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Abstract

The infinitesimal generator of time evolution in the standard equation for exponential (Debye) relaxation is

replaced with the infinitesimal generator of composite fractional translations. Composite fractional translations are

defined as a combination of translation and the fractional time evolution introduced in [Physica A, 221 (1995)

89]. The fractional differential equation for composite fractional relaxation is solved. The resulting dynamical

susceptibility is used to fit broad band dielectric spectroscopy data of glycerol. The composite fractional sus-

ceptibility function can exhibit an asymmetric relaxation peak and an excess wing at high frequencies in the

imaginary part. Nevertheless it contains only a single stretching exponent. Qualitative and quantitative agreement

with dielectric data for glycerol is found that extends into the excess wing. The fits require fewer parameters than

traditional fit functions and can extend over up to 13 decades in frequency.
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1. Introduction

A most remarkable chemical and physical uni-

versality is known from relaxation experiments

near the glass transition of supercooled liquids and

other glass formers [1]. Dielectric spectroscopy,
viscoelastic modulus measurements, quasi-elastic

light scattering, shear modulus and shear compli-

ance as well as specific heat measurements for glass

formers of different chemical composition all show

‘‘strange’’ or ‘‘anomalous’’ dynamics with an

asymmetrically broadened relaxation peak that

deviates strongly from exponential Debye relax-

ation [2].

My objective in the present paper is to reinter-

pret the slow anomalous dynamics observed in

broad band dielectric spectroscopy data as evi-
dence for the physical reality of fractional time

evolutions [3]. Although well known in mathe-

matics fractional semi-groups were first introduced

on general grounds into physics in [4,5]. In [6] (see

also [3,7] for later references) specific examples of
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fractional time evolution, namely fractional diffu-

sion and master equations, were for the first time

identified as special cases of the well-developed

theory of continuous time random walks [8–16]

thereby giving a solid and intuitive physical inter-

pretation of the new concept that inspired many
subsequent workers (see e.g., [17]). Of course,

fractional diffusion equations had been investi-

gated long before as a purely mathematical exer-

cise that generalizes ordinary diffusion [18,19], but

the profound implications for the foundations of

physics were not discussed or investigated in these

papers. Replacing an ordinary time derivative with

a fractional derivative is a profound change in the
foundations of physics if the replacement is ac-

companied with the explicit or tacit claim that the

fractional derivative is the generator of the physi-

cal time evolution. Experimental evidence is nec-

essary to justify such a dramatic change in the

foundations of physics. My motivation for the

work presented here was to extend the experi-

mental evidence for the physical reality of frac-
tional time evolutions beyond the well-known

examples of anomalous diffusion and idealized

fractional relaxation.

Despite many years of work glassy dynamics

remains an active research topic (see [20] for a

recent review). Excess wing and asymmetry of the

so-called a-peak are considered to be characteris-

tics of glassy dynamics that have eluded theoretical
understanding. It is the purpose of this paper to

show that both features, asymmetry and excess

wing, appear simultaneously if the time evolution

becomes fractional.

Given the objectives the paper is organized as

follows. Let me begin by repeating the definition

of fractional time evolutions, fractional deriva-

tives and dynamical susceptibilities measured in
experiment. On the basis of these concepts it is

shown in Section 5 how fractional time evolution

gives rise to Cole–Cole susceptibilities. Recon-

sidering the micro–macro transition it is argued

in Section 6 that composite fractional time evo-

lutions are more realistic. In Section 7 the

composite fractional relaxation equation is in-

troduced and novel composite fractional suscep-
tibilities are derived. As an application the

composite susceptibilities are used to fit broad

band dielectric spectra of glycerol over up to 13

decades in frequency. More important than the

quantitative agreement however is the result that

not only an asymmetric a-peak but also the ex-

cess wing region can result from a single

stretching exponent.

2. Fractional time evolutions

What does it mean to replace an ordinary time

derivative with a fractional derivative? Are frac-

tional time derivatives the infinitesimal generators

of translations or other symmetry transforma-
tions, and, if yes, what is their nature? Which

fractional derivative should be used?

