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Abstract

The macroscopic modelling of two-phase flow processes in subsurface hydrosystems or industrial applications on the Darcy scale usu-
ally requires a constitutive relationship between capillary pressure and saturation, the Pc(Sw) relationship. Traditionally, it is assumed
that a unique relation between Pc and Sw exists independently of the flow conditions as long as hysteretic effects can be neglected.
Recently, this assumption has been questioned and alternative formulations have been suggested. For example, the extended Pc(Sw) rela-
tionship by Hassanizadeh and Gray [Hassanizadeh SM, Gray WG. Mechanics and thermodynamics of multiphase flow in porous media
including interphase boundaries. Adv Water Resources 1990;13(4):169–86] proposes that the difference between the phase pressures to
the equilibrium capillary pressure is a linear function of the rate of change of saturation, thereby introducing a constant of proportion-
ality, the coefficient s. It is desirable to identify cases where the extended relationship needs to be considered. Consequently, a dimen-
sional analysis is performed on the basis of the two-phase balance equations. In addition to the well-known capillary and
gravitational number, the dimensional analysis yields a new dimensionless number. The dynamic number Dy quantifies the ratio of
dynamic capillary to viscous forces. Relating the dynamic to the capillary as well as the gravitational number gives the new numbers
DyC and DyG, respectively. For given sets of fluid and porous medium parameters, the dimensionless numbers Dy and DyC are inter-
preted as functions of the characteristic length and flow velocity. The simulation of an imbibition process provides insight into the inter-
pretation of the characteristic length scale. The most promising choice for this length scale seems to be the front width. We conclude that
consideration of the extended Pc(Sw) relationship may be important for porous media with high permeability, small entry pressure and
high coefficient s when systems with a small characteristic length (e.g. steep front) and small characteristic time scale are under
investigation.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

Flow processes in porous media involving two immiscible
fluids need to be understood and predicted when dealing
with subsurface hydrosystems or industrial applications.
For example, in the unsaturated zone, the spatial distribu-
tion of the water and air phase as well as their fluxes serve
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as a basis for modelling transport of contaminants such as
pesticides or heavy metals (e.g. [9]). In the saturated zone,
two-phase systems are encountered when non-aqueous
phase liquids infiltrate into the subsurface. The simulation
of these processes aids in advising remediation measures
(see e.g. [37,49]). As examples for industrial applications in
two-phase flow, the movement of fluids through a filter, con-
crete or moisture absorbents as well as the infiltration of ink
into paper can be considered.

The physical–mathematical model underlying simula-
tions of two-phase flow on the macro scale, here denoted
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Notation1

a subscript: wetting or non-wetting phase
aVG Van Genuchten, 1980 parameter [Pa�1]
aS Stauffer scaling parameter [–]
c interfacial tension [N/m]
Dt time step [s]
h contact angle [�]
k Brooks and Corey parameter [–]
�k total mobility [Pa�1 s�1]
l dynamic fluid viscosity [Pa s]
R density [kg/m3]
RIF mass of interface [kg m3]
s damping coeffeficient [Pa s]
sB coefficient after Barenblatt [s]
s* coefficient after Bourgeat and Panfilov [–]
sHG coefficient after Hassanizadeh and Gray [Pa s]
sK coefficient after Kalaydjian [Pa s]
sS coefficient after Stauffer [Pa s]
/ porosity [–]
a interfacial area per volume [m�1]
fw fractional flow function [–]
d pore diameter [m]
g scalar gravitational acceleration [m/s2]
hcr capillary rise [m]

K scalar intrinsic permeability [m2]
kr relative permeability [–]
lc characteristic length [m]
Mc

w cumulative mass of wetting phase [kg]
P pressure [Pa]
Pc capillary pressure [Pa]
P e

c equilibrium capillary pressure [Pa]
P d

c dynamic capillary pressure [Pa]
Pcc characteristic capillary pressure [Pa]
Pd entry pressure for the Pc(Sw) relationship after

Brooks and Corey [Pa]
R radius [m]
S saturation [–]
Sar residual saturation of phase a [–]
Se effective saturation of the wetting phase [–]
T temperature [K]
t time [s]
tc characteristic time [s]
v Darcy velocity [m/s]
us seepage velocity [m/s]
V volume [m3]
z depth [m]

1 Note: Local notations are explained in the text. Vectors and matrices
are written in bold type. Averaged values are marked with hi.
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as Darcy scale, usually requires a constitutive relationship
between wetting phase (denoted by subscript w) saturation
Sw and capillary pressure Pc; the Pc(Sw) relationship. Tra-
ditionally, one assumes that this relationship is determined
under quasi-static or steady-state conditions but can be
applied to any transient flow process that fulfills the Rey-
nolds number criterion (i.e. Rwusd/lw < 1). However,
recently some works have questioned this assumption (see
e.g. [14] or [33]). [35] were able to improve the agreement
between experimental and simulation results by applying
a model which accounts for a rate dependence in the Pc(Sw)
relationship. Although recently rate dependence in the
Pc(Sw) relationship has attracted some attention, the
importance of including such a relationship in simulations
still needs to be identified. One may safely assume that for
slow flow processes (e.g. small capillary number) a rate-
dependent relationship does not need to be accounted
for. But, it is not clear under what conditions such effects
may be important. In order to identify the relevant flow
regimes and to obtain quantitative measures, we will here
perform a dimensional analysis of the two-phase balance
equations with a rate-dependent Pc(Sw) relationship. For
a dimensional analysis of the two-phase balance equations
including the traditional Pc(Sw) relationship, the works of
[22,24,1], or, for heterogeneous systems, [23] can be
consulted.
This paper is structured as follows. We first describe
when and why rate dependence in the Pc(Sw) relationship
may be observable and then shortly review different models
accounting for the rate dependence. These models will in
the following also be referred to as extended models. Then
the physical–mathematical model of two-phase flow is
introduced. Within a dimensional analysis the balance
equations are non-dimensionalised by introducing charac-
teristic and dimensionless magnitudes. Resulting from the
analysis, dimensionless numbers can be defined. It is
assumed then, that these numbers can be consulted to
assess the relative importance of the different dimensionless
terms in the balance equations. The magnitude of the num-
bers is thus calculated for some soils. They are then inter-
preted as functions of the characteristic length scale or
velocity. In order to test the suggested interpretations of
the characteristic length simulations of an imbibition pro-
cess are carried out. For these simulations the dimension-
less numbers are calculated. Finally, it is assessed when
the consideration of an extended Pc(Sw) relationship may
be of importance.

