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The analogies between the diffusion problem and the resistor network

problem as witnessed by the Einstein relation have been very important for

analytical and numerical investigations of linear problems in disordered

geometries (e.g. percolating clusters)! This raises the question whether the

resistor problem can be identified in a purely probabilistic context. An af-

firmative answer has recently been given and it was shown that the Einstein

relation follows from a simple probabilistic argument2’° Here we present the

results of a more general treatment.

We begin by considering conditional first passage probabilities in a Mar-

kov chain. From a relation for the corresponding generating functions we ob-

tain once more the probabilistic analogue of the Einstein relation. We de-

velop its interpretation and conclude by connecting it to the relation bet-—

ween conductivity and diffusion exponents+

Consider a homogeneous Markov chain with denumerable state space. Such a

chain can be visualized as a walker (or particle) moving randomly between a

countable number of states (sites). Homogeneous here means that the transi-

tions of the walker from site i to site j are governed by single step transi-

tion probabilities which do not change with time. We will be interested in

the first passage probability F{3) that the walker will reach site j for the

first time after n steps, given dhat he is at site i at time 0. In addition

we introduce the conditional first passage probabilities ofa) for starting

at i at time 0 and reaching j for the first time at step n, ’ conditioned on

not having visited the elements of a given set S during the walk. The so

called taboo set’ S is restricted to be a finite subset of the state space.

We define the generating functions

F,.(Z) =). pi) 2
ij f=, 1)

and analogously Gi (2) for the conditional probabilities Gia)

Let us consider the simplified case in which S={a} consists only of a

single point. Then for i#j the relation
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F,.(z) - F, (z)F_,(z)
14 1a al

1 - F, (z)F_.(z)
ja al |

can be derived from a straightforward probabilistic argument? Note that
Gi4(1) is the conditional probability that the walker reaches j in one or

 G..(Z) = (1)ij

more steps after starting from i at time 0. Thus Eq. (1) gives an explicit
formula for this probability in the limit z31. To take the limit we write
P44 (2)=1-(1-2) £44(z) with £i4(z) = <Ti4> + o(1-z) where we have assumed that
the mean first passage times <Ti4> between i and j are finite. One obtains

f. (z) + £_.(z) - £..(z) - (l-z)f£. (z)f ,(z)
la al ij la aj
 

 

65597) = f. (z) + £ ,(z) - (1-z)f, (z)f .(z) (2)
ja aj ja a)

and thence

<T. + ST4? - <T4?

aa G40) ~ <T, > + <T > (3)
ja a)

For i=a=0 this implies

< > = < >+< >T 56 q [ 195 Tso ] (4)

We argue that Eq. (4) is indeed a generalized analogue of the Einstein re-
lation in a purely probabilistic context.

To identify the diffusion constant we write the relation <r? (t)> «t as
<t(xr)>«r*? which can be justified using the invariance of Brownian motion
under the transformation t + b*t and r 4 br. Here <t(r)> is the mean first
exit time for the walker to leave a sphere of radius r around its starting
point. For an inhomogeneous structure we then define a generalized r-depen-
dent diffusion coefficient as D(r) = r’*/<t(r)>. To identify the conducti-
vity we introduce an external potential by assuming that the walker is ab-
sorbed with probability p at some boundary point B and subsequently replaced
at 0. If N walkers start from 0 then Nq of them will reach B without having
returned to 0. On the average n = Nqp walkers will flow from 0 to B. If we
identify q as the conductance and n/N as the probability current this is a
Statement of Ohms law. For a system of linear size L and cross section A we
define the conductivity as o = qL/A. Returning to the pure random walk pic-
ture we assume that the points 0 and B are a distance L apart and that
<Top>=<Top>-. We then get from Eq. (4) <Toq> = 20V<Top>/L’ «x 206V/D where V
denotes the corresponding volume. Hence we arrive at the Einstein relation
oxD. Taking ratios of the quantities in Eq. (4) for two systems whose linear
sizes L,L' are scaled by a factor b, i.e L'=bL, and assuming that the limit
Lie exists we obtain’:? from Eq. (4) the well known relation between dif-
fusion and conductivity exponents: In conclusion we remark that our re-
sults involve only quantities that are readily measured in simulations of
diffusion in disordered media regardless of whether the systems behave
fractally or not.
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