These questions have been generally neglected

by all workers in the field, and were only recently

addressed and answered in [3–5,21,22]. It was

found that generalized fractional time evolutions

Ta, whose infinitesimal generators are fractional

time derivatives of order a, arise very generally in
the transition between microscopic and macro-

scopic time scales. The fractional time evolution

TaðtÞ for duration t is defined through its action on

an observable f ðt0Þ depending on the time instants

t0 by [3–5,21,22]

TaðtÞf ðt0Þ ¼
Z 1

0

f ðt0 � sÞha
s
t

� � ds
t
; ð1Þ

where tP 0 and 0 < a6 1. The kernel function

haðxÞ is the one sided stable probability density

with stable index a [3–5,21,22]. Its Mellin trans-

form is known to be [23]

MfhaðxÞgðsÞ ¼
1

a
Cðð1� sÞ=aÞ

Cð1� sÞ : ð2Þ

This allows to identify its density function as

[4,5,22,24,25]

haðxÞ ¼
1

ax
H 10

11

1

x
ð0; 1Þ
ð0; 1=aÞ

����
� �

ð3Þ

in terms of H-functions [26,27]. Its well-known

Laplace transform reads

LfhaðxÞgðuÞ ¼ e�ua
: ð4Þ

The operators TaðtÞ form a semi-group and obey

the basic semi-group relation
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Taðt1ÞTaðt2Þ ¼ Taðt1 þ t2Þ: ð5Þ
The infinitesimal generator Aa of the fractional

semi-group Ta

Aaf ðtÞ ¼ �ðDaf ÞðtÞ

¼ � 1

Cð�aÞ

Z 1

0

f ðt � sÞ � f ðtÞ
saþ1

ds ð6Þ

is the fractional Marchaud–Hadamard derivative

[28]. For a ¼ 1 the fractional semi-group T1ðtÞ be-
comes the semi-group T ðtÞf ðt0Þ ¼ f ðt � t0Þ of sim-
ple translations. Because of this and because of the

properties (1) and (5) the fractional semi-group TaðtÞ
will also be called ‘‘fractional translation’’ for short.

The fractional time evolution/translation TaðtÞ
seems to have been first introduced into physics in

connection with the discovery of a new class of

phase transitions [21]. It was later derived for dy-
namical systems from ergodic theory in [4,5,22].

Based on these results it was argued that fractional

time evolutions and fractional dynamics actually

exist in nature. Recently the physical basis for

formula (1) was generalized further using the idea

of coarse graining [3]. Formula (1) was previously

known in pure mathematics where it has close

connections with the theory of semi-groups and
subordination [29,30]. It did not find direct appli-

cations in physics until the present author used it

as the foundation for the theory of fractional time

evolutions in physics. Formula (1) was recently

rediscovered in physics in the more restricted

context of fractional diffusion [31].

3. Derivatives of non-integer order and non-integer

type

There are many definitions for derivatives of

non-integer order (see [28] for a recent introduc-

tion). A new one-parameter family of Riemann–

Liouville type derivatives was introduced in [3]. Its

definition will now be repeated.
The (right-/left-sided) fractional derivative of

order 0 < a < 1 and type 06 l6 1 with respect to

x was first introduced in [3,28,32]. It is defined by

Da;l
a	f ðxÞ ¼

�
	 Ilð1�aÞ

a	
d

dx
I ð1�lÞð1�aÞ
a	 f

� ��
ðxÞ ð7Þ

for functions for which the expression on the right-

hand side exists. In this definition the symbols Ia
a	

stand for the (right/left)-sided Riemann–Liouville

fractional integral. The right-sided Riemann–

Liouville fractional integral of order a > 0 is de-
fined for a locally integrable function f on ½a;1� as
[33]

ðIa
aþf ÞðxÞ ¼

1

CðaÞ

Z x

a
ðx� yÞa�1f ðyÞdy; ð8Þ

for x > a, the left-sided Riemann–Liouville frac-

tional integral is defined as

ðIa
a�f ÞðxÞ ¼

1

CðaÞ

Z a

x
ðy � xÞa�1f ðyÞdy ð9Þ

for x < a. The Riemann–Liouville fractional de-

rivative corresponds to the special case l ¼ 0. It is

the most frequently used definition of a fractional

derivative. The special case l ¼ 1 is sometimes

called Caputo fractional derivative [34,35], others
attribute it to Liouville [33].