2. Rate-dependent effects in the Pc(Sw) relationship

Laboratory experiments have shown that the relation-
ship between capillary pressure and saturation might not
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be unique. Well-known effects are for example the hyster-
etic behaviour of the relation or the entry pressure, which
needs to be attained before non-wetting phase can infiltrate
into the porous medium. Also, a rate dependence has been
observed, here denoted as dynamic effect.

Traditionally, a Pc(Sw) relationship is determined under
quasi-static or steady-state conditions (for example with a
pressure cell or a centrifuge, see [10]). This capillary pres-
sure is here addressed as equilibrium capillary pressure P e

c

and the relation thus as equilibrium P e
cðSwÞ relationship.

It is assumed to be unique as long as hysteresis can be
neglected (in the Brooks and Corey [8] Pc(Sw) relationship
a non-uniqueness also exists at Sw = 1.0). Under transient
conditions when the rate of change of saturation well
exceeds zero, the dynamic capillary pressure P d

c prevails
resulting in a dynamic P d

c ðSwÞ relationship. In the follow-
ing, the term ‘rate of change of saturation’ will be abbrevi-
ated to ‘saturation rate’. Instead of measuring Pc and Sw at
given equilibrium distributions of the phases, they are
determined continuously over time as the flow occurs.
For a given porous medium, in theory an infinite number
of dynamic Pc(Sw) relationships could be measured for
varying flow conditions. This leads to a non-uniqueness
in the relation between capillary pressure and saturation.
For illustration, the equilibrium and dynamic Pc(Sw) rela-
tionships obtained in experiments by [41] are depicted
(see Fig. 1).

Many authors give physical explanations for the occur-
rence of dynamic effects. [16,50] summarise the literature,
as well as [18]. The summaries are shortly reproduced here
including additional remarks.

On the pore scale, the dynamic contact angle is often
given as one reason for the dynamic effect in capillary pres-
sure. The contact angle decreases with increasing flow
velocity for drainage and increases with increasing velocity
Fig. 1. Illustration of dynamic effects in drainage Pc(Sw) relationships
with experimental results from Topp et al. [41].
for imbibition (see e.g. [6,15,48]). Consequently, capillary
pressure for drainage is higher than equilibrium capillary
pressure, while for imbibition it is lower.

For imbibition, the following processes have been iden-
tified. [4] argue that, for imbibition processes, the non-
sequential filling of pores by the wetting fluid may cause
dynamic effects. With non-sequential filling they define a
filling of pores with water in an order that would not be
predicted applying the Young–Laplace equation. On the
basis of this equation one can calculate up to which pore
diameter pores would be imbibed with water for a given
(equilibrium) capillary pressure. However, [4] assume that
under dynamic conditions also a pore with a larger diame-
ter might be wetted with water. If the diameter of this pore
is then inserted into the Young–Laplace equation the
(dynamic) Pc calculated with this diameter would be smal-
ler than the given equilibrium one.

Moreover, in dynamic imbibition processes, enhanced
air entrapment can result in an increase in the residual
non-wetting phase (subscript n) saturation Snr compared
to the equilibrium P e

cðSwÞ relationship. Consequently, at a
given saturation, a lower capillary pressure for the dynamic
case as opposed to the equilibrium one, can be observed
(e.g. [13]). This assumes that the entrapped non-wetting
phase does not contribute to the capillary pressure or that
within the entrapped phase the same pressure prevails as in
the continuous non-wetting phase. Obviously, dynamic
and hysteretic effects are confounded here. It is assumed
that such pore-scale processes might result in hysteretic
as well as dynamic effects.

Related to the experimental set up and problems of
inverse parameter identification, the following aspects
deserve attention. Water can be drained only if air can infil-
trate the porous medium at the same time. If air access is
limited, higher water saturations might occur under
dynamic conditions. Especially, [43,39] point out that the
dynamic effect in the Pc(Sw) relationship is not pronounced
if the drainage experiment is conducted with a column pos-
sessing perforated walls which ensure air access into the
column. Moreover, several authors have shown that air
pressure does not always equal atmospheric pressure dur-
ing laboratory experiments and that thus the capillary pres-
sure derived from tensiometer measurements is misleading
(e.g. [27,39,47]).

The first one known to the authors to propose an
(empirical) relationship was Stauffer [40]. He examined
one-dimensional vertical drainage processes in three fine
sand columns with water and gas (air) as fluids. In search
of a functional relationship to account for non-uniqueness
in the Pc(Sw) relationship he plotted the difference between
the dynamic and the equilibrium capillary pressure as a
function of (a) the rate of change of saturation and (b)
the rate of change of capillary pressure. While the relation-
ship in the first case seemed to be linear, it appeared to be
non-linear in the second case. Stauffer [40] chose to concen-
trate on the linear dependence, proposing the empirical
relationship
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P d
c � P e

cðSwÞ ¼ �sS

oSw

ot
; ð1Þ

with the coefficient sS defined by

sS ¼
aSlw/

Kk
P d

.wg

� �2

; ð2Þ

where aS = 0.1 denotes a constant scaling parameter, lw

the viscosity of the wetting phase, / the porosity, K the
intrinsic permeability, Rw the density of the wetting phase,
g the gravitational constant and Pd, k stem from the
Brooks and Corey [8] parametrisation. The coefficient sS

[ML�1 T�1] can thus be calculated for a given porous med-
ium containing water and air. The dynamic capillary pres-
sure P d

c in Eq. (1) can be expressed as the difference in the
phase pressures Pn � Pw, which only equals the equilib-
rium capillary pressure under static or steady-state
conditions.

All other alternative formulations of dynamic capillary
pressure are based on theoretical considerations. Kalaydj-
ian [25] sets up macroscopic balance equations of mass,
momentum, energy and entropy for two incompressible,
immiscible fluid phases and their interfaces as well as phe-
nomenological equations on the basis of the theory of irre-
versible thermodynamic processes. Expressed in terms of
the wetting phase for a rigid porous medium, Kalaydjian
[25] proposes the relation

P n � P w �
2

R
c ¼ �sK/

oSw

ot
: ð3Þ

Here, R is the pore radius and c the interfacial tension. In
this model, it is assumed that at equilibrium the interface
between the wetting and the non-wetting phase is hemi-
spherical, which presumes a circular cross section of all
pores. The left hand side can be interpreted as the differ-
ence between dynamic capillary pressure, P d

c ¼ P n � P w,
and the equilibrium capillary pressure. Thus, although Kal-
aydjian’s model can strictly speaking only be employed for
porous media with cylindrical pores, with the interpreta-
tions just given it resembles Eq. (1) by Stauffer [40]. In an
experimental investigation Kalaydjian [26] shows his s
parameter to be a function of the effective water saturation
and of the inflow rate of wetting phase which can be inter-
preted as a functional dependence on the rate of change
of saturation. However, he does not attempt to find a
functional form for the in one case convex and in the
other case concave data points s(Se) of the two imbibition
experiments.

