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Abstract
Fractional derivatives and integrals for measures and distributions are reviewed. The
focus is on domains and co-domains for translation invariant fractional operators. Frac-
tional derivatives and integrals interpreted as D′-convolution operators with power
law kernels are found to have the largest domains of definition. As a result, extending
domains from functions to distributions via convolution operators contributes to far
reaching unifications of many previously existing definitions of fractional integrals
and derivatives. Weyl fractional operators are thereby extended to distributions using
the method of adjoints. In addition, discretized fractional calculus and fractional cal-
culus of periodic distributions can both be formulated and understood in terms of
D′-convolution.
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1 Introduction

A central motivation behind the development of fractional calculus has been the orig-
inal idea of Leibniz to treat integrals symbolically as negative powers of differentials
[1, p. 105], [2] (and [3] for more). Distribution theory [4, 5], as well as operational
calculus [6–8], originated from that very same idea [6, p. 574] [5, p. 174] [8, p. 121]
of justifying the “symbolic integrations” of physicists and engineers [6, 9–11], so
that fractional calculus is closely related to both, operational calculus and distribution
theory.

Most mathematical implementations, interpretations and investigations of frac-
tional calculus are concerned with ordinary functions as witnessed by recent reviews
[3, 12–14] and numerous articles in this journal. A fractional calculus for certain gen-
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eralized functions (distributions) appeared already with the concept of distributions
itself in Schwartz’ monograph [5, p. 174]. It was later discussed in [15, Sec. I.5.5]
and briefly in [16, Sec. 8.3] and [17, Sec. 2.9], but the “Schwartz fractional calculus”
continues to receive little or no attention in most old and new books on fractional cal-
culus and its applications [18–24]. Our objective in this review is to draw attention to
Schwartz’ fractional calculus of distributions as an ideal framework for extending and
unifying theory and applications of fractional calculus. Recall that fractional deriva-
tives for functions are usually discussed only for sufficiently “good”, meaning smooth
and integrable, functions [19, p. 237]. Extending the domain of definition from “good”
functions to less good generalized functions (distributions), however, canmake an oth-
erwise unsolvable (fractional) equation solvable. More precisely, extending domains
and co-domains can lead to an extended concept of solution by the following general
mechanism [25].

Define a mapping A : X → Y between two non-empty sets and consider the
problem of solving the equation

A f = g (1.1)

for given g ∈ Y . Equation (1.1) cannot have a solution f ∈ X , unless g ∈ Y lies in
the range of A. If, however, the domains X , Y can be extended to larger sets ˜X ,˜Y into
which f , g are suitably embedded, and if A can be extended to a surjective mapping
˜A : ˜X → ˜Y such that

˜A ˜f = ˜A f (1.2)

holds for the embedding f → ˜f , then, if g is the right hand side in eq. (1.1), the
extended equation

˜Au = g̃ (1.3)

has at least one (generalized or weak) solution u ∈ ˜X , even when g ∈ Y is not in the
range of A.

Generalized or weak formulations in this sense sometimes lead to unification of
operators whereby previously different operators A1, A2, . . . become restrictions to
subdomains of one and the same extended operator ˜A. Let f : [a, b] → R be a
real-valued function on an interval [a, b] ⊆ R. Operators of interest in this review
are fractional derivatives and integrals XDα f , XIα f of order α and type X for which
numerous different mathematical interpretations have been proposed in the literature
[3, 18–21, 25–32]. Riemann-Liouville fractional integrals of order α > 0 [33, 34] for
real valued functions f : [a, b] → R on a closed interval [a, b] ⊂ R are a popular
example of fractional integrals, and usually defined as [35, p. 566], [36, p. 181], [16,
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p. 33], [37, p. 6]

(RLI
α
a+ f )(x) = 1

�(α)

x
∫

a

(x − y)α−1 f (y) dy (1.4a)

(RLI
α
b− f )(x) = 1

�(α)

b
∫

x

( y − x )α−1 f (y) dy. (1.4b)

It is common to choose

dom
(

RLI
α
a+
)

= dom
(

RLI
α
b−
)

= L1([a, b]) (1.5)

as the domain for these operators [16, 17, 19, 20, 37, 38] with L1([a, b]) the set of
integrable functions f : [a, b] → R. An example for fractional derivatives are the
closely related Riemann-Liouville fractional derivatives of order α > 0 defined as

(RLD
α
a+ f )(x) =

(

d

dx

)�α� (
RLI

�α�−α
a+ f

)

(x) (1.6a)

(RLD
α
b− f )(x) =

(

− d

dx

)�α� (
RLI

�α�−α
b− f

)

(x) (1.6b)

where �α� = min{m ∈ Z : m ≥ α}. Many domains dom
(

RLDα
a+
)

have been used in
the literature [18, 19], a frequent, but by no means maximal, example being [16, p.
37]

dom
(

RLD
α
a+
)

= dom
(

RLD
α
b−
)

= AC�α�−1([a, b]), (1.7)

the space of functions such that f �α� is absolutely continuous (see [12, 20, 21, 38]).
Riemann-Liouville fractional derivatives depend on the lower, resp. upper, limit

of integration a, resp. b. Integer order derivatives, however, do not depend on such
a parameter. This difference is fundamental. Integer order derivatives are translation
invariant, meaning that they commute with translations, while Riemann-Liouville
fractional derivatives are not.

Translation symmetry, i.e. invariance under translations in space and time, is a basic
symmetry of nature [39, 40]. In theoretical physics it is closely related by Noethers
theorem with the laws of energy and momentum conservation [41]. With respect
to applications in physics it is therefore of interest to consider translation invariant
fractional derivatives. From a purelymathematical point of view translation invariance
is interesting, because it reduces the number of parameters.

Fractional calculus for distributionswas introduced in a translation invariant formu-
lation already in [5, p. 174], but has subsequently received little attention. Exceptions
are [42], [15, Sec. I.5.5], [43], [29, p. 151] and [16, Sec.8.3]. Possible reasons for
this negligence might be that multiplication of distributions is not defined in general
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[44], and that spaces of distributions tend to be locally convex while the focus was on
fractional powers of operators on normed spaces [27, 45–48]. Later, in [27], fractional
powers were extended abstractly to non-negative operators on Frechet spaces, but
without providing concrete spaces of distributions for applications. In recent years the
extension of fractional calculus from functions to measures [49, 50] and distributions
[51–53], [54], [55] has found renewed interest.

A significant number of common interpretations and definitions for translation
invariant fractional integrals and derivatives are unified in this review by defining
them as convolution operators with power law monomials on spaces of distributions.
Thus, the convolution interpretation turns out to be the most general approach to
fractional calculus at present.