The difference between fractional derivatives of

different types becomes apparent from Laplace

transformation. One finds for 0 < a < 1 [3]

L Da;l
aþf ðxÞ

� �
ðuÞ ¼ uaLff ðxÞgðuÞ � ulða�1Þ

� I ð1�lÞð1�aÞ
aþ f

� �
ð0þÞ; ð10Þ

where the initial value ðI ð1�lÞð1�aÞ
aþ f Þð0þÞ is the

Riemann–Liouville integral of order ð1� lÞ�
ð1� aÞ evaluated in the limit t ! 0þ. This shows
that the type of the fractional derivative deter-

mines the initial values to be used in applications,

respectively, the initial values determine the type of

derivative to be used. Note that not only deriva-
tives of integer order but also fractional derivatives

of type l ¼ 1 involve f ð0þÞ as initial value.

4. Linear Debye relaxation

This section provides some background mate-

rial and definitions for the discussion of dielectric
relaxation in glass forming liquids. In the linear

phenomenological theory of irreversible processes

one assumes that the displacements resulting from

the application of (generalized) forces are linear

[36]. Let xiðtÞ denote the observable displacement
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or current at time instant t corresponding to a

force piðtÞ. If there is no time delay between the

application of the forces and the response of the

currents or displacements then the linear theory

postulates

xiðtÞ � xeqi ¼
X
j

LijpjðtÞ; ð11Þ

where xeqi is defined as the value of xi for vanishing
force pi ¼ 0, and Lij are the so-called kinetic co-

efficients.

When the time variation of the forces becomes

too fast the response of the displacements or cur-

rents generally starts to lag behind. This experi-

mental fact is the basis of memory effects. By

linearity the delayed effect of the forces must be
superposed to obtain the current value of the dis-

placements. Causality requires that only the effects

from the past enter in the linear superposition.

This leads to the generalized relation

xiðtÞ � xeqi ¼
Z t

�1

X
j

v1
ij dðt

h
� sÞ þ vijðt � sÞ

i

� pjðsÞds ð12Þ

between forces and displacements (or currents).

Here dðxÞ denotes the degenerate d-distribution.
The first term describes the instantaneous response

while the second describes the delayed response

(aftereffect). The kernel function vijðtÞ is called the

response function. In writing Eq. (12) one also as-

sumes homogeneity in time, i.e. that the response of

the system does not depend on the origin of time.
The dynamic susceptibility (also called gener-

alized compliance, complex admittance, etc.) is

defined as

vijðxÞ ¼ v1
ij þ

Z 1

0

expðixtÞvijðtÞdt

¼ v1
ij þLfvijðtÞgðuÞ ð13Þ

in terms of the Laplace transform of LfvijðtÞgðuÞ
of the response function where u ¼ �ix ¼ �2pim
where m is the frequency. In this paper a conve-

niently normalized dynamical susceptibility will be

used. It is defined as

v̂vijðuÞ ¼
vijðxÞ � v1

ij

vijð0Þ � v1
ij
; ð14Þ

where

vijð0Þ ¼ v1
ij þ

Z 1

0

vijðtÞdt ¼ v1
ij þ fijð0Þ ð15Þ

by virtue of Eqs. (13) and (16).

The response function is closely related to the

so-called relaxation function defined by the rela-

tion

fijðtÞ ¼
Z 1

t
vijðsÞds: ð16Þ

Hence one has

vijðtÞ ¼ � d

dt
fijðtÞ: ð17Þ

The relaxation function fijðtÞ describes the relax-

ation of the observable xi when an applied force pj
of unit magnitude is switched off abruptly.