Barenblatt and co-workers set up their model in [3], and
further developed it in [2] as well as [4]. The authors devise
a model for describing non-equilibrium effects for water–oil
displacement or spontaneous countercurrent imbibition
processes. While assuming that the equilibrium Pc(Sw) rela-
tionship still holds, the authors propose that it should not
be evaluated at the actual wetting phase saturation occur-
ring in the system but at an apparent saturation g. For
an imbibition process the apparent wetting phase satura-
tion can be higher than (or equal to) the actual saturation.
Barenblatt et al. [4] suggest an empirical relation between
the apparent and the actual saturation Sw

g� Sw ¼ sB
oSw

ot
; ð4Þ

where sB [T] denotes a constant redistribution time. Note,
that thus this parameter has a different unit compared to
the ones from the other models described here.

Hassanizadeh and Gray [19] have volume-averaged the
pore-scale balance equations of mass, momentum, energy
and entropy and have applied the concept of the entropy
inequality. They propose an alternative formulation of
the Pc(Sw) relationship similar to that of [40,25], namely
that the difference between the non-wetting phase pressure
Pn, the wetting phase pressure Pw and the equilibrium cap-
illary pressure P e

c is a linear function of the rate of change
of wetting phase saturation

P n � P w � P e
cðSwÞ ¼ �sHG

oSw

ot
; with ð5Þ

sHG ¼ f ð.a;/; Sw; a; .IF; T Þ; ð6Þ

where Ra denotes the mass of a phase, a denotes the inter-
facial area per volume, RIF the mass allocated to the inter-
face, and T is the temperature. So far, to our knowledge
only the functional dependence on water saturation has
been studied in laboratory experiments.

The model of Hassanizadeh and Gray was applied by
several authors for theoretical investigations of the flow
of water–air or two-phase flow. Nieber et al. [33] incor-
porated the extended Pc(Sw) dependence into the Rich-
ards equation in order to analyse instabilities in
gravity-driven flow. They assume that s can be factorised
into a constant part, a part that is a function of water
saturation and a part that is a function of water pres-
sure. They point out that a number of functions could
be applied and choose power functions for both depen-
dencies. Moreover, Cuesta et al. [11] and van Duijn
et al. [44] have also analysed travelling wave solutions
for the Richards equation and the two-phase balance
equations respectively. They assume that s is a (power)
function of water saturation.

O’Carroll et al. [35] have calculated the s parameter
after Hassanizadeh and Gray with inverse parameter iden-
tification on the basis of multi-step outflow experiments
employing water and tetrachlorethene. They attained the
best fit by assuming a linear dependence of s on the effec-
tive water saturation Se with s(Se = 1.0) = 0.

As the functional choice for s(Sw) of most of these
authors is mainly motivated by mathematical consider-
ations and only few physical experiments exist we detain
here from choosing one of the functional dependencies of
the coefficient s on the water saturation.

In the following analysis, we restrict our study to the fol-
lowing linear model proposed by Stauffer [40], Kalaydjian
[25] and Hassanizadeh and Gray [19]
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P n � P w � P e
cðSwÞ ¼ P d

c � P e
cðSwÞ ¼ �s

oSw

ot
; ð7Þ

where s is assumed to be a constant. We make this assump-
tion as the functional dependencies of s and especially the
functional relationship with water saturation have not been
established clearly yet. We will refer back to this issue in
the section on the dimensional analysis.

Eq. (7) predicts that the phase pressure difference (inter-
preted here as the dynamic capillary pressure) equals the
equilibrium capillary pressure at a given water saturation
only under static or steady-state conditions. For transient
flow conditions, the difference between the two capillary
pressures depends on the magnitude of the saturation rate
and the coefficient s. The extended relationship is illus-
trated in Fig. 2.

In the following, the extended Pc(Sw) relationship given
by Eq. (7) will be applied to close the conservation equa-
tions for two-phase flow in porous media.

3. Physical–mathematical model of two-phase flow processes

For the mathematical description of two-phase flow, the
conservation equations of mass and momentum are
employed. The two fluid phases and the porous medium
are assumed to be incompressible. The porous medium is
considered to be isotropic. For the momentum balance
the Darcy law extended to multi-phase flow is employed.
Using the additional constraint

Sw þ Sn ¼ 1; ð8Þ
and by applying the extended Pc(Sw) relationship as closure
assumption, the four primary variables Pw, Pn, Sw, Sn can
be reduced to two, e.g. the saturation of the non-wetting
phase and the pressure of the wetting phase. Inserting
Darcy’s law into the mass balance equations, these can
be formulated for the wetting as

�/
oSn

ot
�r � krwð1:0� SnÞ

lw

KrðP w � .wgzÞ
� �

¼ 0; ð9Þ
and the non-wetting phase as

/
oSn

ot
�r � krnðSnÞ

ln

KrðP w þ P c þ s
oSn

ot
� .ngzÞ

� �
¼ 0:

ð10Þ

In these balance equations kra denotes the relative perme-
ability of phase a, which is a function of its saturation. It
is assumed that source/sink terms do not occur and that
z is positive downward.
4. Dimensional analysis

The dimensional analysis is performed here on the
basis of the two balance Eqs. (9) and (10), where a rate
dependence in the Pc(Sw) relationship is accounted for.
The balance equations are non-dimensionalised by intro-
ducing the following dimensionless and characteristic
magnitudes:

z ¼ lcẑ; ð11Þ

r ¼ br=lc; ð12Þ

t ¼ tĉt; with tc ¼ /lc=uc and ð13Þ

P a ¼ P cc
cP a ; with a 2 fw; cg: ð14Þ

Dimensionless quantities are marked with a hat, and the
subscript c denotes a characteristic magnitude. The char-
acteristic time, length and flow velocity are related
through Eq. (13), thus only two of them can be chosen
independently. For non-dimensionalising the pressures, a
characteristic capillary pressure, Pcc, is applied. It can
be based on the equilibrium P e

cðSwÞ relationship of the
porous medium under consideration, using e.g. the capil-
lary pressure at a medium effective water saturation [1]. In
case the van Genuchten parameterisation is applied one
could employ the inverse of the parameter aVG in units
of pressure. Also, the entry pressure Pd appearing as a
parameter in the Brooks and Corey parameterisation sug-
gests itself. An interpretation of the characteristic length
and time will be given later on. It should be stressed here
that usually one only employs a single value for each of
the characteristic quantities. However, in reality we
mostly deal with transient processes (especially here,
where the importance of dynamic effects should be esti-
mated). As a consequence, one should keep in mind that
the relative value of the forces will only be estimated but
not be calculated exactly for a whole transient process at
all locations in a given system.

