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Correlation Effects on Hopping Transport
in a Disordered Medium

R. HILFER
Institut fiir Physik, Universitat Mainz

6500 Mainz, Germany

and

Fysisk Institutt, Universitetet 1 Oslo

0816 Oslo, Norway

ABSTRACT

Correlated hopping transport through a disordered system is discussed in terms

of arandom walk model with memorycorrelations on a bond disorderedlattice.

Correlations will in general result in a difference between the transition rate

to the previously occupied site and the rate for transitions to any other near-

est neighbour site. Such a correlated process corresponds exactly to Furth’s

model for a random walk with a finite memory. This paper establishes a first

order master equation for Fiirth’s random walk on a bonddisorderedlattice.

The equation is found to be equivalent to a symmetrized second order equa-

tion which was used previously as the starting point for an effective medium

treatment.

Atomic diffusion processes in condensed systemsare often described bylat-

tice gas models. The dynamics in such systems is given by many particle master

equations in which the transition rates depend on the local field of the instanta-

neous configuration. In the simplest case one allows only hard core repulsions for
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the interactions between particles. The system can then be described as a gas of

mutually selfavoiding random walkers on a lattice.

Manystudies have investigated the dynamic properties of such lattice gases.

For the case of hard core repulsions (i.e. the ”noninteracting lattice gas”) detailed

information on the tracer diffusion constant has been obtained both analytically!~?

and by simulation* . Recently® it was observed that the problem can also be ap-

proached via dynamic disorder theory®’. This approach® is based on the idea that

the tracer particle moves in a disordered background which changesits configuration

as a function of time.

Dynamic and static correlations between the particles play an important

role in actual materials. In superionic conductors, for example, such correlations

arise from non-hard-core interactions (e.g. Coulomb forces) between particles, from

lattice relaxation effects, or from cooperative motion of groupsof particles®’’.

Given the importance of such correlation effects in real materialsit is of inter-

est to incorporate them into the dynamic disorder approach to lattice gas models.

This requires as a first step to study the effect of correlations in the presence of

frozen disorder, i.e. when the disordered geometry does not change with time.

Such a study has been carried out?®, and the results have been utilized in the

dynamic disorder approach®. These investigations were based on the correlated

h!!:12. However in Ref. 10 the disorder was introducedrandom walk model of Furt

into a symmetrized second order equation for Firth’s random walk and not directly

into the first order formulation of the problem. This deficiency will be remedied in

the present paper in order to make the model more transparent.

Let me begin by recalling Fiirth’s modelfor correlated random walks!!"?. In

this model the random walker has a finite memory. Instead of choosing betweenall

possible directions for a jump with equal probabilities the walker chooses the new

direction with a probability which depends on the direction of the previous hop.
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In the simplest case, called the backward jump model, the walker has a transition

rate w, for returning to its previously visited site, and a transition rate w for

transitions to all other nearest neighboursites. In general correlations will give rise

to a difference, w # 7», between them. For example for Coulomb interactions one

expects!:14 w, > w, because each transition disturbs the previous local equilibrium

configuration. Thus the particle has a higher than average probability to return to

its previous site at the next jump attempt.

To formulate the model mathematically it is convenient to choose a marko-

vian description by suitably enlarging the state space’. In the present case the

state of a particle is given by its “history” (i,j) which consists of the currently

occupied site 7 and the previously occupied site 7. The quantity of interest is then

P(i,j,t) the probability density to find the particle at site 7 at time ¢ if it arrived

at i via a transition from site j and if it started from someorigin at time 0. On a

regular lattice P(t, j ,t) obeys the following master equation??:

<Plisist) = ws[P(j,2,t) 7 P(i,j,t)) +w5°[P(j,k,t) — P(i,j,t)| (1)

kfi

The summation runsover all nearest neighbour sites k of site j except 2.

Consider now thecase of bond disorder on the same underlying regularlattice

as before. Each bond has probablity p of being present, and probability 1 — p of

being absent. The particle can only jump across those bonds which are present.

Transitions across absent bonds have transition rate 0.

