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Abstract

Microstructures such as rock samples or simulated structures can be described and character-
ized by means of ideas of spatial statistics and mathematical morphology. A powerful approach
is to transform a given 3D structure by operations of mathematical morphology such as dila-
tion and erosion. This leads to families of structures, for which various characteristics can be
determined, for example, porosity, speci�c connectivity number or correlation and connectiv-
ity functions. An application of this idea leads to a clear discrimination between a sample of
Fontainebleau sandstone and two simulated samples. c© 2000 Elsevier Science B.V. All rights
reserved.

PACS: 61.43.G; 81.05.Rm; 47.55.Mh

1. Introduction

This paper continues the study of statistical methods for the characterization of
porous media as in Refs. [1,2]. The aim of these investigations is twofold. First,
the prediction of physical properties of porous media based on geometrical informa-
tion has to be improved [1–4]. Second, e�cient tools are necessary for testing the
goodness-of-�t of possible models for such structures. For both purposes the tradi-
tional methods consisting in determination of porosity, speci�c surface content, corre-
lation functions [2,3], and contact distribution functions [5–7] are not su�cient. More
sophisticated approaches are necessary. In the direction of the �rst aim above, local
porosity theory (LPT) was used to include connectivity and percolation probability to
predict conductivity [4,8].
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As usual, in Refs. [1,2] the characteristics were determined for the pore space P.
The present paper suggests to extend P to a family {P(d)} of enlarged or diminished
sets de�ned in Section 2.3, where P = P(0), and to carry out the statistical analysis
in parallel for all suitable d. For positive d; P(d) is the set P enlarged by dilation by
a sphere of radius d, and for negative d; P(d) is the set P diminished by erosion by
a sphere of radius d. (The concepts of dilation and erosion belong to ‘mathematical
morphology’ and are explained, for example, in Refs. [6,7,9]; see also Section 2.3.)
Since statistical characteristics estimated for the P(d) depend on d, this approach

produces curves (depending on the variable d) that describe aspects of the spatial dis-
tribution of P which the classical characteristics do not divulge. This is a combination
and extension of approaches developed by Mecke [10] and Sivakumar and Goutsias
[11]. In the latter paper, Sivakumar and Goutsias have considered (translated in the
terms of this paper) the porosity 〈�(d)〉 of P(d), have studied estimation techniques
for 〈�(d)〉 and have shown that 〈�(d)〉 is a powerful statistical tool for the geometri-
cal characterization of porous media. (Sivakumar and Goutsias also used opening and
closing instead of dilation and erosion, see also Section 4.1.) Mecke studied only the
case of positive d but, additionally to 〈�(d)〉, also the speci�c surface content and
the speci�c connectivity number, and further characteristics related to the so-called
Minkowski measures.
The present paper considers positive and negative d as well as further characteristics

such as correlation and contact distribution functions, which are not directly related to
Minkowski measures. For the case of negative d (i.e., diminishing of P) the charac-
teristics are not only of statistical interest. For example, in the study of percolation,
usually only the existence of paths inside the pore space is considered. However, one
could also ask for the existence of paths which a ball of given radius d could go. This
should be important for the study of 
uid 
ow and �ltration in porous media.
In this paper we apply dilation and erosion to structures analysed already in

Ref. [1]. One of them is an experimental sample of Fontainebleau sandstone, while
the two other microstructures are synthetic samples obtained by computer simulation.
In Section 2, we introduce and de�ne the various geometrical characteristics that will

be used for describing the microstructures and their dilated and eroded counterparts.
In this context we also discuss some stochastic models. Then in Section 3 we dis-
cuss computational aspects with particular emphasis to problems with lattice geometry.
Finally, in Section 4 we present the results for the three microstructures and discuss
the ability of the characteristics to discriminate between the microstructures.