With the definitions given in Eq. (11) to Eq. (14), the
balance Eqs. (9) and (10) can be reformulated as

� oSn

ôt
¼ br � krwð1:0� SnÞ

KP cctc

lwl2
c/

brcP w �
K.wgtc

lwlc/
brẑ

" #( )
;

ð15Þ
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and

oSn

ôt
¼ br � krnðSnÞ

lw

ln

KP cctc

lwl2
c/
ð brcP w þ brcP cÞ

"(

þ Ks

lwl2
c/

br oSn

ôt
� .n

.w

K.wgtc

lwlc/
brẑ

#)
: ð16Þ

The ratios of the flux term in Eq. (16) were extended by the
viscosity ratio and the density ratio respectively to receive
the same dimensionless numbers in both balance equations.
As a consequence, comparisons are facilitated and one only
needs to assess three instead of five dimensionless numbers.

Traditionally, the ratio of viscous to capillary forces is
referred to as the capillary number. However, we here
define the capillary number as the ratio of capillary to vis-
cous force. Then, as a consequence, its interpretation is
more intuitive: For a large capillary number, capillary
forces dominate, as the name would suggest. The capillary
number is thus defined to be

Ca ¼ KP cctc

lwl2
c/
¼ KP cc

lwuclc

¼ equilibrium capillary force

viscous force
: ð17Þ

As the capillary number also arises in the dimensionless
balance equations if a traditional P e

cðSwÞ relationship is em-
ployed to close the system of equations, the capillary forces
are denoted here equilibrium capillary forces. Next, the
gravity number as traditionally defined is given by

Gr ¼ K.wgtc

lwlc/
¼ K.wg

lwuc

¼ gravitational force

viscous force
: ð18Þ

Note, that while the enumerator and denominator of the
capillary number have the units of a force, in the gravity
number they have force per length and would need to be
extended by the characteristic length in order to regain a
force.

In addition to these well-known dimensionless numbers,
a new factor appears in Eq. (16). This factor is related to
the gradient of the rate of change of saturation. We refer
to it as the ‘dynamic number’ and define it as

Dy ¼ Ks

lwl2
c/
¼ dynamic capillary force

viscous force
: ð19Þ

Both parts of the ratio need to be extended by the inverse of
characteristic time to obtain a force. The number Dy resem-
bles the dimensionless grouping employed by Dahle et al.
[12], who analysed the behaviour of the coefficient s derived
from computations of flow in a bundle of capillary tubes.

We here have made the assumption that capillary forces
can be divided into forces determined by the equilibrium
Pc(Sw) relationship and the ones stemming from dynamic
effects in capillary pressure. Moreover, we presume that
the dynamic effects in the capillary pressure are captured
by the s coefficient. As the parameter s has the same units
as the dynamic viscosity, a different interpretation of the
numerator could be an ‘apparent viscosity’. Assuming that
at least a part of the dynamic effects in the capillary pres-
sure can be ascribed to viscous forces, this interpretation
could perhaps capture the physical origins of dynamic
effects well. However, as the effects can only occur in a
multi-phase system where capillary forces play a role we
will here adhere to the term dynamic capillary force bear-
ing in mind that the effects might be a mixture of viscous
and capillary forces. The dimensionless balance equations
can now be formulated as

� oSn

ôt
¼ br � fkrwð1:0� SnÞðCa brcP w �Gr brẑÞg; ð20Þ

and

oSn

ôt
¼ cr � krnðSnÞ

lw

ln

CaðcrcP w þ crcP cÞ
h�

þDycr oSn

ôt
� .n

.w

Grcrẑ
��
: ð21Þ

Further insight can be gained by relating the various
dimensionless numbers. Thus, the ratio of the dynamic
number to the capillary number yields the dimensionless
number DyC

DyC ¼ Dy

Ca
¼ Ks

lwl2
c/

lwuclc

KP cc

¼ ucs
P cclc/

¼ dynamic capillary force

equilibrium capillary force
: ð22Þ

Again, the number needs to be extended by lc/lc in order to
obtain forces. The new number DyC includes the charac-
teristic flow velocity, which is to be expected to some ex-
tent. One should be careful though, as the flow velocity is
not necessarily related to the rate of change of saturation
as it also occurs under steady-state conditions (in which
case the saturation rate goes to zero). In the framework
of this dimensional analysis, it is thus required that the
characteristic flow velocity can be connected to a transient
process because otherwise the whole dynamic term would
vanish. Obviously, in a transient process the flow velocity
changes and thus the dimensional analysis can only give
an estimation of the dominating forces for a given point
in time. We propose here to use the maximum flow veloc-
ity, as this should for a transient flow process relate to the
maximum saturation change and thus should be the upper
bound for the importance of dynamic effects (assuming
that s is a constant).

If the characteristic velocity uc in Eq. (22) is replaced by
uc = /lc/tc, DyC becomes

DyC ¼ s
tcP cc

: ð23Þ

With this reformulation, one may conclude that the influ-
ence from the dynamic effects is large for small time scales
or small characteristic equilibrium capillary pressures.

Similar to the number DyC, one may define a dimen-
sionless number DyG as the ratio of Dy to Gr,

DyG ¼ Dy

Gr
¼ Ks

/lwl2
c

lwuc

K.wg
¼ suc

/l2
c.wg

¼ dynamic capillary force

gravitational force
: ð24Þ
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This number indicates that the influence of dynamic capil-
lary forces decreases with the characteristic length scale in
relation to the gravitational forces.