It is not straightforward to generalize Eq. (1) to this case. The reason is that

in the formulation of Eq. (1) it is implicitly assumed that the length of memoryis

given by the length of the history, and thus the walker has a memory of roughly

length 1 in units of + . For the disordered lattice difficulties arise from the presence

of dangling ends containing sites with coordination number z; = 1. In the limit

w, — 0 the particle will be trapped at such sites. Thus the particle acquires a
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site dependent infinite memory contrary to the model assumption. In Ref. 10 this

problem was circumvented by introducing the disorder only after symmetrizing Eq.

(1). Here it will be shown that the same results can be obtained by establishing

directly the analogue of Eq. (1) for the disordered case.

The generalization of Eq. (1) to the case of a bond disordered lattice is

obtained by introducing the memory length explicitly. To do this it is necessary to

allow transitions from site to itself (i.e. 7 = 7 in Eq. (1) is now allowed). Then

the equivalent of Eq. (1) for the disordered case can be written as

d.... ; Lo
atbest) = » Ajj wizeAjeP(9, k,t) — » AnwijAij P(t, 3,t) . (2a)

The first summation runsoverall k that are nearest neighbours of j and over k = 7.

Similarly the second sum runs over | = 7 as well as all | that are nearest neighbours

of i. The disorder is represented by the quantities A;; defined as A;; = 1 forall 2,

and

—_ ,._ Ji if bond (ij) is present,

Aig = Aj = 4 if bond (27) is absent. (26)

The transition rates w;;, depend on the history of traversed bonds and are defined

as

w fori f#gjgHF#k
Wp fori=k,tf~7

i we fori =j=k 9
ijk w forj=kiFxj (2c)

M+z—2z)w fori=j,if¢k
0 otherwise.

Here wy, is the transition rate for transitions to the previously visited site, w is the

transition rate to all other nearest neighboursites, z is the coordination number

of the underlying regular lattice, and z; is the coordination numberof site 1. The
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constant M is related to the memory length. It regulates the transitions from site

to itself, i.e. from state (1,7) with i 7 to state (2,7). Such a transition corresponds

to a loss of memory of site j while waiting at site 1. The memory length in units of

4 is given by i In the limit M = 0 the walker forgets the previously visited site

only by jumpingto a nearest neighbour. For M = 0 and nodisorder,i.e. if Ai; =1

for all i,j and z; = z, Eq.(2) reduces to Eq. (1).

Equation (2) can be symmetrized by introducing the probability density

P(i,t) to find the walker at site i at time ¢ if it started from theorigin at time0.It

is defined as

P(i,t) = 5° Pli,3,t)
j

where the sum runs over j = 7 and all nearest neighbours 7 of site 7. One finds the

result

a. d .,. ;
qt(e) + (y+, + wz - 1))PG) + ywz;P(i,t)

=w S- AisPG t) + wy S| A;;P(j,t).‘it : aij ’

iti} iti}

Here y = wy + w(M + z — 1) and the summations run only over nearest neighbour

sites of site 1. Note that the equation is of second order in the time variable. The

equation can be rewritten as

a2. d_. d .
aast) + (7+ ws - w)5, P(ist) =w 2494 (PG.0 — lit) )

+94s(2601 PG)
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This symmetrized form is analogous to the master equation for an uncorrelated

random walk in a disordered system, and it has been used as the starting point for

an effective medium treatment?!®.

Combining the effects of correlations and disorder as in Eq. (3) has several

interesting effects on the frequency dependent conductivity o(w) as discussed in

Ref. 10. For example there exists the possibility of a maximum in Reo(w) for certain

values of the parameters p and w, < w. For wy > w it is possible to find crossover

behaviour in Re o(w) which resembles the power law behaviour Re o(w) of universal

dielectric response over almost two decades in frequency. This is very reminiscent of

experimental results!® on Na-@-alumina wherecorrelations and disorder are known

to be important.

In summary this paper has reconsidered Firth’s correlated random walk for

a bond disordered lattice. It was shown that the problem can be formulated using

a first order master equation if the memory length is introduced explicitly into the

equations. Thefirst order formulation and a previously used second order equation

for the symmetrized quantities P(i,¢) were found to be equivalent.
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