In the following subscripts will be suppressed to

simplify the notation. Using Eq. (17) one finds

v̂vðuÞ ¼ 1� uL f̂f ðtÞ
n o

ðuÞ ð18Þ

in terms of the Laplace transform of the normal-
ized relaxation function f̂f ðtÞ ¼ f ðtÞ=f ð0Þ.

There are many relaxation phenomena in na-

ture whose relaxation function obeys the simple

approximate equation

s
d

dt
f̂f ðtÞ þ f̂f ðtÞ ¼ 0: ð19Þ

An example occurs in dielectric relaxation where

Eq. (19) is known as the Debye type relaxation

equation. For dielectric relaxation phenomena the

force p is the electric field and the displacement x is

the dielectric displacement or polarization. The

equilibrium value xeq vanishes (except for ferro-
electrics). The dynamical susceptibility v becomes

the complex dielectric function. The solution of

Eq. (19) is the normalized exponential Debye-re-

laxation function

f̂f ðtÞ ¼ expð�t=sÞ ð20Þ

with relaxation time s. The corresponding nor-
malized susceptibility (dielectric function) is the

Debye susceptibility

v̂vðuÞ ¼ 1

1þ us
: ð21Þ
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5. Idealized fractional relaxation

It was shown in [3–5,21,22] that coarse graining

a microscopic time evolution may lead to a frac-

tional time evolution TaðtÞ with 0 < a6 1. Hence
the transition from a microscopic time scale to a

macroscopic time scale amounts to the replace-

ment T ðtÞ ! TaðtÞ. As a consequence the infini-

tesimal generator A1 ¼ �d=dt has to be replaced

with the infinitesimal generator Aa ¼ �Da.

To establish fractional differential equations of

motion one also needs initial (and/or boundary)

conditions and domains of definition. In the rest of
the paper the initial condition

f ð0þÞ ¼ lim
t!0

f ðtÞ ¼ f0 ð22Þ

with 0 < f0 < 1 will be used, and the functions

will be assumed to be continuous and bounded

unless larger or smaller spaces are needed. The
choice of initial condition suggests to specify the

fractional derivative Aa ¼ �Da further as a deriv-

ative �Da;1
0þ of order a and type l ¼ 1 with lower

limit 0 [3]. Thus one arrives at the fractional re-

laxation equation

saDa;1
0þf̂f ðtÞ þ f̂f ðtÞ ¼ 0 ð23Þ

of type 1 with the initial condition f̂f ð0þÞ ¼ 1 from

Eq. (22). The relaxation time s serves to make the

equation dimensionally correct.

The fractional relaxation equation is the natural

generalization of the Debye relaxation Eq. (19). Its
solutions are the eigenfunctions of fractional de-

rivative operators of order a and type 1. The so-

lution of the idealized fractional relaxation

equation (of type 1) (23) reads

f̂f ðtÞ ¼ Ea

�
� t

s

� �a
�
; ð24Þ

where

EaðzÞ ¼
X1
k¼0

zk

Cðak þ 1Þ ð25Þ

is the Mittag–Leffler function [37]. For idealized

fractional relaxation of type l 6¼ 1 see [3]. For

a ¼ 1 one has E1ðxÞ ¼ expðxÞ and the solution re-
duces to the exponential Debye function given in

Eq. (20).

Inserting the Laplace transform of Eq. (24) into

Eq. (18) yields the normalized susceptibility of

idealized fractional relaxation as

v̂vðuÞ ¼ 1

1þ ðusÞa ; ð26Þ

which is recognized as the Cole–Cole expression

employed in [38].

Experimentally this susceptibility is often used

to fit the so-called slow b-relaxation peak of many

glass formers [39]. In such fits one often uses a

linear combination of the Cole–Cole susceptibility

Eq. (26) for the b-peak with the so-called Havril-
iak–Negami susceptibility [40] for the a-peak. The
full expression for the traditional fit function is

then

v̂vðuÞ ¼ 1

ð1þ ðus1Þa1Þa2
þ C
1þ ðus2Þa3

; ð27Þ

where the first term represents the Havriliak–Ne-

gami susceptibility [40]. This linear combination
contains six fit parameters and allows to fit the

asymmetric a-peak including the excess wing at

high frequencies or a possible slow b-peak, but
excluding the boson peak.