As described above, some authors have suggested func-
tional dependencies for the s coefficient, e.g. a dependence
on the water saturation. A functional dependence could be
introduced by splitting s into a characteristic constant sc

(equivalent to using the characteristic capillary pressure)
and a dimensionless part bsðSw; . . .Þ that describes the
dependencies. As a consequence of the fractionalisation,
sc instead of s enters into the dimensionless number Dy
and the dimensionless part could be treated as an addi-
tional factor. It should be stressed here though that for a
complete assessment of the system the whole dimensionless
balance equations need to be considered (including initial
and boundary conditions), which contain non-linear parts
depending on the (with time varying) saturation. We here
have a different aim. We would like to provide the reader
with a tool for a rule-of-thumb assessment of the dominat-
ing forces of a system. This assessment should help to sim-
plify the to be solved balance equations by neglecting terms
(e.g. the gravity term or the dynamic term). For this rule-
of-thumb assessment choices need to be made for the char-
acteristic magnitudes. For the following analysis we thus
assume a constant s parameter.

In the following, some exemplary calculations of the
dimensionless numbers are presented with a view to pro-
viding insight and interpretation of the numbers. In order
to accurately assess the influence of the different terms
within the system the products of the dimensionless num-
bers and the dimensionless gradients need to be considered.
Also, not only the two balance equations would need to be
non-dimensionalised but also the initial and boundary con-
ditions. However, if only the fluid and porous medium
parameters are known in advance, a calculation of the
dimensionless numbers could give a first insight as to the
relative importance of the forces. In the following, we thus
assume that either we have only a sparse knowledge of the
system and lack the exact magnitude of the dimensionless
gradients. Or, the characteristic magnitudes are chosen
such that all dimensionless gradients scale on the same
order of magnitude. In the latter case a comparison of
the dimensionless numbers alone would suffice to assess
the dominating forces.

5. Analytical computations

In this section, we employ the definitions of the dimen-
sionless numbers to find out about the relative significance
of various forces for different flow regimes. Assuming that
the properties of the homogeneous porous medium are
known and constant on all length scales, the dimensionless
numbers can be interpreted as functions of characteristic
flow velocity, characteristic time, or characteristic length.
As mentioned before these three characteristic magnitudes
are related through Eq. (13), leaving two of them indepen-
dent. The choice of these characteristic parameters depends
on the process. For the following interpretation, the char-
acteristic flow velocity and length scale are considered inde-
pendently of each other. While the characteristic flow
velocity can be determined easily by using either a maxi-
mum or average flow velocity expected for the system
under consideration, it is open to discussion yet how the
characteristic length should be defined. This question will
be tackled later in this section.

For the following analysis, it is assumed that the param-
eters are known and constant for a given porous medium.
Whereas the methods to evaluate parameters like the per-
meability or the equilibrium Pc(Sw) relationship have been
developed for decades, the determination of the coefficient
s is at early stages yet. There exist laboratory and numerical
works. Several laboratory experiments were analysed by
Hassanizadeh et al. [18], who on that basis calculated a
range of s values from data published in the literature.
These experiments were not aimed at the determination of
s but provided measurements (indirect and direct) of equi-
librium and dynamic Pc(Sw) relationships as well as data
with which the rate of change of saturation could be esti-
mated. Using linear regression on the basis of Eq. (7) Has-
sanizadeh et al. were then able to determine the s coefficient.
Oung et al. [36], Hassanizadeh et al. [20], Manthey et al. [31]
and Bottero et al. [7] have also calculated the coefficient
from directly measured P e

cðSwÞ and P d
c ðSwÞ relationships

and the saturation rates by performing linear regression.
O’Carroll et al. [35] have calculated the parameter with
inverse parameter identification using a multi-step outflow
experiment. Some of these data will be used here.

Moreover, numerical works exist where the coefficient s
was calculated by means of numerical experiments with a
bundle of tube model [12], a pore-network model [17]
and a Darcy scale model [30]. In all of the above mentioned
works, the parameter s was shown to depend on the aver-
aging length scale which might be due to the way the phase
pressures were averaged. In the meantime, the work of
Nordbotten et al. [34] has shown that the averaging of
the phase pressures as done in the above mentioned works
leads to inconsistencies in the upscaled balance equations.
As long as the question of how to correctly determine aver-
age phase pressures has not been resolved we abstain here
from applying the averaging length-dependent s values
from the numerical works.

As mentioned in Section 1, Stauffer [40] proposed the
formula given in Eq. (2) to relate s to system properties.
Table 1 lists the sS values for five different soil types which
were calculated using this formula. For the Zeijen sand
(ZS), the Baskarp sand (BS), and ‘Sand 1’ also s values
from the literature are available. These are based on labo-
ratory experiments.

The Stauffer formula can also be employed to obtain a
dimensionless number Dy in which s does not occur. Such
a number would be useful as at the moment only few lab-
oratory experiments are available where s was determined.
Substitution of Eq. (2) in Eq. (19) results in a relationship
for the number Dy that is independent of the parameter s,



Table 1
Porous media parameters, sS after Eq. (2), sExp. from experimental data

Soil type K (m2) / (–) Pd (Pa) k (–) sS (Pa s) sExp. (Pa s)

CS 5.66 � 10�11 0.32 1370 5.83 1.89 � 103 –
Sand 1 2 � 10�12 0.37 2805 7.18 2 � 105 2 � 107

ZS 3.06 � 10�12 0.35 5587 6.11 6.07 � 105 2.0 � 105(Sw = 0.6)
BS 5.7 � 10�12 0.35 3800 0.161 6.4 � 106 0 to 5.9 � 105

Silt 5.16 � 10�13 0.49 9412 0.56 1.56 � 108 –

Parameter for CS from [42] Brooks and Corey parameters derived after Lenhard et al. [28], Sand 1 from Topp et al. [41] Pd from Pc(Sw) plot, K from grain
size distribution (Bialas and Kleczkowski [5] and Hassanizadeh et al. [18], ZS from Hassanizadeh et al. [20] and Bottero et al. [7]), BS from Oung et al. [36]
assuming that s is given there in [kPa s] and permeability in [m/s], for Silt from Van Genuchten et al. [46].
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Dy ¼ aS

kl2
c

P d

.wg

� �2

; ð25Þ

where Pd = Pcc. Consequently, only the fluid properties
and the Brooks and Corey parameters of the equilibrium
Pc(Sw) relationship would be required to assess the magni-
tude of Dy. However, in this reformulation no process-
dependent magnitudes occur. This makes its application
doubtful. The definition of Dy in Eq. (25) implies that if
all other parameters remain constant, for fine porous med-
ia with a high entry pressure, dynamic effects are of impor-
tance and should thus be taken into account for any
process. This is a consequence that still needs to be verified.
It is not supported by the dimensionless analysis presented
here.

To get an impression of the significance of dynamic
effects, Eqs. (19) and (22) are employed to plot the dimen-
sionless numbers Dy and DyC against the characteristic
length lc for Sand 1 and Zeijen sand ZS employing a char-
acteristic velocity of uc = 10�5 m/s (see Fig. 3). These two
sands were chosen as their s values were determined on
the basis of laboratory experiments.