The present review is concerned mainly with asymmetric convolution kernels.
Symmetric kernels, arising e.g. in Riesz-Feller operators or fractional powers of the
Laplacian, can often be reduced to linear combinations of asymmetric kernels [16,
Sec. 12.1]. Such kernels are mentioned briefly in Section 7.6.

To help readers navigating and finding quickly material of their interest we povide
a structured overview of subsequent contents:

Section 2 Translation invariant Fractional Calculus for functions (R1)

2.1 Liouville-Weyl
2.2 Weyl
2.3 Marchaud
2.4 Grünwald-Letnikov
2.5 Liouville-Grünwald

Section 3 Translation invariant Fractional Calculus for measures (Rd )

3.1 Radon measures
3.2 Integration with respect to Radon measures
3.3 Convolution of Radon measures
3.4 Convolution duals and extremal domains
3.5 Fractional derivatives and integrals for Radon measures

Section 4 Operational Calculus (R1)
Section 5 Schwartz Fractional Calculus for distributions (R1)
Section 6 Other approaches for distributions

6.1 Method of adjoints
6.2 Lizorkin and Rubin (R1)
6.2 Erdelyi-McBride (R1)
6.4 Braaksma-Schuitman (R1)
6.5 Lamb (R1)
6.6 Khan-Lamb-McBride (R1)

Section 7 Generalized Schwartz Fractional Calculus for distributions

7.1D′-convolution
7.2 Associativity ofD′-convolution
7.3 Generalized Schwartz Fractional Derivative
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7.4 Discrete Grünwald-Letnikov calculus and the continuum limit
7.5 Periodic distributions

7.5.1 Induced kernels for convolution with periodic distributions
7.5.2 Continuous case
7.5.3 Discrete case

7.6 Extensions to higher dimension

Section 8 Laplace multiplier approach for distributions
Section 9 Towards unification of Fractional Calculus

9.1 Illustrative examples
9.2 Unification theorem
9.3 Weak Weyl-, Marchaud- and Grünwald-Letnikov derivatives

Section 10 Appendix

10.1 General notation
10.2 Locally convex spaces
10.3 Function spaces
10.4 Spaces of Radon measures
10.5 Distribution spaces

As seen above the review begins with operators for functions in Section 2, proceeds
to measures in Section 3, then to generalized functions or “hyperfunctions” [56] in
Section 4, and discusses fractional calculus for distributions in Sections 5, 6, 7, and 8.
Section 7 is the centerpiece of this work. It reviews the generalization of Schwartz’s
fractional calculus in [53–55] and provides new results for discrete distributional
Grünwald-Letnikov fractional derivatives, for their continuum limit and for periodic
distributions. Also, the fractional derivative and integral operators for Radonmeasures
in Section 3, the Weyl fractional calculus extended to distributions in Section 6.1 and
the Laplace multiplier approach in Section 8, apparently, have not been defined or
discussed previously in the literature.

It seems appropriate to conclude this introduction with some remarks concerning
applications, even if applications are decidedly outside the scope of this review. Dis-
tributional fractional calculus, as presented here, has recently been applied in studies
of sequential generalized Riemann-Liouville fractional derivatives [57]. Generalized
Riemann-Liouville fractional derivatives [58] are becoming increasingly popular for
applications, not only in mathematics [59–64], but also in physics [65, 66], engineer-
ing [67] and beyond [68, 69], because their “type” parameter is crucial for formulating
well-posed initial and boundary value problems. In another recent application of dis-
tributional fractional calculus to the linear response theory of dielectric relaxation in
glasses [54] this “type” parameter was conjectured to cause the universal observation
of nearly constant loss and high frequency excess wings in glasses [70–72]. The con-
jecture is relevant for the question what is the physical origin of the fractional order
α. For applications in physics the interpretation and independent measurability of α

is of crucial importance [38, 73]. Spatial fractional derivatives, such as powers of the
Laplacian, are plagued with unphysical predictions emerging already within fractional
potential theory [74]. Until recently there were, to the best of our knowledge, only two
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interpretations of α, that are compatible with the fundamental laws (in particular the
law of locality) in physics. Firstly, α has been linked rigorously to critical exponents
and the Ehrenfest order of phase transitions in [75, 76], where locality in space and
time plays no role. Secondly, fractional time derivatives of order α were related with
anomalous diffusion and long time tails in continuous time random walks in [77–
79] (semi-Markov processes) and with fractional time evolutions in [58, 80, 81]. The
generalizations, unifications and simplifications in this review are hoped to directly
generalize, unify and simplify such applications of fractional calculus.

2 Translation invariant fractional calculus for functions (R1)

2.1 Liouville-Weyl

The earliest translation invariant formulation of fractional derivatives can be traced
back to Liouville’s fractional derivative formula [33, p. 3,(1)]

dα f

dxα
=
∑

k

Akkαekx (2.1)

for functions representable as

f (x) =
∑

k

Ake
kx , (2.2)

a series of exponentials. Liouville’s formula was used by Weyl [82, Satz 2] to define
what could be called Liouville-Weyl fractional derivatives and integrals of trigono-
metric series [82, 83] as

(LWD
α± f )(x) =

∞
∑

k=−∞
(±ik)α fke

ikx (2.3)

(LWI
α± f )(x) =

∞
∑

k=−∞
(±ik)−α fke

ikx (2.4)

where α > 0 and

fk = 1

2π

2π
∫

0

e−ikx f (x)dx (2.5)

with k = ±1,±2, . . . and f0 = 0 is the Fourier series of f . The operators LWIα, LWDα

are defined for functions f : R/2πZ → C on the unit circleG = R/2πZ (2π -periodic
functions on the real line) for which f0 = 0, i.e. for functions whose mean or integral
over a period vanishes. Contrary to Riemann-Liouville integrals these definitions do
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not depend on an extra parameter such as a lower or upper limit of integration. A
possible domain of definition is

dom
(

LWI
α±
)

= L p
2π = L p(G) =

{

f is 2π -periodic on R and ‖ f ‖L p
2π

< ∞
}

(2.6)

of periodic Lebesgue integrable functions with norms

‖ f ‖L p
2π
=
⎡

⎣

1

2π

2π
∫

0

| f (x)|pdx

⎤

⎦

1/p

(2.7)

where 1 ≤ p < ∞. The domain

dom
(

LWD
α±
)

=
{

f ∈ L2
2π :

∞
∑

k=−∞
k2α| fk |2 < ∞

}

(2.8)

can be used for Liouville-Weyl derivatives.