Next it will be shown that a fit function of

similar quality but with fewer parameters can be

obtained from composite fractional time evolu-

tions.

6. Composite fractional time evolutions

In the previous section it was mentioned that

the transition from microscopic to macroscopic

time scales leads to the replacement T1ðtÞ ! TaðtÞ
[3]. In nature the ratio of microscopic to macro-
scopic time scales may be small but is never exactly

zero, and one expects that both time evolutions, T1
and Ta, are simultaneously present when the ratio

is finite. Therefore it becomes of interest to study

also a composite time evolution consisting of a

simple shift T1 and a fractional translation Ta

~TTaðs1tÞ ¼ T1ðs1tÞTaðs2tÞ ¼ T1ðs1tÞTaðs1etÞ; ð28Þ

where 0 < e ¼ s2=s1 < 1 is the ratio of time

scales. ~TTa is called a composite fractional time

evolution of order a. For e ¼ 1 translation T1ðtÞ
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and fractional time evolution TaðtÞ occur simulta-
neously on the same time scale. For e ! 0 the

standard translation results while for e ! 1 the

combined time evolution approaches a fractional

translation.
First note that with gðt0Þ ¼ ðTaðt2Þf Þðt0Þ and for

any admissible function f

ðT1ðt1ÞðTaðt2Þf ÞÞðt0Þ ¼ ðT1ðt1ÞgÞðt0Þ ¼ gðt0 � t1Þ
¼ ðTaðt2Þf Þðt0 � t1Þ

¼
Z 1

0

f ðt0 � t1 � sÞ

� ha
s
t2

� �
ds
t2

¼
Z 1

0

ðT1ðt1Þf Þðt0 � sÞ

� ha
s
t2

� �
ds
t2

¼ ðTaðt2ÞðT1ðt1Þf ÞÞðt0Þ ð29Þ

it follows that T1 and Ta commute. Next observe

that ~TTa is again a semi-group because

~TTaðt1 þ t2Þ ¼ T1ðt1 þ t2ÞTaðt1 þ t2Þ
¼ T1ðt1ÞT1ðt2ÞTaðt1ÞTaðt2Þ
¼ T1ðt1ÞTaðt1ÞT1ðt2ÞTaðt2Þ
¼ ~TTaðt1Þ~TTaðt2Þ ð30Þ

obeys the semi-group relation by virtue of Eq. (29).

The infinitesimal generator ~AAa ¼ limt!0þ ð ~TTaðtÞ
�1Þ=t of composite fractional translations is cal-

culated as

~AAa ¼ Aþ Aa; ð31Þ
where A ¼ �d=dt is the infinitesimal generator of
T1ðtÞ and Aa, the infinitesimal generators of TaðtÞ, is
the Marchaud–Hadamard fractional derivative [3].

These considerations suggest to replace the time

evolution T1ðtÞ in a microscopic equation of mo-

tion with ~TTaðtÞ. As a consequence the infinitesimal

generator d=dt of time evolution has to be replaced

with the generator ~AAa of composite fractional
translations. Possible generalizations of composite

fractional time evolutions may be obtained by

generalizing ~TTaðtÞ into ~TTa1;a2ðtÞ ¼ Ta1ðtÞTa2ðtÞ. Fur-
ther generalization is possible by iterating the

replacement to get ~TTa1;a2;...;an ¼ ~TTa1;a2;...;an�1TanðtÞ.

7. Composite fractional relaxation

In this section the general procedure of replac-

ing time translations with composite fractional

translations is applied to the simple relaxation
equation (19). Proceeding along the same lines as

in Section 5 and introducing the fractional deriv-

atives of order a and type l into the infinitesimal

generator ~AAa one arrives at the composite frac-

tional relaxation equation in the form

s1
d

dt
f̂f ðtÞ þ sa

2D
a;l
0þ f̂f ðtÞ þ f̂f ðtÞ ¼ 0 ð32Þ

with two relaxation times 0 < s1; s2 < 1 and ini-

tial condition f̂f ð0þÞ ¼ 1 as before.