The dimensionless number Dy quantifies the ratio of
dynamic capillary to viscous forces. Dy decreases with
Fig. 3. Dimensionless numbers Dy and DyC as functions of the
characteristic length scale for the Zeijen sand ZS and Sand 1 for
uc = 10�5 ms (for the parameters: Pcc = Pd, s = sExp., see Table 1).
increasing characteristic length, as the viscous force
depends on length scale and thus dominates the dynamic
capillary effect on large scales.

The dimensionless number DyC relates the influence of
the dynamic to the equilibrium capillary effects. With
increasing length scale, the dynamic forces diminish in
importance (see Fig. 3). For decreasing values of DyC,
the equilibrium capillary pressure gains influence. For Sand
1, the balance of these two effects is attained at a length
scale of l � 0.2 m; for the Zeijen sand, the length is about
two orders of magnitude smaller.

As mentioned before, the characteristic length can be
interpreted in different ways, e.g. as

� the system length,
� the characteristic length of a process, e.g. a front width,

or as
� a property of the porous medium, e.g. the capillary rise

or a representative pore diameter.

If the characteristic length is interpreted as the system
length, then the dynamic capillary effect is important only
on small scales (e.g. a small soil column experiment). For
very small length scales the validity of the underlying
Darcy law might be questioned as we then approach the
pore scale where a different set of balance equations should
be employed. If the characteristic length is interpreted as
the length of the system under investigation, one should
keep in mind that the dimensional analysis performed
should not be applied for large length scales as on larger
scales the porous medium is clearly heterogeneous. How-
ever, for the analysis here homogeneity of the porous med-
ium was presumed. An advantage of using the system
length is that it is a well-known magnitude. A disadvantage
is that it does not relate to the real physical processes.
These statements are valid vice versa for the front width.

For the front width as the characteristic length the upper
bound is represented by the largest width of a front. For
the lower bound, an REV again needs to be establishable,
because the front is otherwise reduced to the pore-scale
interface between the two phases. For the prediction of
the front width the saturation formulation of the two-
phase flow equations could be employed [21]

r � �kdP c=dSwrSw

� �
¼ ½vtdfw=dSw�rSw; ð26Þ
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where we neglect gravity effects as well as the accumulation
term and assume that there are no sources/sinks. In Eq.
(26) vt denotes the total velocity vt = vw + vn and �k the total
mobility after

�k ¼ kwkn

kw þ kn

; ð27Þ

where ka = kra/la is the mobility of phase a. Moreover, fw

denotes the fractional flow function

fw ¼
kw

kw þ kn

: ð28Þ

Approximating the spatial derivatives using Dl = 1/lc and
recasting Eq. (26) leads to

lc ¼
�kjdP c=dSwj
vtdfw=dS

: ð29Þ

In order to obtain a positive length the norm of the Pc(Sw)
derivative needs to be applied. The front width would thus
be derived from a ratio quantifying the diffusive to the con-
vective flux. In the limit of purely advective flow, the front
width reduces to zero. In the case of a purely diffusion
dominated process the front width goes to infinity. Then
the system length should be chosen as the characteristic
length. Disadvantage of this definition are that (a) the total
velocity needs to be assessed a priori and (b) that three
non-linear functions of the wetting phase saturation,
namely the Pc(Sw) relationship, total mobility and the frac-
tional flow function enter into the lc calculation. We sug-
gest to evaluate the functions at a medium effective water
saturation. Applying Eq. (29) for the estimation of the
characteristic length has the advantage that both porous
media properties (the derivative of the Pc(Sw) relationship)
and the influence from the process, namely the ratio of the
diffusive to the advective flux enter into the calculation.

As properties of the porous medium the capillary rise

lc ¼ hcr ¼ P cc=.wg; ð30Þ
Fig. 4. Dimensionless number DyC as a function of the characterist
or a representative pore diameter d relating to the square
root of the intrinsic permeability (as we work on the Darcy
scale)

lc ¼ d ¼ 2 �
ffiffiffiffiffiffiffiffiffiffiffiffi
8K=/

p
ð31Þ

could be applied.These parameters should be known in ad-
vance, thus a characteristic length can be easily calculated.
However, any influence of the process is not captured.
Also, non-dimensionalising the gradients in the balance
equations with a pore diameter might not seem appropriate
as scale issues are confounded.

In the next section, we will apply the different suggested
ways to calculate the characteristic length using a numeri-
cal simulation of an imbibition process.

Next, a constant length scale is chosen and the charac-
teristic flow velocity is varied. For illustration, the calcu-
lated DyC is plotted for the parameters of the coarse
sand CS and the Zeijen sand ZS (see Fig. 4).

For increasing flow velocities, the dynamic capillary
force gains importance in relation to the equilibrium force.
As an example, for the coarse sand CS, and for lc = 0.01 m,
the balance between dynamic and equilibrium capillary
effects is attained at a characteristic flow velocity of appr.
uc = 0.002 m/s. For the Zeijen sand, the flow velocity at
balance is approximately two orders of magnitude smaller
for the same characteristic length.

The applicability of Darcy’s law might be questionable
at high flow velocities, as the linear relation of flux to head
gradient can change to non-linear. As a measure, the Rey-
nolds number is employed, which should not exceed unity
for Darcy’s law to hold. The characteristic flow velocity uc

can be related to the characteristic seepage velocity usc used
in the Reynolds number through usc = uc//. As the dimen-
sionless numbers are defined related to the wetting phase
properties, the wetting phase parameters are employed.
For reference, Rew(uc = usc/) = 1 is indicated in Fig. 4
for both sands. Apparently, for the Zeijen sand ZS, the
range of velocities where dynamic forces dominate
ic flow velocity for the coarse sand CS and the Zeijen sand ZS.
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(DyC > 1) and the Darcy law holds, is very small for the
characteristic length scale of lc = 0.01 m. At the larger
characteristic length the equilibrium capillary forces domi-
nate throughout the whole range of the applicability of
Darcy’s law for the coarse sand CS and the Zeijen sand
(ZS).

In the following, simulations are presented. On the basis
of these further insight into the interpretation of the char-
acteristic length scale is sought.

6. Simulations

The simulations presented here follow the example from
Hassanizadeh et al. [18], who apply the Richards equation
with an extended Pc(Sw) relationship in simulations of an
imbibition process. We here simulate the same example
solving the balance equations as given in Eqs. (9) and
(10). A reference case with s = 0 will be compared to cases
where the s coefficient has a given magnitude.

