

diffusion coefficient is given by D,(u+I/r-) where D,(u) is the diffusion

coefficient for the corresponding frozen problem (e.g. Eq. (3.12)). The same

result, to which we will refer as the substitution rule, had been obtained by

Druger, Ratner and Nitzan” for a model in which full configurations are

renewed instead of single bonds. This is not surprising because in the 1-bond

approximation the behaviour for the full lattice is calculated by considering only

the possible configurations of a single bond. Let us therefore approximate the

dynamics of the environment by an exponential renewal process for full lattice

configurations with renewal density  
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v(t) =e”. | (4.1)

The mean renewal time rr is now an effective renewal time which should be

proportional to r, the ratio of jump rates between B- and A-particles,i.e.

Te = eT. ' (4.2)

The proportionality constant c¢ contains the effects from correlations in the

blocker dynamics that are not taken into account by the renewal approach.It is,

however, not an adjustable parameter. It will be determined below by

comparison with well known exact results for the limit p+1 (r=1,b=1). The

substitution rule can also be obtained from a simple probabilistic argument?” .

Consider the inverse Laplace transform D,(t) of D,(u) which was calculated in

Eq. (3.12). As is well known, D,(t) is the kernel of a generalized master

equation”. Therefore it can be interpreted as a generalized time dependent

transition rate, i.e. transition probability per unit time. It describes the frozen

problem in a mean field picture and is the proper kernel to use between renewal

events. Because the renewal process and the random walk of the A-particle are

independent, the transition rate for the dynamic problem at time t¢ is the product

of the corresponding rate for the frozen case and the probability that there was

no renewal up to timef,i.e.

D(t) = D,(t){1- |vr (U)dt!] = Dy(t)e”” (4.3)
0

From this one recovers the substitution rule by Laplace transformation. Using

Eq. (4.2) we get

D(u) = D,(u+2) (4.4)

as ourfinal result.

To proceed we have to specify a particular lattice of interest, and solve

Eq. (3.10). Before doing so we commentbriefly on the relation to our previous
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continuous time random walk approach to the same problem?” . Here, as in our

previous work we have attempted to find a framework in which correlation

effects resulting purely from the dynamics of the environment can be

incorporated. In the present paper we have attacked the problem by considering

random walks with memory which has the additional advantage that other types

of correlations can be considered. In our previous CTRW-approach we have

attempted to incorporate correlation effects into the waiting time distribution by

way of crude probabilistic and physical arguments about the nature of the

deblocking mechanism. This was based on the fact that the effective medium

waiting time distribution below p- is not normalized. Consequently the

distinction between the case above p- and below persisted, and it was necessary

to utilize the substitution rule of Eq.(4.3) to treat the case above pe. In addition

our previous approach was limited to the case r«1. Its main advantage was to

exhibit the theoretical possibility of a sequential deblocking mechanism resulting

in a nonmonotonous waiting time density and interesting consequences for the

conductivity. On the other hand our present approach applies for all + and p.It

allows for other sources of correlations, and gives relatively good quantitative

results. This will be demonstrated in the next section.

5. RESULTS

The results for w=-0 will be expressed via the so called correlation factor f.

It is a measure which is often used to characterize the amount by which theself

diffusion coefficient of a tracer particle in a lattice gas differs from its mean field

value given by the vacancy concentration. All results will be presented and

discussed with the conventions w=1, p''(0)=1, and assuming a unit lattice

constant. In these dimensionless units f is defined by the equation D(0)=f(1—p)

or, more generally,

D(0)f= 5 (5.1)

because for our hopping models (1—p)=D(oo). In the limit p— 1 exact results for

the correlation factor are known for the case r=1 (and b= 1.”™12) For the  
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hexagonal lattice one has f= 1/3, while f=0.781.. for the fcc lattice. These values

will be used below to determine c in Eq. (4.2).