2. Measured quantities

2.1. Some characteristics for the original system of pores

Consider a two-component porous medium in R3, which is statistically homogeneous
(stationary), isotropic and ergodic. The two components are the pore space P and its
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complement, the solid matrix M. In practical statistics, the data are given as lattice
structures. In Section 3 below some aspects in the context of computations in the 3D
lattice will be discussed.
The average porosity is given as

〈�〉= Prob{o ∈ P}= 〈�P(o)〉 ; (2.1)

where o is the origin of the coordinate system; instead of o any other point could be
used because of the homogeneity assumption. �P is the characteristic function of P.
The (two-point porosity–porosity) correlation function of P is given as

G(r) =
Prob{o ∈ P; r ∈ P} − 〈�〉2

〈�〉(1− 〈�〉) ; (2.2)

where r is any position vector of length r. It is Prob{o ∈ P; r ∈ P}= 〈�P(o)�P(r)〉:
Note that for a homogeneous but non-isotropic structure the correlation function can

be used to detect and characterize anisotropy. Then the orientation of r is relevant; for
di�erent orientations of r the correlation functions can be di�erent thus showing the
degree of anisotropy (see Ref. [6, p. 210]).
The correlation function can be re�ned by considering connectivity, what leads to

the pair connectness function [12]

Gp(r) =
Prob{there is any path in P from o to r} − 〈�〉2

〈�〉(1− 〈�〉) : (2.3)

For typical porous media with totally connected pores (i.e., for any two pore points
there exists a connecting path in P) it is clearly

G(r) = Gp(r) for all r : (2.4)

Instead of any path from o to r one can ask for lineal paths. This leads to the lineal
path function L(i)(z) [13] or to

Gl(r) =
Prob{s(r) is completely in P} − 〈�〉2

〈�〉(1− 〈�〉) : (2.5)

Here s(r) is the line segment starting in o and ending in r. It is G(0)=Gp(0)=Gl(0)=1
and G(∞) = 0. In contrast, Gp(∞) and Gl(∞) may be negative. The lineal-path
function is closely related to the classical concept of Del�ner [5] of size measurement
of random sets and to the related concept of linear contact distribution functions [5
–7]. The linear contact distribution function Hl(r) is de�ned as

Hl(r) = 1− Prob{s(r) is completely in P}
〈�〉 : (2.6)

In the case of isotropy, the direction of the segment does not matter. But if the structure
is anisotropic, various linear contact distribution functions corresponding to di�erent
directions can be de�ned (see Ref. [6, p. 211]). Note that there is a close relationship
to the chord length distribution function (see Ref. [6, p. 208]).
The spherical contact distribution function Hs(r) is de�ned as

Hs(r) = 1− Prob{B(o; r) is completely in P}
〈�〉 : (2.7)
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Also this function was introduced by Del�ner [5]; in some papers it is called pore-size
distribution [14]. Here B(o; r) is the sphere of radius r centered at o. The spherical con-
tact distribution can be interpreted as the distribution function of the random distance
from a randomly chosen point in P to its nearest neighbour in M. It is well known
in spatial statistics that Hs(r) contains usually more interesting information than Hl(r)
and Gl(r) and leads to more powerful goodness-of-�t tests; see also the discussion
below for the Boolean model. By the way, in the terminology of Ref. [6], the contact
distribution functions introduced here are the contact distribution functions with respect
to M, the complement of P.
A quantity describing the connectivity or topological structure of P is the con-

nectivity (or Euler–Poincar�e) number per unit volume NV [6,7,10,15–18]. It can be
interpreted as the limit

NV = lim
S→Rd

E(S ∩ P)
V (S) ; (2.8)

where S is a sample set of volume V (S) and E(S∩P) the Euler–Poincar�e characteristic
of S ∩ P.
Analogously, also other characteristics related to Minkowski measures can be used

[10], namely mean surface content per volume unit for the boundary of P and a
characteristic related to mean curvature.