A first advantage of the replacement T1ðtÞ !
~TTaðtÞ over the replacement T1ðtÞ ! TaðtÞ emerges

when Eq. (32) is Laplace transformed. Using Eq.
(10) one finds

f̂f ðuÞ ¼
s1f̂f ð0þÞ þ sa

2u
lða�1Þ I ð1�lÞð1�aÞ

0þ f̂f
� �

ð0þÞ
1þ ðs2uÞa þ s1u

:

ð33Þ

If the normalized relaxation function f̂f ðtÞ is con-
tinuous and bounded in the vicinity of t ¼ 0 then

the initial condition f̂f ð0þÞ ¼ 1, Eq. (22), implies

ðI ð1�lÞð1�aÞ
0þ f̂f Þð0þÞ ¼ 0 ð34Þ

for all 0 < l < 1 and 0 < a < 1. This is readily
seen from bounding the integral in Eq. (8) using

the assumed continuity and boundedness of f̂f .
For 0 < l < 1 and 0 < a < 1 Eq. (33) yields the

result

f̂f ðuÞ ¼ s1
1þ ðs2uÞa þ s1u

ð35Þ

independent of l.
Using Eq. (18) the susceptibility corresponding

to the composite fractional relaxation equation is
found as

v̂vðuÞ ¼ 1þ ðs2uÞa

1þ ðs2uÞa þ s1u
ð36Þ

for all 0 < l < 1. For s1 ¼ s2 this susceptibility

function shows a broadened and asymmetric re-

laxation peak in the imaginary part. Its asym-

metrically broadened relaxation peak resembles
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that of the Cole–Davidson [41] or Kohlrausch

functions (see [42] for the Kohlrausch susceptibil-

ity).

For composite fractional relaxation of type

l ¼ 1 one finds

f̂f ðuÞ ¼ s1 þ sa
2u

a�1

1þ ðs2uÞa þ s1u
ð37Þ

and

v̂vðuÞ ¼ 1

1þ ðs2uÞa þ s1u
: ð38Þ

Composite fractional relaxation of type l ¼ 1 was

discussed in [35] in connection with the Basset

force on a sphere moving under gravity in a vis-

cous fluid. In the following only the case

0 < l < 1 is considered for fitting to experimental

data.

8. Fitting the excess wing of glass forming glycerol

In this section the composite fractional suscep-

tibility (of type 0 < l < 1) given in Eq. (36) is used

to fit broad band dielectric data of glycerol [20,43].

For more discussion of the experimental data see

the contribution of P. Lunkenheimer and A. Loidl
in this special issue.

Fig. 1 shows a fit to the experimental data of

glycerol with the composite fractional susceptibil-

ity function given in Eq. (36). The upper figure

displays the real part, the lower figure the imagi-

nary part of the frequency dependent susceptibility

v. The different curves belong to different temper-

atures ranging from T ¼ 323 K down to T ¼
184 K. The normalized composite fractional sus-

ceptibility contains three fit parameters, while the

traditionally used linear combination from Eq.

(27) contains six (respectively, five when a2 ¼ 1) fit

parameters. Because the experimental data are not

normalized one additional parameter is needed in

all cases to fit the data. This extra parameter is the

dielectric strength defined as

De ¼ vð0Þ ¼ �v1: ð39Þ

Fig. 1 shows that not only the asymmetric a-
peak but also the excess wing at high frequencies

can be fitted quantitatively at all except the three

lowest temperatures (T ¼ 204; 195; 184 K) using

the composite fractional susceptibility function

(36) with only three essential fit parameters. Note

that for T ¼ 213 K the fit extends over almost 9

decades in frequency.

If an iterated composite fractional time evolu-

tion with four parameters is introduced an even
better quantitative agreement can be obtained at

all available temperatures. In Fig. 2 the composite

fractional susceptibility

v̂vðuÞ ¼ 1þ ðs1uÞa1 þ ðs2uÞa2
1þ s1uþ ðs1uÞa1 þ ðs2uÞa2

ð40Þ

Fig. 1. Seperate fits for v0ðwÞ (upper figure) and v00ðwÞ (lower
figure) using the composite fractional susceptibility from Eq.