Table 2 lists the porous medium and fluid properties as
well as the parameters of the constitutive relationships for
the simulations performed here. The wetting and non-wet-
ting phases are water and gas (air), respectively. By setting
the gas pressure at the boundaries equal to atmospheric
pressure, the conditions of the Richards equation [38] are
met where the gas pressure is constant. Here, the atmo-
spheric reference pressure equals Pn = 105 Pa. The param-
Table 2
Fluid and porous medium properties for the imbibition example

Property Value

Viscosity wetting phase lw 1.0 � 10�3 Pa s
Viscosity non-wetting phase ln 1.7 � 10�5 Pa s
Residual saturation wetting phase Swr 2.8 � 10�1

Porosity / 3.7 � 10�1

Residual saturation non-wetting phase Snr 0
Van Genuchten a 3.4 � 10�41/Pa
Van Genuchten n 2.0
Intrinsic permeability K

1st case 9.4 � 10�10 m2

2nd case 1.0 � 10�12 m2

Fig. 5. Boundary and initial condition
eterisation of Van Genuchten [45] for the Pc(Sw)
relationship and the approach after Van Genuchten/ Mua-
lem [32] for the kra(Sa) relationships are employed here.
Two cases are distinguished which differ in the magnitude
of the intrinsic permeability.

The simulations were carried out with the simulation
toolbox MUFTE-UG using a finite volume space discreti-
sation (BOX scheme, see [21]) and a fully implicit time step-
ping. The simulations are described in more detail in [29].

The initial and boundary conditions for the imbibition
example are given in Fig. 5. In the y-direction the domain
is discretised with 40 cells. As in MUFTE 1D simulations
are not possible, the domain has a width of 0.1 m and a
depth of 1 m. Initially, a wetting phase pressure of
Pw = 1900 Pa and a non-wetting phase saturation of
Sn = 0.701 are applied. For both fluid phases Dirichlet
boundary conditions are chosen at the opposing ends of
the domain. The wetting phase pressure is set to 1900 Pa
at the right boundary and to 92642.5 Pa at the left bound-
ary. This corresponds to Pc = 7357.5 Pa at the left bound-
ary and Pc = 98100 Pa at the right boundary. This
reduction in capillary and increase in wetting phase pres-
sure compared to the initial conditions induces the wetting
phase to infiltrate into the domain. The saturation of the
non-wetting phase at the boundary corresponds to
Sn = 1.0 � Sw(Pc).

All in all, five simulations of the imbibition process were
carried out:

(1) First case with K = 9.4 � 10�10 m2 (see left Fig. 6)
s for th
� reference, s = 0
� s = 105 Pa s
� s = 107 Pa s
(2) Second case with K = 1.0 � 10�12 m2 (see right

Fig. 6)

� reference, s = 0
� s = 107 Pa s
The characteristic flow velocity for the first case was esti-
mated on the basis of the simulation results to equal
e first imbibition example.



Fig. 6. Norm of the cumulative mass of wetting phase M c
wðtÞ from simulations of the first case (K = 9.4 � 10�10 m2, left) and the second case

(K = 1.0 � 10�12 m2, right).
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uc = 10�5 m/s. The Reynolds number thus remains less
than one (Re = 7.8 � 10�3) using the seepage velocity
and the representative pore diameter. In the second exam-
ple, an even smaller intrinsic permeability and thus smaller
characteristic flow velocity uc = 10�7 m/s results in a Rey-
nolds number much smaller than one.

The norm of the cumulative mass of wetting phase
inside the domain for the simulations of the first case is
compared (see left Fig. 6). This illustrates that the coeffi-
cient needs to exceed a threshold value to influence the sim-
ulation results noticeably (assuming that all other settings
such as the boundary conditions remain the same). A dif-
ference between the reference case and s = 105 Pa s can
only be seen when zooming into the graph (or comparing
the actual values). For the chosen example, the inclusion
of the extended Pc(Sw) relationship results in a retardation
of the infiltration of water into the domain for s = 107 Pa s.

For the second case the intrinsic permeability was
decreased (see right Fig. 6), resulting in only a slight influ-
ence on the solution even if the large s value of s = 107 Pa s
is applied.

We now check whether our simulation results can be
used to test our interpretations of the new dimensionless
Table 3
Dimensionless numbers Dy and DyC for the two imbibition cases

Dimensionless number System length lc = 0.6 m

1st case

Dy [–] for s = 105 Pa s 7.1 � 10�1

Dy [–] for s = 107 Pa s 7.1 � 101

DyC [–] for s = 105 Pa s 8.9 � 10�4

DyC [–] for s = 107 Pa s 8.9 � 10�2

2nd case

Dy [–] 7.6 �10�2

DyC [–] 8.9 � 10�4

For the calculation of DyC: 1st case uc = 10�5 m/s, 2nd case uc = 10�7 m/s; P
numbers and the characteristic length as presented in the
previous section. It should be pointed out that for an
assessment of the dynamic capillary forces only times smal-
ler than t < 2500 s are of interest for the first case. At times
much larger than this, steady-state conditions are reached
and the dynamic force does not need to be taken into
account.

Dy as well as DyC are calculated for the imbibition sim-
ulations described above (see Table 3). The characteristic
capillary pressure is obtained from the equilibrium Pc(Sw)
relationship at Pc(Se = 0.5). For the characteristic length
scale either the system length, the front width or the repre-
sentative pore diameter are employed. As in this case the
capillary rise with lc = 0.52 m is of the same order of mag-
nitude as the system length the dimensionless numbers are
only calculated for the latter.

In the previous section it was suggested to calculate lc
after Eq. (29) having made use of the fractional flow for-
mulation. Application of this formula to the presented
cases results in a characteristic length that is by orders of
magnitude larger than the system length. In such cases
we suggested to alternatively use the system length. As
a consequence, as we already use the system length, a
Front width lc = 0.1 m Pore diameter lc = 2.7 � 10�4 m

2.6 � 101 3.1 � 106

2.6 � 103 3.1 � 108

5.3 � 10�3 1.9 � 100

5.3 � 10�1 1.9 � 102

Pore diameter
lc = 9.3 � 10�6 m

2.7 �100 3.1 � 108

5.3 � 10�3 5.7 � 101

cc ¼ P e
cðSe ¼ 0:5Þ ¼ 5:1� 103 Pa; for other parameters see Table 2.