2.2. Three simple stochastic models for porous media

In order to familiarize the reader with the complicated characteristic NV , we give its
values for some stochastic models.
Note �rst that P and M have the same NV for a statistically homogeneous three-

dimensional structure in R3. Furthermore, the Euler–Poincar�e characteristic is a topo-
logical invariant. This implies that in the examples below NV remains invariant under
suitable continuous transformations.

2.2.1. Systems of spheres
Let the pore space P be a system of ‘hard’ (nonoverlapping) spheres (as in some

Swiss cheese), which are completely isolated. Then NV is positive and equals the mean
number n of spheres per volume unit.
If P is a ‘dense’ packing of spheres where spheres close together are in contact,

then NV may be negative. It holds

NV = n
(
1− �c

2

)
;

where n is again the mean number of spheres per volume unit and �c is the mean
number of spheres in contact with a typical sphere. The same value is also obtained
if the spheres are deformed in such a way that no contacts are severed and not new
contacts are generated.
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In the case of a dense packing also the complementary set can serve as a model
for a pore space P. In this case NV is the same as for the sphere system. In contrast,
di�erences in the connectivity behaviour are possible; while P is totally connected, this
is not necessarily the case for the system of spheres.

2.2.2. Edges of a spatial mosaic
Consider a statistically homogeneous spatial mosaic or tessellation [6]. An example

is the Voronoi tessellation with respect to a Poisson point process. Let P be the system
of all edges. (A more realistic model could be obtained by dilation, where the edges
are enlarged to tubes.) In this case

NV = nv − ne ;
nv = number of vertices per volume unit and ne = number of edges per volume unit.
Also here NV is negative. Probably, Mecke [19] had similar models in mind when

he associated negative values of NV with ‘netlike’ structures.

2.2.3. Boolean model
The well-known Boolean model is probably not a good model for porous media.

But it is of great value as a benchmark model. According to this model, P consists of
randomly scattered ‘grains’ which can overlap. A particular case of special interest in
the given context is the Boolean model with Poisson polyhedra as grains [6]. Indeed,
Fig. 1 in [1] supports, the idea that the porous space of the Fontainebleau sandstone
sample considered there can be approximated by a union of randomly scattered poly-
hedra. This model depends on two scalar parameters � and % only. Here � is the mean
number of grains per volume unit and % characterizes the size of the grains; their mean
volume is 6=(�%3) (see Ref. [6, p. 84]). The average porosity (i.e., the volume fraction
of space occupied by the Boolean model) is 1− exp(−6�=�%3). The planar section of
such a model is again a Boolean model, namely a planar Boolean model with Poisson
polygons as grains; the parameters are then �A and %A with �A = 3�=(2%) and %A = %.
There are formulae for Hl(r); Hs(r) and C(r) (=Prob (o ∈ P and r ∈ P)), namely

Hl(r) = 1− exp(−6�r=(�%2)) ;

Hs(r) = 1− exp
(
−�r

(
24
�%2 +

3�
%
r +

4
3
�r2

))
;

C(r) = 2〈�〉 − 1 + (1− 〈�〉)2 exp(6� exp(−%r)=(�%3)) :
For the planar section analogous characteristics can be de�ned which satisfy

CA(r) = C(r); Hl; A(r) = Hl(r)

and

Hs; A(r) = 1− exp
(
−�Ar

(
4
%
+ �r

))
:

Also the spatial and planar average porosities 〈�〉 and 〈�A〉 are equal.
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Using these formulae one can estimate the parameters � and % from planar sections.
Finally, NV is given by

NV = �(1− 〈�〉)(1− 3x + x2)
with x=6�=�%3. That means, for values of x between 0.382 and 2.618 (or 〈�〉 between
0.317 and 0.927) NV is negative. However, for these values the connectivity of P di�ers
from that of the other two models discussed above since there are isolated pores.
All these more or less plausible models make it sure that one can expect only

negative values of NV for natural permeable porous media. Any model with a positive
NV should be thus considered as hardly acceptable.