2.2 Weyl

Recall the formula for convolution of two 2π -periodic functions [83, p. 36]

( f ∗ g)(x) := 1

2π

2π
∫

0

f (x − y)g(y)dy =
∞
∑

k=−∞
fk gke

ikx (2.9)

which gives rise to the Weyl fractional integral for periodic functions

(WI
α
p f )(x) = (Ψα ∗ f )(x) = 1

2π

2π
∫

0

Ψα(x − y) f (y)dy (2.10)

on L p
2π with p ∈ [1,∞[ where

Ψα(x) =
∑

k �=0

(ik)−αeikx = 2
∞
∑

k=1

cos(kx − απ/2)

kα
(2.11)

isWeyl’s kernel function from [82, p. 300]. The series is convergent for all x ∈ (0, 2π),
α > 0, and uniformly convergent for ε ≤ x ≤ 2π − ε, ε > 0, so that it represents the
Fourier series of Ψα .

It can be shown [83] that eq. (2.10) coincides with the Riemann-Liouville definition
(1.4) for a = −∞ resp. b = ∞. For this reason1 the Riemann-Liouville fractional

1 and because Weyl is credited for being the first to define fractional integrals for functions on the whole
real axis [84].
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integral RLIα(−∞)+ = WIα+ resp. RLIα∞− = WIα− with infinite limits ±∞ is traditionally
called a Weyl fractional integral [82, p. 300], [35, p. 567], [85], [36], [16, p. 353], [37,
p. 7]. For α > 0 and non-periodic functions f : R → C the Weyl fractional integral
is defined as

WI
α± f (x) =

∞
∫

0

f (x ∓ s)
sα−1

�(α)
ds (2.12)

where x ∈ R and � is the Gamma function. The Weyl integral is translation invariant.
Interpreting the Weyl integral (2.12) as an absolutely convergent Lebesgue integral,
the maximal domain of locally integrable functions is given by

dom
(

WI
α+
)

=
⎧

⎨

⎩

f ∈ L1
loc(R) :

∞
∫

0

| f (−s)| sα−1

�(α)
ds < ∞

⎫

⎬

⎭

. (2.13)

In the context ofWeyl’s considerations the integral (2.12) is considered as an improper
integral in the upper limit, resulting in the maximal domain

dom
(

WI
α+
)

=
⎧

⎨

⎩

f ∈ L1
loc(R) : lim

a→∞

a
∫

0

f (−s)
sα−1

�(α)
ds < ∞

⎫

⎬

⎭

, (2.14)

which contains periodic functions for 0 < α < 1. This domain was explicitly consid-
ered in [86, p. 116].

Let Dk = dk/dxk denote the derivative of integer order k ∈ N. The Weyl fractional
derivative of order α > 0 is defined by

WD
α+ f (x) = D�α�

WI
�α�−α
+ f (x) (2.15)

where �β� = min{m ∈ Z : β ≤ m} is the smallest integer above β ∈ R. Choosing
the set of absolutely continuous functionsAC(R) as the domain of definition for the
derivative d/dx , the domain

dom
(

WD
α+
)

=
{

f ∈ dom
(

WI
�α�−α
+

)

: WI
�α�−α
+ f ∈ dom

(

D�α�)} (2.16)

is obtained by �α�-fold iteration as the domain for partially defined operators.2 Note
that for α /∈ N0 the constant function x �→ c is not contained in the domain of the
Weyl fractional derivative WDα+.

Weyl fractional derivatives and integrals have also been studied on theHölder spaces
Ck,β(�) [16, Sec. 19.6]. Essentially, fractional integrals, resp. derivatives, of order
α > 0 increase, resp. decrease, the Hölder order β by α.

2 For operators A and B whose domain and range is contained within a common space X the domain of
their composition is dom (A ◦ B) = { f ∈ dom (B) : B f ∈ dom (A)}.
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2.3 Marchaud

A larger domain of definition than for Weyl fractional derivatives is obtained for
Marchaud fractional derivatives [87]. Let 0 < α < ∞, α /∈ N, and introduce the
notation �x� := min{m ∈ Z : x ≤ m} for x ∈ R. The Marchaud fractional derivative
is defined as

(MD
α+ f )(t) = 1

C(α)

∞
∫

0

Δ�α�
s f (t)

sα+1 ds (2.17)

for all t ∈ R, where

C(α) =
∞
∫

0

(1− e−s)�α�

sα+1 ds (2.18)

and the right differences of order m ∈ N and step size s > 0 are

(Δm
s f )(t) =

m
∑

k=0

(−1)k
(

m

k

)

f (t − ks) (2.19)

for all t ∈ R.
A possible choice for the domain is

dom
(

MD
α+
)

=
{

f ∈ C�α� :
∫ ∞

1

| f (−s)|
sα+1 ds < ∞

}

(2.20)

and it depends explicitly on α. This domain contains the constant function.

2.4 Grünwald-Letnikov

For α > 0 the Grünwald-Letnikov fractional derivative [88, 89] of a function f :
R → R is defined as

(GLD
α+ f )(t) = lim

h→0

Δα
h f (t)

hα
= lim

h→0

1

hα

∞
∑

k=0

(−1)k
(

α

k

)

f (t − kh) (2.21)

by generalizing the integer order difference quotients from eq. (2.19) to fractional
orders. A suitable domain is [16, p. 382]

dom
(

GLD
α+
)

= L p(R) (2.22)

for any 1 ≤ p < ∞. For 0 < α < 1 it was shown in [16, Thm. 20.4] that on
this domain the Grünwald-Letnikov fractional derivative GLDα+ coincides with the
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Marchaud derivative MDα+. An analogous result is obtained in [90] for the Hölder
spaces Ck,α(R).

Here, in Section 7.4 below, these results for functions are extended and generalized
to distributions. It is found that the maximal domains of Marchaud derivatives and
Grünwald-Letnikov derivatives for distributions nearly coincide. As shown in Section
9.3, where a weak formulation for fractional derivatives of distributions is introduced,
differences may only arise from the fact that GLDα+ is defined as a pointwise limit,
while MDα+ is defined by a Lebesgue integral.

Similar to the Marchaud case dom
(

GLDα+
)

contains the constant function, but does
not contain the Heaviside step function or the Dirac distribution.

2.5 Liouville-Grünwald

The Weyl calculus for periodic functions has been related rigorously in [37, 91] to
the Grünwald-Letnikov approach [88, 89] on the Lebesgue spaces L p

2π of periodic
functions defined above. These Banach spaces, as well as the space

C2π := { f is 2π -periodic on R and ‖ f ‖C2π < ∞} (2.23)

of continuous 2π -periodic functions with norm

‖ f ‖C2π := sup
t∈[0,2π ]

| f (t)| (2.24)

were used in [37, 91] to characterize the strong Liouville-Grünwald fractional deri-
vatives. Let 1 ≤ p < ∞ and α > 0. The strong Liouville-Grünwald fractional
derivative of order α with domain

dom
(

LGD
α
p

)

= L p
2π , (2.25)

resp.

dom
(

LGD
α
)

= C2π (2.26)

is defined as that function

g =: LGD
α
p f resp. g =: LGD

α f (2.27)

for which the limit

lim
h→0+

∥

∥

∥

∥

Δα
h f

hα
− g

∥

∥

∥

∥

L p
2π

= 0 resp. lim
h→0+

∥

∥

∥

∥

Δα
h f

hα
− g

∥

∥

∥

∥

C2π

= 0 (2.28)
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exists. Because Ψα ∈ L1
2π it can be used to define the Liouville-Grünwald fractional

integral

(LGI
α
p f )(x) := (Ψα ∗ f )(x) = 1

2π

2π
∫

0

Ψα(x − y) f (y)dy (2.29)

on dom
(

LGIαp
)

= L p
2π with p ∈ [1,∞[ such that

‖LGIαp f ‖L p
2π
≤ ‖Ψα‖L1

2π
‖ f ‖L p

2π
(2.30)

for all f ∈ L p
2π . Note that LGIαp has a convolution kernel Ψα .