(36) from temperatures T ¼ 323, 303, 295, 289, 273, 263, 253,

243, 234, 223, 213, 204, 195, 184 K (from right to left) as

function of frequency x ¼ 2pm. The experimental data are taken
from [43]. The corresponding fit parameters a; s1; s2 are shown
in Figs. 3 and 4. The dielectric strength De is plotted in Fig. 3 as
function of temperature.
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with four parameters was used to fit the same data

as in Fig. 1. This fit function has still two

(respectively, one) parameter less than the con-
ventional fit function of Eq. (27). Note that in this

case for T ¼ 184 K the agreement extends over 13

decades in frequency including the full range of the

excess wing.

The values of the fit parameters were found to

depend sensitively on the frequency range that was

included in the fit. For this reason real and imag-

inary part were fitted separately. The variation of
the fit parameters for real and imaginary part gives

an impression of the quality of the fit. One source

for parameter variations might be that the exper-

imental data are patched together from different

measurements. The matching of different data sets

leads to visible breakpoints in the experimental

data sets.

In Figs. 3 and 4 the fit parameters for real and

imaginary parts corresponding to the fits shown in

Fig. 1 are plotted against temperature. Fig. 4 shows
the relaxation times in an Arrhenius plot. Clear

deviations fromArrhenius behavior are found. Fig.

3 shows the exponent a and dielectric strength De
from the normalized composite fractional suscep-

Fig. 3. (a) Stretching exponent a from Eq. (36) for the fits

shown in Fig. 1. (b) Dielectric strength De from Eq. (36) shown

in Fig. 1. The two values of each temperature correspond to real

and imaginary part v0; v00.

Fig. 4. Relaxation times s1 (circles) and s2 (triangles) from Eq.

(36) for the fits shown in Fig. 1. The two values at each tem-

perature correspond to real and imaginary part v0; v00.

Fig. 2. Seperate fits for v0ðwÞ (upper figure) and v00ðwÞ (lower
figure) using the composite fractional susceptibility from Eq.

(40) from temperatures T ¼ 323, 303, 295, 289, 273, 263, 253,

243, 234, 223, 213, 204, 195, 184 K (from right to left) as

function of frequency x ¼ 2pm. The experimental data are taken
from Fig. 1.
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tibility. Note that the dependence of a on temper-

ature shows a qualitative different behavior than

for fits using Havriliak–Negami or Cole–Davidson

functions. In those cases the exponent decreases

slowly with temperature from values around 0.8 to

values around 0.5. Here the values of a seem to
remain flat for a temperature window between 200–

300 K where they fall into the range between

a ¼ 0:5 and a ¼ 0:6. The values seem to increase

with lowering the temperature, but this could be an

artefact because the low temperature fits are only

qualitatively accurate. On the other hand the in-

crease at low T could also suggest a return to an

effective non-fractional time evolution at low tem-
peratures in the glassy phase. For a ! 1 the excess

wing in the composite fractional susceptibility

function becomes increasingly flat.

In summary the present paper has derived a

novel three parameter susceptibility function from

the theory of fractional time evolutions [3]. The

new function contains only a single stretching ex-

ponent. It shows two widespread characteristics of
relaxation spectra in glass forming materials: (i) an

asymmetry of the a-peak and (ii) an excess wing at

high frequencies. The excess wing is not present

in the popular Cole–Cole, Cole–Davidson,

Havriliak–Negami or Kohlrausch–Williams–

Watts functions. The new fit function with only

three parameters yields agreement with broad band

dielectric data over up to 9 decades in time. A four
parameter generalization gives good agreement

over up to 13 decades in frequency. Nevertheless

the large uncertainty in the fit parameters indicates

that smoother experimental data are needed to es-

tablish conclusively whether composite fractional

time evolutions exist in experiment.
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