2.3. Characteristics for dilated and eroded pores

The dilated set P(d) is the set of all points of the space which are in a distance
less or equal to d from any point of P. It is P(0) = P and one writes

P(d) = P⊕ B(o; d) ;
where o is the origin and B(x; r) the sphere of radius r centred at x. (For two subsets
X and Y of R3; X ⊕ Y is the set of all x+ y with x ∈ X and y ∈ Y .) It is P(d)⊃P
and the corresponding average porosities satisfy 〈�(d)〉¿ 〈�〉.
The eroded set P(−d) is the set of all points x of P with the property that the

sphere B(x; d) is completely contained in P. One writes
P(−d) = P	 B(o; d) ;

where 	 denotes Minkowski subtraction; for X and Y as above, X 	 Y = (X c ⊕ Y )c,
where Zc denotes the complement of the set Z .
It is P(−d)⊂P and the corresponding average porosities satisfy 〈�(−d)〉¡〈�〉 for

d¿0.
The opening and closing of P by B(o; d) are the sets
P ◦ B(o; d) = (P⊕ B(o; d))	 B(o; d)

and

P • B(o; d) = (P	 B(o; d))⊕ B(o; d)
which are more similar to P than P(d) or P(−d).
The characteristics described above become functions of d if applied to the members

of the family {P(d)}. In the following we describe some of these functions.
We begin with the simplest case, 〈�(d)〉. The average porosity 〈�(d)〉 of P(d) is

monotonously increasing as a function of d. For very large positive d it tends to one,
for very large negative d to zero, and it is 〈�(0)〉= 〈�〉. If the boundary of P is rough
then 〈�(d)〉 is greater than the value for a structure with the same porosity but with a
smooth boundary, particularly for small positive and negative d. Incidentally, 〈�(d)〉
is closely related to the spherical contact distribution function

1− Hs(r) = 〈�(−r)〉
〈�〉 for r¿0 :
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Mecke [10] demonstrates the use of surface area content, mean curvature and connec-
tivity number per unit volume for positive d. Particularly interesting is the behaviour
of the speci�c connectivity number NV (d) as a function of d. (The idea to study NV (d)
for positive d goes back to Shehata [20]. For negative d; NV (d) has been used in the
context of particle counting.) As explained above, for typical pore systems one expects
negative values for NV =NV (0). It is possible that for increasing d the function NV (d)
decreases (becomes more negative) and then tends to zero for large positive d. For
decreasing negative d it will increase and may become even positive. This results from
eroding the pores, which deletes very thin pore pieces and generates dispersed small
relicts of thick pore pieces. For very large negative d; NV (d) tends to zero as for large
positive d. The behaviour of NV (d) for small d is of particular interest, since here big
changes are possible. For example, for a dense packing of hard spheres, a small erosion
changes the speci�c connectivity number from a negative value of NV (0) to a positive
value NV (−d); conversely, a small dilation may change a system of isolated spheres
with positive NV (0) to a connected system of touching bodies with a negative NV (d).
The spherical contact distribution function Hs(r;d) of P(d) is the distribution func-

tion of the random distance from a randomly chosen point in P(d) to its nearest
neighbour outside of P(d). If P has a rough surface (i.e., the interface between P and
M is rough), then that of P(d) tends to be smoother. Consequently, the proportion of
randomly chosen points in P(d) close to its boundary is smaller than for P.
Note that for negative d one can calculate Hs(r;d) using Hs(r). It is

〈�〉(1− Hs(r − d)) = 〈�(d)〉(1− Hs(r;d)) ;

〈�(d)〉= 〈�〉(1− Hs(−d))
and, consequently,

1− Hs(r;d) = 1− Hs(r − d)1− Hs(−d) :

Finally, the correlation function and related characteristics can be considered in depen-
dence of the parameter d. For purposes of comparison, we de�ne Gp(r;d) by

Gp(r;d) =
Prob{there is any path in P(d) from o to r} − 〈�〉2

〈�〉(1− 〈�〉) :

The qualitative behaviour of Gp may heavily depend on d.
We note that also the LPT characteristics can be de�ned and analysed for the family

{P(d)}.