Theorem 1 (Thm3.4, [37])The following three assertions are equivalent for f ∈ L p
2π ,

1 ≤ p < ∞ and α > 0:

a) LGDα
p f ∈ L p

2π .

b) There exists g ∈ L p
2π such that (ik)α fk = gk, k ∈ Z.

c) There exists g ∈ L p
2π such that f − f0 = LGIαpg almost everywhere.

Here fk, gk are the Fourier coefficients of f , g as defined in (2.5). The following three
properties hold for f ∈ L p

2π , α, β > 0:

A) (Monotonicity)
If LGDα

p f ∈ L p
2π , then LGD

β
p f ∈ L p

2π for any 0 < β < α.

B) (Additivity)

LGDα
p LGD

β
p f = LGD

α+β
p f whenever one of the two sides is meaningful.

C) (Fundamental theorem of fractional calculus)
LGDα

p(LGI
α
p f ) = f − f0 = LGIαp(LGD

α
p f ) where the second equality holds if

LGDα
p f ∈ L p

2π .

The Liouville-Grünwald fractional calculus and its applications are further developed
in [37, 92–94] (see [37] and references therein).

3 Translation invariant fractional calculus for measures (Rd)

Common domains of definition for translation invariant fractional integrals and
derivatives of functions are often small and their intersection may be too small for
applications. For this reason an extension of translation invariant fractional calculus
from functions to measures was initiated in [49, 50] for the case of Weyl fractional
integrals. It was later superseded and unified with the distributional fractional calculus
of Section 7 below. The present section reviews some results and ideas from this initial
approach in [49, 50] by placing them into the distributional context.
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3.1 Radonmeasures

Let 1 ≤ p ≤ ∞ and let K denote the family of compact subsets of Rd . The indicator
function 1� : � → R of a set � ⊆ R

d is defined by

1�(x) :=
{

1 for x ∈ �,

0 for x /∈ �.
(3.1)

The notation R
� is used for the set of real (or sometimes complex) valued functions

f : � → R. The Lebesgue space of locally p-integrable functions L p
loc(R

d) consists
of the measurable functions f : Rd → R such that f · 1K ∈ L p(Rd) for all K ∈ K.
It is endowed with the topology generated by the seminorms f �→ ‖ f · 1K ‖p with
K ∈ K. The space C(Rd) of continuous functions is endowed with the subspace
topology inherited from L p

loc(R
d). The spaces of continuous functions with compact

support are defined by

Cc(R
d) := K(Rd) =

⋃

K∈K
KK (Rd) (3.2a)

Cc,K (Rd) := KK (Rd) =
{

ϕ ∈ C(Rd) : supp ϕ ⊆ K
}

(3.2b)

for any compact set K ⊆ R
d . The topology on everyKK (Rd) is the subspace topology

induced fromC(Rd). The locally convex topology on the unionK(Rd) is generated
by all seminorms onK(Rd) that have a continuous restriction toKK (Rd).

The spacesC(Rd),K(Rd) and L p
loc(R

d) are vector lattices (or Riesz spaces) with
respect to pointwise (almost everywhere) ordering [95, 96]. Lattice orderings ≤ are
characterized by the existence of supremum and infimum for any two of its elements.
For any x in a vector lattice its absolute value is defined as |x | := sup{x,−x}.

The locally convex space of Radon measures is defined as the topological dual
space

M(Rd) := K ′(Rd) =
(

K(Rd)
)′

(3.3)

endowed with the β(K ′,K)-topology (see Section 10.2). Because the dual of a
locally convex vector lattice is again a vector lattice (see Proposition 4.17 in [95, p.
108]) the space M of Radon measures is again a locally convex vector lattice under
the dual ordering, i.e. μ, ν ∈ M satisfy μ ≤ ν iff μ(ϕ) ≤ ν(ϕ) for all ϕ ≥ 0. Thus,
|μ| exists for all μ ∈ M and the topology on M is generated by the seminorms
μ �→ |μ(ϕ)| withK � ϕ ≥ 0. The set of real valued Radon measures is a real vector
lattice. From this one obtains the Riesz decomposition theorem M = M+ − M+
whereM+ := {μ ∈ M : μ ≥ 0}.
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3.2 Integration with respect to Radonmeasures

The evaluation of a Radon measure μ ∈ M(Rd) on a function ϕ ∈ K(Rd) is written
as integration of ϕ with respect to μ

∫

ϕ(x)dμ(x) := M〈μ, ϕ〉K = μ(ϕ) (3.4)

and this continuous linear functional can be extended uniquely to more general real
valued functions using the “upper” and “lower” integrals from [97], [98], [99, Ch.XI],
[100, Sec. 3.2]. Recall, that a function f : Rd → [0,+∞] is lower semicontinuous,
if the set { f ≥ a} is closed for every a ∈ [0,∞]. The set of lower semicontinuous
functions is denoted asI+(Rd). Let

I+(Rd) +K(Rd) :=
{

supA : A ⊆ K(Rd),A �= ∅
}

(3.5a)

=
{

lim
n→∞ϕn : ϕn ∈ K(Rd), ϕn ≤ ϕn+1, n ∈ N

}

(3.5b)

denote the set of upper envelopes, where “sup” is the pointwise supremum of
[−∞,+∞]-valued functions. The last equality then allows to extend μ from K

to upper envelopes by

μ( f ) := sup
{

μ(ϕ) : ϕ ∈ K(Rd) with ϕ ≤ f
}

(3.6)

for all f ∈ I+(Rd)+K(Rd). The upper μ-integral μ∗( f ) and the lower μ-integral
μ∗( f ) of a function f : Rd → [−∞,+∞] are defined as

μ∗( f ) := inf
{

μ(g) : g ∈ I+(Rd) +K(Rd) with f ≤ g
}

(3.7a)

μ∗( f ) := −μ∗(− f ) (3.7b)

and f is called μ-integrable or integrable with respect to μ if

μ( f ) := μ∗( f ) = μ∗( f ), (3.7c)

that is, the upper and lower integrals agree.
Accordingly, the domain for integration with respect to μ is the space of μ-

integrable real valued functions, defined as

L1(Rd , μ) :=
{

f : Rd → R : −∞ < μ∗( f ) = μ∗( f ) < ∞
}

. (3.8)

Let

N1(Rd , μ) :=
{

f : Rd → R : μ∗(| f |) = 0
}

(3.9)
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be the space of functions that vanish μ-almost everywhere. Equipped with the norm
f �→ μ(| f |) the quotient space

L1(Rd , μ) := L1(Rd , μ)/N1(Rd , μ) (3.10)

becomes a Banach space. The definition can be extended to signed Radon measures
and complex functions.