Fig. 7. Gradient of the rate of change of saturation at t = 1000 s for the
first imbibition case.
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different approach for the determination of the front width
is applied here. It is estimated using the gradient of the sat-
uration rate at t = 1000 s (calculated in a post processing
step for each node, see Fig. 7). The part of the domain
where the gradient runs through a minimum is assumed
to correlate with the front width. The motivation for using
this gradient was that it appears as an additional term in
the balance equation of the non-wetting phase when the
extended Pc(Sw) relationship is applied as a closure
assumption. Note that the front width should relate to a
transient process and will therefore change in time. Thus
a characteristic front width needs to be identified, similar
to determining a characteristic capillary pressure with cap-
illary pressure also changing with time during the consid-
ered process.

Application of the system length or the front width leads
to satisfying results for the presented cases. Using the sys-
tem length (or in this case the capillary rise) for calculating
Dy the right prediction would be made that the solution is
influenced by the inclusion of the extended Pc(Sw) relation-
ship with the high s value. In the first case also the slight
influence for the example with the lower s value is indicated
by Dy near to one. However, in the second case the perhaps
negligible influence on the solution is rather underesti-
mated. Application of the front width yields slightly more
satisfying results as the small influence on the solution as
depicted by the zooms in Fig. 6 is clearly predicted. The
front width can be interpreted in a physical sense. Assum-
ing that steep fronts are encountered in fast processes and
broad fronts in slow processes, the number Dy would then
predict correctly that for slow processes the dynamic capil-
lary force does not need to be taken into account. As a con-
sequence, using this interpretation of lc, also the flow
velocity enters indirectly into the calculation of the dimen-
sionless number Dy.

When a representative pore diameter is inserted into Dy
the influence on the solution is overestimated for the first
case using s = 105 Pa s and the second case. We thus suggest
not to use a representative pore diameter for the calculation
of the dimensionless numbers Dy and DyC. Although, e.g.
for a bundle of tubes the permeability can be upscaled from
the pore to the Darcy scale on the basis of the pore diame-
ters, in natural porous media the correlation between pore
diameter (distribution) and permeability cannot be
described by simple functions. The permeability can only
be calculated in case also parameters such as the connectiv-
ity of the pores are known. By abstaining from using a rep-
resentative pore diameter scales are not confounded.

Neglecting the magnitudes of the dimensionless number
DyC for the pore diameter the choice of system length or
front width both predict that equilibrium capillary forces
dominate the dynamic capillary forces. As a consequence,
the number DyC on its own could not give an assessment
as to whether the solution would be influenced by the
dynamic Pc(Sw) relationship or not.

Closing this section we would like to point out that with
the dimensionless number Dy only a quantitative assess-
ment of the influence stemming from the extended Pc(Sw)
relationship can be given. Van Duijn et al. [44] and DiCarlo
[14] have shown that consideration of the extended Pc(Sw)
function can lead to non-monotonous solutions.

7. Conclusions

The conclusions from the dimensional analysis can be
summarised as follows:

� From the dimensional analysis of the two-phase balance
equations including an extended Pc(Sw) relationship, a
new dimensionless number Dy evolves which quantifies
the ratio of the dynamic capillary effect to viscous influ-
ences. Division of Dy by the capillary number Ca and
the gravitational number Gr yields DyC, the ratio of
dynamic to capillary equilibrium forces, and DyG, the
ratio of dynamic to gravitational effects respectively.
� The assessment of the dominating terms in the balance

equations on the basis of the dimensionless numbers
alone presumes that the dimensionless gradients of the
pressures and the saturation rate scale on the same order
of magnitude. This can only be ensured if the values of
the characteristic magnitudes are chosen accordingly. If
such a choice is not possible the products of the dimen-
sionless numbers with the dimensionless gradients need
to be considered and compared.
� Looking at the dimensionless numbers independently, it

may be stated that under the assumption that the coeffi-
cient s is a constant the importance of the dynamic cap-
illary force diminishes with increasing length scale with
relation to equilibrium capillary, viscous and gravita-
tional effects.
� If the characteristic length scale is assumed to be the sys-

tem length, dynamic effects might play a role especially
in laboratory experiments (e.g. for parameter identifica-
tion) and small scale applications (e.g. filters) where
large rates of change of saturation occur.
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� The influence of the dynamic forces increases with
increasing characteristic flow velocity when transient
processes are considered.
� Consideration of the extended Pc(Sw) relationship may

be important for porous media with high permeability,
small entry pressure and high coefficient tau when sys-
tems with a small characteristic length (e.g. steep font)
and small characteristic time scale are under
investigation.
� If the initial and boundary conditions do not change,

the dimensionless number Dy gives a good estimation
of the possible influence of the dynamic term in com-
parison to a reference case with s = 0 in case an
appropriate characteristic length scale is chosen. As
appropriate we consider e.g. the front width as it cap-
tures the influence stemming from the process as well
as porous media parameters such as the Pc(Sw)
relationship.
� The range in which the dynamic effects might play a role

is limited by at least two factors,
– the smallest length scale possible for establishing an

REV for the balance equations and the properties
of the porous medium and

– the maximum flow velocity (of a transient process
where it may be assumed that the maximum flow
velocity correlates with the rate of change of satura-
tion) where the Reynolds number does not exceed
unity. In most applications concerning subsurface
hydrosystems, the Reynolds number does not exceed
this limit.
In brief, the influence of the dynamic capillary force
declines with increasing length scale (of either the system
or the front width) and decreasing flow velocity presuming
that s is a constant.

The dimensionless analysis is based on the assumption
that the coefficient s is independent of scale. Dahle et al.
[12] propose that s scales with length squared for a large
range of water saturations. These results were confirmed
by Gielen et al. [17] and Manthey et al. [30]. As a conse-
quence, the ratios of the dynamic capillary to the viscous
and gravitational forces would not depend on the length
scale, as l2

c then cancels out and only the constant part of
s remains in the dimensionless numbers. If this relation is
inserted into Eq. (23), the dynamic capillary force still
increases with length scale in comparison to the equilib-
rium capillary effects then constant over all length scales.
Relating s instead of to the system length to a front width,
as suggested by Dahle et al. [12], also raises questions. If
the coefficient scales directly with length squared, it is then
large for a broad front width and small for steep fronts.
This introduces a dependence on the flow processes assum-
ing that steep fronts are encountered in processes with high
flow velocities and broad fronts are related to small flow
velocities. Additionally, having a large coefficient for slow
processes violates the assumption that in the limit of capil-
lary dominated flow dynamic effects do not need to be
taken into account.
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