3. Computational aspects

This section contains some remarks on the estimation and calculation of some of the
characteristics introduced in Section 2.
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First two remarks on geometrical problems in the context of lattice data. Since
usually the data are given in lattice data form, the calculations have to be performed
in the 3D lattice. However, there are no spheres in the Euclidean sense. Instead, for the
dilations and erosions ‘spheres’ in the lattice are used which more or less approximate
true Euclidean spheres. We recommend to de�ne their radii as the radii of Euclidean
spheres of equal volume, where each voxel has unit volume. Furthermore, for lattice
spheres it is not true that

B(o; r1)⊕ B(o; r2) = B(o; r1 + r2)

and

B(o; r1)	 B(o; r2) = B(o; r1 − r2) if r1¿r2 :

This should be observed in the determination of characteristics such as G(r;d) and
Hs(r;d).
As G(r) and Hs(r) (see Ref. [6]), these characteristics are estimated by ratio estima-

tors, where numerator and denominator are porosities of P and transformed variants of
P such as P(d). We recommend to construct �rst P(d) by dilation or erosion, respec-
tively, and then to determine numerator and denominator based on further transformed
P(d).
Second a remark on boundary e�ects is appropriate. In the estimation of G(r) based

on lattice data usually all pairs of lattice-points with distance r are considered. The
number of those pairs where both points are in P divided by the number of all possible
pairs is then an estimator of Prob{o ∈P; r ∈P} in (2.2). As shown in Ref. [21], it
improves the quality of the estimation of G(r) if 〈�〉 is estimated based on these point
pairs and not by the ‘natural’ estimator nP=n, where n is the number of all lattice
points and nP that of the lattice points in P. The same idea is useful in the estimation
of G(r;d); Gp(r;d); Hs(r), and Hs(r;d).
Finally, a remark on a stereological aspect. (‘Stereology’ is the art of making infer-

ence for spatial structures based on planar or linear sections [6, Chapter 11].) Often
porous materials are investigated by planar sections. Then three of the characteristics
introduced in Section 2.1 can be directly estimated from planar section images. If 〈�A〉
is the average porosity in the section plane then clearly

〈�〉= 〈�A〉 :

If the medium is not only homogeneous but also isotropic then also G(r) and Hl(r)
can be estimated from the section plane. Otherwise, this is at least possible for vectors
r parallel to the section plane.
Further characteristics can be determined by means of suitable models. The papers

[14,22,23] are examples for such an approach using models which are (perhaps) phys-
ically realistic but di�cult for analytical calculations. An alternative is the Boolean
model as described in Section 2.3. Finally, we remark that we calculated NV by means
of the method described in Ref. [17].
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Fig. 1. 〈�(d)〉 for eroded (negative d) and dilated (positive d) pores.

Fig. 2. 〈�(d)〉 for closed (negative d) and opened (positive d) pores.

4. Results and discussion

4.1. Porosity of P(d)

Fig. 1 shows 〈�(d)〉 for the sample of Fontainebleau sandstone (=EX), for the
diagenetic model (=DM) and for the simulated annealing (=SA) model, all described
in Ref. [1]. The three curves go through the point (0; 0.135) corresponding to d=0 and
〈�〉=0:135; the simulations were carried out such that the porosity is practically equal
in all three cases. For positive d (dilation of P) we see considerable di�erences. For
all positive values of d, the value of 〈�(d)〉 for SA is greater than those for EX and
DM. An explanation is the greater roughness of the pore surfaces in SA in comparison
to EX and DM. Clear geometrical di�erences become obvious in Fig. 2 which shows
〈�(d)〉 for opened and closed P: Since the opening of a sphere is again a sphere, it
is natural that 〈�(d)〉 is nearly constant in a large interval of positive d for DM, a
model constructed by nonintersecting spheres.
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Fig. 3. Spherical contact distribution function values Hs(r; d) for r = 1:2.