The space L1
loc(R

d) can be identified with a closed subspace ofM(Rd) by associ-
ating to every f ∈ L1

loc(R
d) the measure μ f defined by

μ f (ϕ) :=
∫

Rd

ϕ(x) f (x)dx (3.11)

for all ϕ ∈ K(Rd). It is equipped with the subspace topology inherited fromM(Rd)

via the map f �→ μ f . The introduced spaces are then related by a chain

C(Rd) ⊆ L∞
loc(R

d) ⊆ Lq
loc(R

d) ⊆ L p
loc(R

d) ⊆ L1
loc(R

d) ⊆ M(Rd) (3.12)

of continuous inclusions where 1 ≤ p ≤ q ≤ ∞.

3.3 Convolution of Radonmeasures

The convolution of two locally integrable functions f , g ∈ L1
loc(R

d) is commonly
defined pointwise in the almost everywhere sense as

( f ∗ g)(x) =
∫

Rd

f (x − y)g(y)dy (3.13)

for x ∈ R
d , if it exists. This is guaranteed in the most common case f , g ∈ L1(Rd).

Reformulated weakly for the corresponding measures μ f , μg from eq. (3.11) and
ϕ ∈ K(Rd) this becomes with Fubini’s theorem

(μ f ∗ μg)(ϕ) =
∫

Rd

∫

Rd

f (x − y)g(y)ϕ(x)dydx

=
∫

R2d

f (x − y)g(y)ϕ(x)d(x, y) = (μ f ⊗ μg)(ϕ
�) (3.14)

where μ f ⊗ μg is the product measure, ϕ� ∈ K(R2d) is the codiagonal function
defined as

ϕ�(x, y) := ϕ(x + y) = ϕ(�(x, y)) = (ϕ ◦ �)(x, y), (3.15)
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and the mapping � : Rd × R
d → R

d with

�(x, y) := x + y (3.16)

denotes addition in Rd .
TheM-convolution of two Radon measures μ, ν ∈ M(Rd) is defined as the image

of their product measure under �,

μ ∗ ν := �[μ⊗ ν] (3.17a)

whenever μ, ν are convolvable or, equivalently, whenever

M〈μ ∗ ν, ϕ〉K :=
∫

R2d

ϕ(x + y)d(μ ⊗ ν)(x, y) = (μ⊗ ν)(ϕ�) (3.17b)

for ϕ ∈ K(Rd). Two measures μ, ν ∈ M(Rd) are called convolvable if and only if
(μ⊗ ν)ϕ� ∈ M(Rd) or, equivalently,

∫

R2d

ϕ(x + y)d(|μ| ⊗ |ν|)(x, y) < ∞ (3.18)

for all ϕ ∈ K(Rd) with ϕ ≥ 0. The image of a measure under a continuous mapping
is defined generally in [97, Ch. V, §6, No. 4, Def. 2]. Here, for μ ∈ M(R2d) and
a continuous mapping m : R2d → R

d it is (mμ)(ϕ) := μ(ϕ ◦ m), ϕ ∈ K(Rd)

whenever |μ|(ϕ ◦ m) < ∞ for all ϕ ≥ 0.

Proposition 1 Let f , g ∈ L1
loc(R

d). Then μ f and μg are M-convolvable if and only
if

1) ( f ∗ g)(x) is well defined by equation (3.13) for almost all x ∈ R
d in terms of a

Lebesgue integral and
2) f ∗ g ∈ L1

loc(R
d).

If μ f and μg are M-convolvable, then one has μ f ∗ μg = μ f ∗g.

Proof Follows from eq. (3.14).
��

3.4 Convolution duals and extremal domains

In [49, 50] a constructive method was introduced to define weighted measure spaces
on which a given set of convolution operators acts as an equicontinuous family of
endomorphisms. The constructive method was later extended to distributions. For
d = 1 this method was applied in [50, Sec. 9] to linear combinations of fractional
Weyl integrals and derivatives with orders and coefficients from a bounded set.
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The constructive method is based on the convolution dual (F)∗M of a set F ⊆ M

of measures defined as [49, 101, 102]

(F)∗M :=
{

g ∈ M(Rd) : g isM-convolvable with all f ∈ F
}

. (3.19)

By construction (F)∗M is a polarity in the sense of [103, V. 7, p. 122]. Thus the
convolution perfection operator

F �→ (F)∗∗M := ((F)∗M
)∗
M

(3.20)

is a closure operator [103, p. 105, p. 116–120]. The corresponding closures are called
convolution perfect. It follows from the definitions that

∗ : (F)∗∗M × (F)∗M → (

(F)∗M ∗ (F)∗M
)∗∗
M

(3.21)

is a well defined bilinear mapping.Within the class of convolution perfect spaces, con-
volution operatorswith kernels from F havemaximal domain (F)∗M and are embedded
in the minimal space (F)∗∗M .

The construction (3.21) does not necessarily give domains on which the convolu-
tion operators with kernels from F map dom

(

(·) ∗ (F)∗∗M
) = (F)∗M into itself. To

construct endomorphic domains the concepts of simultaneous convolution of p-tuples
and maximal convolution modules were introduced.

Definition 1 For F ⊆ M(Rd) the maximal convolution module associated with F is
defined as

(F)∗MM := {g ∈ M : f1 ∗ · · · ∗ f p ∗ g exists for all fk ∈ F, p ∈ N
}

. (3.22)

Systematic investigation of (F)∗M and (F)∗MM was carried out in [55] for the more
general case of distributions. It resulted in a calculus for convolution perfect spaces
as extremal domains of definition (or operation) for convolution operators. The main
problem solved by the calculus for convolution perfect spaces is to find extremal
and convolution perfect domains F1 = (F1)

∗∗
M , F2 = (F2)

∗∗
M , and F3 = (F3)

∗∗
M for

inclusion relations such as

F1 ∗ F2 ⊆ F3. (3.23)

A detailed description in this review would lead too far afield. Instead we mention
only Theorem 5 from [49, p. 1561] in the next paragraph.