Wenow haveto solve Eq. (3.10) in conjunction with Eqs. (3.12) and (4.4)

for the cases of interest, the hexagonal and face centered cubic lattice. The

 

lattice Greens functions for these situations are well known””?” and can be

expressed in terms of the complete elliptic integral of thefirst kind

a/2

K(m) = | (1-msin?¢)"de . (5.2)
0

For the hexagonal lattice we have

2(3+2) 16(2+3) )
G(z) = - . 5.3

(@) (242)!(642)'? \(2+2) (2+6) 63)

For the fcc lattice the Greens function is given by

G(z) = -5(440)'K(2JK(z_ ) (5.4a)

where

wh = (449)7{ fol(445)'?—Vt + (448)?2 (348). (5.4b)

Wenowsolve Eq.(3.10) iteratively on the computer. We stop the iteration when

the maximal relative error between two consecutive solutions falls below 107°.

The resulting A’(u) is then used to calculate D(u) according to Eqs. (3.12) and

(4.4). The results are displayed in Figures 2 through 10.

First we determine the proportionality constant c in Eq. (4.2). This is

achieved by requiring that the calculated correlation factor reproduces the known

exact results for the limit p=1, r=1, b=1. We find ¢,,,~1.00 for the hexagonal

lattice, and c,,~0.16 for the fcc lattice. These numbersare difficult to determine

numerically, and we estimate the error to be roughly 0.03. In all subsequent cal-

culations we then use these values for c.
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Correlation factor fas function of blocker concentration p for the face centered
cubic lattice (b= 1,c= 0.16). The crosses are the simulation results of Ref. 5
for the case r=1. Thecircles are simulation results from Ref. 8 for the case
t=00. The dashed line is obtained by using the exact value p-=0.198.. from
Ref. 6 instead of the effective medium value p-=1/6.
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Correlation factor f vs. blocker concentration p and ratio of hopping rates r
for the hexagonal lattice (b= 1,c= 1). The crosses are simulation results from
Ref. 10 for the case r=1.  
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In Figure 2 we have extracted the correlation factor from D(0) and

plotted it versus blocker concentration p. All curves are for the uncorrelated

case. i.e. b= 1, on the fcc-lattice. We give results for r=0.1,1,10,100,1000 and

rz=oo. The crosses are the results of the Monte Carlo simulation for the case r=1

taken from Ref. 5. The circles are MC-results for r=oo and were taken from

Ref.8. Clearly there will be a discrepancy for this case because our results are

approximate and for bond percolation while the simulation is exact and for site

percolation. An immediate problem is the value of p. for which the effective

medium theory gives p,= 1/6 while the exact value is” pe= 0.198... . If we simply

use the exact value for p. in our calculation we obtain the dashed line displayed

in Fig. 2 which is found to be in good agreement. In Fig. 3 we plot f vs. p for the

hexagonal lattice. Here the simulations have been taken from Ref. 10. Keeping in

mind that there are no free parameters (remember b=1) we find very good

agreement for both lattices. However, additional simulation data especially for 7
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FIGURE4: Real part of the genaralized diffusion coefficient Re D(w) for the fcc-lattice
as a function of frequency w in a logarithmic plot for several values of r and
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FIGURE 5: Real part of the genaralized diffusion coefficient Re D(w) for the fec-lattice
as a function of frequency w in a logarithmic plot for several values of + and
p=0.8, b=1 (c=0.16).

in the range I1<r<oo, and a more accurate determination of c are required to

fully evaluate the quality of the theoretical results. We now turn to the results

for our primary objective, the frequency dependent diffusion coefficient.

Weconsider first the uncorrelated case (b= 1) on the fcc-lattice. In Fig. 4

and Fig. 5 we plot Re o(w) over ten decades in frequency on a log-log plot. Fig. 4

corresponds to a blocker concentration p=0.9 which is below the percolation

threshold for vacancies, and showsthe results for r= 1,10°,10°,10°, and oo. Fig. 5

has p=0.8 and r=1,10,100,1000,00. From Fig. 4 we see immediately that below

the percolation threshold o(w) vanishes quadratically with frequency for r=oo.