Fig. 4. NV (d) for eroded (negative d) and dilated (positive d) pores.

4.2. Spherical contact distributions

Fig. 3 shows the values of the spherical contact distribution function Hs(r;d) for
r = 1:2 for the samples EX, DM and SA. The value r = 1:2 is the smallest possible
positive value of r in the lattice geometry. This small value is helpful for detecting
micro-irregularities and roughnesses of the surface of P. The three curves show big
di�erences for negative d (erosion of P or dilation of M) for the three samples EX,
DM and SA. Obviously, they result from the di�erent degrees of roughness of the
surface of P. EX has the smoothest surface leading to the smallest values of Hs(1;d).

4.3. Speci�c Euler characteristic NV (d)

Fig. 4 shows the curves for NV (d) for the three samples. Already for d=0, i.e., for
the connectivity numbers NV of the original structures, big di�erences are visible. NV is
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Fig. 5. Percolation correlation functions Gp(r) for all three samples.

clearly positive for SA, what points to the existence of many isolated islands or holes
of M and to a low degree of connectivity in comparison to EX; the positive value of
NV for SA shows that this model is topologically unrealistic. The curve for SA shows
for increasing positive d (dilation of P) a decrease of NV (d) towards negative values.
This results probably from annihilating of small islands of M. Also for increasing
negative d (erosion of P) NV (d) decreases. This points to vanishing small and thin
pores.
The curve for DM is smoother than the curve for SA. It starts at d = 0 with a

negative value close to zero. For increasing positive d; NV (d) decreases and takes
values ‘very negative’ probably because of the generation of ‘holes’ in the set of pores
in the vicinity of pores close together. For increasing negative d; NV (d) increases and
becomes positive because some parts of P become isolated.
The curve for EX shows that erosion of P eliminates some small pores, while dilation

closes matrix regions between pores close together. The three curves emphasize the
di�erences in the topological structure which are already expressed by the di�erent
values of NV = NV (0). By the way, for the fourth stochastic model considered in
Ref. [1], Gaussian �eld, we obtained a positive value of NV as for SA. Therefore, we
did not further analyse this sample.

4.4. Correlation functions of P(d)

Fig. 5 shows the pair connectedness functions for the three samples. The numerical
di�erences are not big but clear enough. In particular, the curve for DM indicates
a certain correlation structure which is related to the construction of this sample as
a packing of hard spheres. For the dilated and eroded pores the di�erences in the
correlation functions become still clearer (see Fig. 6).
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Fig. 6. Percolation correlation functions Gp(r; d) for eroded (negative d) and dilated (positive d) pores for
all three samples DM, SA and EX.

4.5. Poisson polyhedra formulas

The linear contact distribution function of EX is quite similar to an exponential
distribution function (with parameter 0.147), as expected for any Boolean model with
convex grains. Therefore, we estimated the parameters � and % from the formulae for
porosity and Hl(r). We obtained

0:135 = 1− exp(−6�=(�%3))
and 6�=�%2=0:147, which yields �=0:0785 und %=1:01. Unfortunately, these parameters
are not in agreement with our estimates of G(r) and Hs(r). We conclude that the
Boolean model is not a good model for EX.

5. Conclusions

The statistical analysis of the present paper has shown clear di�erences in topol-
ogy and structure for the three samples in agreement with the �ndings in Ref. [1].
These di�erences are particularly obvious for the speci�c connectivity numbers and the
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spherical contact distribution functions. This shows that the stochastic models yielding
DM and SA need further improvement.
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