Let u, v, w : Rd → R+ be three upper semicontinuous and positive weight func-
tions. Given a weight w define two weighted balls

w[M] :=
{

μ ∈ M(Rd) : (|μ|/w) ≤ 1
}

(3.24)

Cv[w] :=
{

f ∈ C(Rd) : ‖ f w‖∞ ≤ 1, f (x)w(x) → 0 for |x | → ∞
}

(3.25)
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of measures, respectively for functions. Let � denote supremal convolution defined
for 0 ≤ f ∈ L∞

loc(R
d) and 0 ≤ g ∈ L∞

loc(R
d) pointwise as

( f � g)(x) := ‖ f · Txqg‖∞ (3.26)

with (Tx f )(y) = f (y − x) defining translation by x . Theorem 5 in [49, p. 1561]
characterizes inclusion relations

w[M] ∗ v[M] ⊆ u[M] ⇐⇒ w[M] ∗Cv[v] ⊆ Cv[u] ⇐⇒ w � v ≤ u (3.27)

between weighted balls in terms of an inequality between the weight functions, that is
important for the investigations described in Section 6.1. The proof uses the triangle
inequality for Radon measures: Two Radon measures μ, ν areM-convolvable if and
only if their absolute values are convolvable. And in that case |μ∗ ν| ≤ |μ| ∗ |ν| holds
true.

3.5 Fractional derivatives and integrals for Radonmeasures

For α ∈ H let υα ∈ M(R) denote the monomial measure with Lebesgue density

dυα

dx
=

⎧

⎪

⎨

⎪

⎩

xα−1

�(α)
for x > 0

0 for x ≤ 0
(3.28)

Let μ ∈ M(Rd) and α = (α1, . . . , αd) ∈ C
d . The fractional integral of a Radon

measure μ is defined as the convolution

mI
α+μ := (qυα1 ⊗ · · · ⊗ qυαd ) ∗ μ (3.29)

where the qμ(x) := qμ(−x) denotes the reflected measure. Thus

dom
(

mI
α+
)

= (υα)∗M (3.30)

for α ∈ C.

4 Operational Calculus (R1)

Operational calculus was initiated by Leibniz [6] and investigated in the 18th and
19th century by Lagrange, Bernoulli, Laplace, Lorgna, Gruson, Arbogast, Francais,
Servois, Oltramare, Liouville, Cauchy, Boole and many others (see [104] for a his-
torical account). Symbolic computation with operational symbols was also practiced
by physicists and engineers in the early 20th century [6, 9–11, 105] and this moti-
vated Mikusinski [7] and Schwartz [4]. For reviews of operational calculus see [8, 56,
106–110].
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Operational calculus is usually formulated for continuous real- or complex-valued
continuous functions f ∈ C(R0+) on the half-axis R0+ = [0,∞[. Let a ∈ C,
t ∈ R0+ and f , g ∈ C(R0+). Then (C(R0+),+, ∗) becomes a commutative ring
with the operations

(a f )(t) = a f (t) (0 ≤ t < ∞) (4.1a)

( f + g)(t) = f (t)+ g(t) (0 ≤ t < ∞) (4.1b)

( f ∗ g)(t) =
t
∫

0

f (t − s)g(s)ds (0 ≤ t < ∞) (4.1c)

of scalar multiplication, addition, and convolution ∗ : C(R0+)×C(R0+) → C(R0+)

of f and g.
The ring C(R0+) has no divisors of zero due to a theorem by Titchmarsh [111,

Thm 152, p.325] : If f , g are locally integrable and f ∗ g = 0, then either f = 0
or g = 0. As a consequence, C(R0+) is an integral domain [112, p. 115] and can be
extended to a field (Q[C(R0+)],+,×) of quotients in the same way as integers are
extended to rationals [113, p. 110].

The elements of the quotient field Q[C(R0+)] are equivalence classes of ordered
pairs, denoted as ( f :/: g), representing a convolution numerator f over a convolution
denominator g �= 0. Two convolution quotients ( f1 :/: g1) and ( f2 :/: g2) are equivalent
if the relation

f1 ∗ g2 = f2 ∗ g1 (4.2)

holds for all g1, g2 �= 0. The multiplication of a pair with numbers a ∈ C is defined
such that

a( f :/: g) = (a f :/: g) (4.3a)

holds for all pairs ( f :/: g) ∈ Q[C(R0+)]. The addition and multiplication of pairs is
defined such that

( f :/: g)+ (h :/: k) = (( f ∗ k + g ∗ h) :/: (g ∗ k)) (4.3b)

( f :/: g)× (h :/: k) = (( f ∗ h) :/: (g ∗ k)) (4.3c)

holds for all f , g, h, k ∈ C(R0+), g �= 0, k �= 0. The neutral element for the multi-
plication × of pairs is the pair (1 :/: 1) ∈ Q[C(R0+)]. It is not a continuous function
and resembles the generalized δ-function. Because the elements in Q[C(R0+)] are
sets, they are usually called “operators” [108] and sometimes “hyperfunctions” [56].
The two mappings

C � a �→ (a1 :/: 1) ∈ Q[C(R0+)] (4.4a)

C(R0+) � f �→ ((1 ∗ f ) :/: 1) ∈ Q[C(R0+)] (4.4b)
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are embeddings ofC, resp.C(R0+), into Q[C(R0+)]. Obviously, scalarmultiplication
a( f :/: g) �= a × ( f :/: g) = a1 × ( f :/: g) = a(1 ∗ f :/: g) is not the same as
multiplication with a constant function.

The relevance of the ring C(R0+) and its quotient field Q[C(R0+)] for fractional
calculus emerges from choosing for f and g in (4.1c) the constant function f = 1,
defined by f (t) = 1 for all t ∈ [0,∞[. One has 1 ∗ 1 = t and

1∗n = 1 ∗ · · · ∗ 1
︸ ︷︷ ︸

n-times

= tn−1

�(n)
, n ∈ N, t ≥ 0 (4.5)

by iteration. Choosing f = 1 in (4.1c) shows

(1 ∗ g)(t) =
t
∫

0

g(s)ds (4.6)

which identifies convolution with f = 1 as the operator of integration.
The operator of fractional integration in operational calculus is then defined by

extending iterated convolution with 1 to noninteger n as

(OCI
α f )(t) = (1∗α f )(t) = 1

�(α)

t
∫

0

f (t − s)sα−1ds (4.7)

with domain

dom
(

OCI
α
)

= C(R0+) (4.8)

for Reα > 0.
The definition of fractional integration can be extended to all α ∈ C as convolution

with the convolution quotient

1∗α = (1∗(α+n) :/: 1∗n) (4.9)

where n = (�Reα� − 1) is the smallest positive integer such that Reα + n > 1. For
α = −1 one finds

D = 1∗(−1) = (1 :/: 1∗2) (4.10)

and this is interpreted as the operator of differentiation. The fractional derivative
operators are

OCD
α = 1∗(−α) (4.11)
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with domain

dom
(

OCD
α
)

= C(R0+) (4.12)

by virtue of the embedding (4.4a).
The construction of the quotient field (Q[C(R0+)],+,×) is quite general. It can be

carried out for other spaces such as the space of locally integrable functions L1
loc(R0+)

or distributionsD′(R0+) on the half axis. One has the algebra isomorphism [114]

Q[C(R0+)] = Q[L1
loc(R0+)] = Q[D′(R0+)] (4.13)

relating operational calculus with Schwartz distributional calculus. On the other hand,
the construction of (Q[C(R0+)],+,×) has also a few disadvantages:

(i) Although every function in the ringC(R0+) also represents an operator (because
it can be represented as ( f ∗b :/: b)with b �= 0) not every operator in the quotient
field corresponds to a function.