This behaviour is wel] known from the analysis of the EM theory for the frozen

case. For r<oo wefind a crossover to a constant proportional to 1/r. This could

have been expected because the blocker motion now allows the A-particle to get

through the network although the vacancy concentration at each instant is below

pe. The mobility of the A-particles will be completely determined by the  
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FIGURE 6: Real part of D(w) for the fcc-lattice as a function of frequency in a linear plot
for fixed r= 100, and values for 5 and p as indicated. The dashed line corres-
pondsto the uncorrelated case b= 1.
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FIGURE 8: Real part of D(w) for the hexagonal lattice as a function of frequency in a
linear plot for fixed r=10, and values for 6 and p as indicated. The dashed line
indicates the uncorrelated case b= 1.
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corresponds to the uncorrelated case b= I.  
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mobility of the blockers. The crossover frequency is seen to vary as wer

This will be discussed further in the next section. On the other hand above the

vacancy threshold Fig. 5 shows that the effect of the blocker rearrangement is

only noticeable for r values smaller than roughly 10‘. Indeed one expects that

the effect of blocker motion will become negligible if 1/r is much smaller than

the d.c. conductivity in the frozen case which is proportional to 1—p—pe.

In Figures 6 and 7 we now turn to the correlated case, i.e. 641. Again we

consider the fcc-lattice and plot the real (Fig. 6) and imaginary (Fig.7) part of

D(w) for the two concentrations p= 0.8 and p=0.9 with fixed r=100 but variable

b. We have chosen b=0.1,0.5,1,2,10 for the correlation factor. The case b6=1 is

included as a reference and has been distinguished graphically by a dashed line.

As before the real part approaches a constant as w—(0 irrespective of p because r

is finite. A new phenomenon however is the appearance of nonmonotonous

behaviour for b=0.1. In this case ReD(w) is found to increase at low frequencies,

and to decrease at high frequencies thereby exhibiting a maximum at a finite

frequency. In general Re D{w) is found to decrease as b—9 at high frequencies,

and to increase at low frequencies. The reverse is seen for boo. This will also be

discussed in the next section in more detail. For the imaginary part of D(w) we

find a change of sign for sufficiently small b<1. See for example the case p=0.8,

b=0.1. On the other hand for p=0.9, b=0.1 there is no change of sign in the

imaginary part while the real part still shows a maximum.

The same calculations have been performed for the hexagonal lattice. The

results are displayed in Figures 8 and 9. The only difference lies in the parameter

values. We have chosen different concentrations, p=0.5,0.7, and fixed r at r=10.

The results show qualitatively the same behaviouras for the fcc lattice.

In Fig. 10 we have plotted someresults for the correlated case (b4 1) in a

log-log-plot. We show Re D(w) for p=0.7, r= 100 and b=1,2,10 on the hexagonal

lattice. We note that as a consequence of the correlations the crossover into the

constant high frequency limit is smeared out and resembles a power law over

more than a decade in frequency. This is particularly apparent for the case b=2.
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FIGURE 10: Real part of D(w) for the hexagonal lattice plotted logarithmically against
frequency for p=0.7, r= 100 and b=1,2,10. The slope of the straight line
is roughly 0.5.

For reference we have included a straight line into the graph whose slope is

found to be roughly 0.5. We remark that such a power law behaviour for the

frequency dependent conductivity is often found experimentally in disordered

systems. As a particular example we mention Na-@-alumina where the ionic

transport is also known to be highly correlated.””

6. DISCUSSION AND CONCLUSIONS

We begin with the discussion of the crossover in o{w)as a result of the

mobility of the blockers. As a general fact we note that the blocker motion

introduces a crossover from a low frequency regime dominated by the blocker

rearrangement to a high frequency regime in which the disorder appears frozen.

For small frequencies Res~1/r while in the high frequency regime o behaves as

for the frozen case. This is independent of the correlations introduced by b.  
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In the last section we had found from Fig. 4 that the crossover frequency

wr between the two regimes behaves as w~r'/?, This can be understood from

the model of independently fluctuating bonds. In this model each bond switches

independently between its two states, closed and open, with a relaxation timer.

Let the system be in a stationary state at t=0, i.e. when the walker starts. The

number of bonds that have remained in the same state since t=0 decreases

exponentially with time. We define the crossover time as the average time after

which the walker first encounters a bond that has switched at least once since

t=0. The walker can cross a bond repeatedly as long as the bond has not

switched since the start of the walk. If the walker makes n steps then the average

length of the time interval during which all of the n crossed bonds remain in

their original state is r+/n. The crossover occurs when this time equals the

numberof steps, i.e. when n-1~r/n, where the charcteristic hopping time of the

walker is again assumed to be 1. This immediately gives the observed ir

behaviour.