(ii) Generalization of the fundamental equation (4.1c) from d = 1 to higher dimension
is not straightforward, because of the difficulty to specify what happens at the
boundary.

5 Schwartz fractional calculus for distributions (R1)

The first fractional calculus for distributionswas introduced together with the theory of
distributions [5, 15, 115] as an application of defining the convolution of distributions
[5, p. 174] . Let α ∈ C, x ∈ R and


(x) = 1R+(x) =
⎧

⎨

⎩

1, x > 0

0, x ≤ 0
(5.1)

be the Heaviside step function. For x ∈ R define

Yα(x) = 
(x)
xα−1

�(α)
, Reα > 0 (5.2)

and its reflection qYα(x) = Yα(−x). This definition is extended as

Yα = D1+�−Reα�Y1+�−Reα�+α, Reα ≤ 0 (5.3)

to α ∈ C. Here Dk is the distributional derivative of order k. Note that Y1 = 
, that
Y0 = D
 = δ is the Dirac distribution, and that Y−k = D1+k
 = δ(k) their k-th
derivative for k ∈ N. The abbreviation Y = Y1 will also be employed. The symbol
Yα is the notation from [5, p. 43] while it is denoted as �α in [15, p. 48]. The notation
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χα+ is used in [116, p. 73] and the authors used pα+ for Yα and qα+ for Y−α in Definition
1 in [54].

The idea is now to define fractional derivatives as convolution with the mono-
mial distribution Yα as kernel in analogy with operational calculus. Let α ∈ C. The
Schwartz fractional derivative is defined as [5, p. 172]

SD
α+ f := f ∗ Y−α (5.4)

for distributions f in the set

dom
(

SD
α+
)

= D′+ = { f ∈ D′ : −∞ < inf supp f
}

(5.5)

of distributions bounded on the left, also called “causal distributions”. Note that the
domain is independent of α. Analogously, a reflected operator SDα− f = f ∗ qY−α is
defined for anticausal distributions.

The convolution of two locally integrable functions f , g ∈ L1
loc(R) is given by eq.

(3.13) with d = 1. This definition can be extended to distributions along the same
lines as the extension to measures discussed above in Section 3.3.

Given two test functions ϕ,ψ ∈ D(R) their tensor product is the bilinear mapping
ϕ ⊗ ψ : D(R) ×D(R) → D(R2) that assigns to every pair of functions (ϕ, ψ) the
function (x, y) �→ ϕ(x)ψ(y). The tensor product of two distributions f , g ∈ D′(R)

is the unique distribution f ⊗ g ∈ D′(R2) which satisfies

〈 f ⊗ g, ϕ ⊗ ψ〉 = 〈 f , ϕ〉 〈g, ψ〉 (5.6)

for all ϕ,ψ ∈ D(R). The problemwith using eq. (3.14) as a definition for convolution
of distributions is thatϕ� is smooth, but in general not a test function, i.e.ϕ� /∈ D(R2),
because it does not have compact support. Figure 1 illustrates suppϕ� for a test
function with suppϕ = [a, b].

The problem is circumvented by using a cutoff function χϕ ∈ D to cut off the
integrand. In other words, given ϕ a cutoff function χϕ is chosen such that {χϕ = 1} ⊇
supp(( f ⊗g)·ϕ�).Note, that such a cutoff cannot be found for all pairs of distributions
f , g ∈ D′. If a cutoff function can be found, then f , g are called convolvable by
support. If f , g ∈ D′ are convolvable by support, then their convolution is defined by

〈 f ∗ g, ϕ〉 = 〈( f ⊗ g) · ϕ�, χϕ〉 (5.7)

for ϕ ∈ D. Two distributions f , g ∈ D′ are convolvable by support if and only if

( f ⊗ g) · ϕ� ∈E′(R2) (5.8)

for ϕ ∈ D. This is the most common definition of convolution of distributions, which
can be found up to details in [116, 117]. For example, convolvability by support is
guaranteed,
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Fig. 1 Illustration of suppϕ� for suppϕ = [a, b] and of convolvability by support (condition (2) below)
for distributions f , g ∈ D′+. The set suppϕ� is textured by north east lines, supp f is textured by
horizontal lines, and suppg is textured by vertical lines

(1) if f ∈E′ or g ∈E′, or
(2) if f , g ∈ D′+ = { f ∈ D′ : −∞ < inf supp f

}

.

The set D′+ with the operations of addition and convolution (D′+,+.∗) becomes a
convolution algebra without divisors of zero [5, Thm. XIV, p. 173]. Thus, the algebra
(D′+,+, ∗) in distribution theory resembles the algebra (C(R0+),+, ∗) in operational
calculus.

While dom
(

SDα+
) = D′+ contains the δ-distribution, Yα and the Heaviside func-

tion, it does not contain the constant function or the trigonometric functions. Some
authors maintain that fractional derivatives of integer powers x �→ xn, n ∈ N cannot
exist [118, p. 24, Sec. 3.5.2], [119, Sec. 2.3].

Schwartz calculus on the half axis, i.e. on D′(R0+), was applied to a convolution
operator with nonsingular kernel in [120], and has been extended to the cone Rd

0+ in
[52]. The well known results from [15] were recently repeated in [121].