Next we discuss the effect of correlations, i.e. the case 641. At high

frequencies the conductivity is determined mostly by the conductance (i.e.

transition rate) of the last bond that was passed. This conductance is increased

resp. decreased per definitionem by a factor b. Thus the limiting high frequency

value of o(w) will be increased for enhanced reversals, b>1, resp. decreased for

reduced reversals, b< 1.

At low frequencies the walker explores a much larger region, and it will

begin to feel the existence of the percolation threshold. Assume for the moment

that the blocker configuration is frozen, i.e. roo. Let us consider first the case

1~—p>pc, i.e. when there is an infinite network of vacancies. To estimate whether

the d.c. conductivity o(0) is enhanced or not, consider the limiting cases b— 1

and b-+00 for a lattice of low coordination, e.g. the linear chain. In the limit 6-0

the particle moves deterministically to the right or to the left depending uponits

initial conditions. For b-oco the particle will oscillate between two sites.

Therefore we expect that (0) will be decreased for b> 1, and increased for b<1.



A different situation arises for 1—p<p. (still with r=oo) because now

o(0)=0. For reduced reversals (b< 1) the particle has a higher probability of fully

exploring all the dead ends of the percolating network than for the enhanced

reversals (b> 1). The exploration of the dead ends will however not contribute to

the d.c. conductivity, and we therefore expect o(0) to be decreased for b<1, and

increased for b>].

From these qualitative arguments one expects by continuity that for

I-p>p- there will be at least one point of intersection between Re

D(w,b=1,r=00) and Re D(w,b#1,r=00). For 1—p<p- there may be no point of

intersection or an even number of them. This is confirmed by the calculations.

For I-p<pe and r=oo there are two points of intersection. If 6<1 the

conductivity is decreased in the very low frequency regime, increased at

intermediate frequencies, and again decreased at high frequencies relative to its

value for b=1. For small enough b a maximum can arise at a finite frequency.

On the other hand for b>1 the conductivity is increased at very low frequencies

then decreased, and finally again increased at high frequencies. For the case

1—p>pe and r=oo we find exactly one point of intersection. For b<1 the

conductivity is increased at low frequencies, and decreased at high frequencies as

compared to its value for b= 1. The reverse is true for b>1.

The maximum for 56-0 arises from the competing effects of disorder

induced correlations and memory induced correlations. The memory correlations

tend to enhance the low frequency conductivity over the values at high

frequencies just as they do for the regular lattices.°"°" On the other hand

the disorder has the opposite effect. At high frequencies (i.e. short time scales)

the memorycorrelations prevail, while at very low frequencies(i.e. on long time

scales) the disorder is dominant.

If now one allows also blocker motion, i.e. for finite r, an additional

crossover arises for 1~p<p-. At very low frequencies the diffusion is controlled

by the slowly moving vacancies which can occupy every site in the underlying
regular lattice, and o(0) will be nonzero. One therefore expects that o(0) is
increased for b<1, and decreased for b>1, as for a regular lattice. Thus in this  
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should be three points of intersection with the curve for b=1. This is indeed

borne out by the numerical solution although it is a small effect as seen in Fig.10

for the case of the hexagonal lattice.

In summary, in this paper we have analyzed the correlated hopping of an

A-particle in a background of mobile B-particles. We have calculated the corres-

ponding frequency dependent diffusion coefficient using the substitution rule and

a generalized effective medium theory for correlated diffusion. We have found a

rich variety of new features especially below the vacancy percolation threshold.

The simultaneous presence of several crossover frequencies gives rise to a compli-

cated structure of the frequency dependent response. In particular we find the

possibility of a maximum in the real part at finite frequency, or apparent power

law behaviour over more than a decade in frequency as a consequence of disorder

and correlations. Our model has a wide range of applicability. As an example we

refer back to the introduction and point out that our approach can be used to

model the simulation results of Refs. 7 or 9 for lattice gases with short range

attractive or repulsive interactions by employing the correlation parameter 5.

Here we have applied our approach in the d.c. limit to existing Monte-Carlo

simulation data of A-B-lattice gases for the uncorrelated case (b=1). We have

found remarkably good agreement.
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