6 Other approaches for distributions

6.1 Method of adjoints

A useful method to define fractional derivatives for distributions is the method of
adjoints or transposition [42, 122, 123]. Let (X , τX ), (Y , τY ) be two locally convex
Hausdorff spaces endowed with topologies τX , τY and let X ′, Y ′ be their topological

123



Fractional calculus for distributions

duals. Let A : X → Y be a linear operator. Its adjoint or transpose tA : Y ′ → X ′ is
the operator defined by the relation

〈tA f , ϕ〉 = 〈 f , Aϕ〉. (6.1)

The vector tA f is defined as that linear functional on X , which assigns to each ϕ ∈ X
the same number, that the functional f ∈ Y ′ assigns to Aϕ. If A : (X , τX ) → (Y , τY )

is continuous, then also A : (X , σ (X , X ′)) → (Y , σ (Y , Y ′)) is continuous, i.e when
the spaces are endowed with the weak topologies σ(X , X ′) and σ(Y , Y ′). Morover,
if A is continuous, then the adjoint operator is continuous tA : (Y ′, σ (Y ′, Y )) →
(X ′, σ (X ′, X)) in theweak and the strong topology, i.e. as amap tA : (Y ′, β(Y ′, Y )) →
(X ′, β(X ′, X)) [117, p. 256] [124, eq.(3.23)][25, p. 7].When A is a fractional operator
and X , Y are space of test functions, then tA is a fractional operator for distributions.

The method of adjoints (6.1) can be used to extend Weyl fractional integrals WIα+
withα ∈ H and derivatives WDα+ withα ∈ C to certainweighted space of distributions.
This will now be illustrated in this section.

In [49, 50, 125] the Weyl operators WIα+ and WDα+ were discussed as continuous
endomorphisms of certain weighted spaces of continuous or smooth functions. The
results were characterized using the equivalence (3.27). For k ∈ N0 ∪ {∞} and a set
W of weights with W ⊆ C+(R) := { f ∈ C(R) : f ≥ 0} define

Ck
W (R) :=

{

f ∈ Ck(R) : ∀w ∈ W , m ∈ N0, m ≤ k : f (m)w ∈ Cv(R)
}

(6.2)

with CW (R) := C0
W (R) and EW (R) := C∞

W (R). These spaces are endowed with
the locally convex topology generated by the seminorms f �→ ‖ f (m)w‖∞ with w ∈
W , m ∈ N0. Let the supremal convolution dual for a set W ⊆ C+(R) of weights be
denoted as (see (3.26) for the definition of �)

(W )
�
C+ := {v ∈ C+(R) : ∀w ∈ W : w � v ∈ L∞

loc(R)
}

. (6.3)

In the notation of [50, eqs. (2.3), (4.1), (9.1)] the set (W )
�
C+ corresponds to the intersec-

tion ofC+with the expression “U+( · , W ;U+)” in [50, p. 1246].With notations similar

to [50, pp. 1245] one denotes P :=
〈

(

1+ x2
)n : n ∈ N

〉

tici
and P± := P ∩ D′±

(compare also (7.25a) below for d = 1). Then (P)
�
C+ = C+(R) ∩ CP (R) and

(P±)
�
C+ = (P)

�
C+ + [C+(R) ∩D′±(R)].

Retracing the steps in [50, Sec. 11] it can be shown that P− � W ⊆ W for all
W ∈ {P−, (P−)

�
C+ , P− + (P)

�
C+ ,

〈

e−μx
〉

tici}, μ > 0. From Theorem 8.1 in [50, p.
1240] (see Theorem 6 in [49, p. 1565] for its proof) and Proposition 10.2 in [50, p.
1243] follows that Weyl fractional integrals WIα+ with α ∈ H define continuous endo-
morphisms of CW (R). Except for W = 〈

e−μx
〉

tici this follows also from Korollar
3.7 in [125, p. 63]. Thus Weyl fractional derivatives WDα+ with α ∈ C are continuous
endomorphisms ofEW (R).

It was mentioned in Section 8.1 of [54, p. 130] that the locally convex space
EP−(R) = S(R) + (E(R) ∩ D′+(R)) can be understood as a translation invariant
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reflected version of the “space of good functions E” from [126], which consists of
rapidly decreasing smooth functions on [0,∞[. In Chapter VII of [19, p. 236] this
space is denoted as S and in [16, p. 155] it is written as S+(R1+). The set of weights
W = P− + (P)

�
C+ fulfills the identityEW (R) = S(R)+ [OM (R) ∩D′+(R)] = S+

whereS+ is the space from [16, p. 146]. In [16, p. 147] it is claimed misleadingly that
the “topology in S+ is easily defined by means of a countable set of norms” although
this does not hold true for the topology ofEW (R).

Consider now the set W = (P−)
�
C+ of weights. In this case, as mentioned in [125,

p. 67], the dual space ofEW (R) = OM (R) +D′+(R) ∩E(R) is the space

(EW )′ = O′
M (R) + [D′F (R) ∩D′+(R)] (6.4)

whereD′F (R) is the space of distributions with finite order [117, p. 339]. This permits
to define adjoint Weyl fractional integrals aWIα+ for α ∈ H by

〈aWIα+ f , ϕ〉 := 〈 f , WI
α+ϕ〉 (6.5)

and adjoint Weyl fractional derivatives aWDα+ with α ∈ C by

〈aWDα+ f , ϕ〉 := 〈 f , WD
α+ϕ〉 (6.6)

for all ϕ ∈EW (R). Their domains are

dom
(

aWD
α+
)

= (EW (R))′ = dom
(

aWI
α+
)

(6.7)

with W = (P−)
�
C+ and α ∈ C resp. α ∈ H. It is known from [5, p. 245] that

exp(ix2) ∈ O′
C \O′

M and thus that exp(ix2) ∈ (O′
C +D′+) \ (EW )′. Comparing this

with dom
(

Iα+
)

in (7.26) below shows that the adjoint extended Weyl operators can be
extended further using Schwarz’ approach.

6.2 Lizorkin and Rubin (R1)

Interpreting fractional derivatives and integrals as Fourier multiplication operators is
a common approach, which will be discussed below in Section 8. It led Lizorkin [42,
43] already in the early 1960’s to introduce the space

SLz :=
⎧

⎨

⎩

ϕ ∈ S(R) :
∫

R

xkϕ(x)dx = 0, k ∈ N0

⎫

⎬

⎭

(6.8)

named after him. The Lizorkin spaceSLz contains those (rapidly decreasing) Schwartz
test functions, that are orthogonal to all polynomials. It carries the subspace topology
inherited from the Schwartz space S(R).
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The Lizorkin fractional derivative LzDα± of order α ∈ R is then defined by the
method of adjoints for f ∈ (SLz)

′ as

〈LzDα± f , ϕ〉 := 〈 f , WD
α∓ϕ〉 (6.9)

for all ϕ ∈ SLz. The domain is

dom
(

LzD
α±
)

= (SLz)
′ = S′(R)/P(R) (6.10)

where S′(R) is the space of tempered distributions and P(R) the space of polyno-
mials [16, Sec. 8.2]. The operators LzDα± obey the general semigroup or index law

LzDα± LzD
β
± = LzD

α+β
± for all orders α, β ∈ R.

Lizorkin fractional operators have not foundmuch attention or application, because
multiplication of ϕ ∈ SLz(R) with a power functions leads out of Lizorkin space.
This circumstance rendersSLz virtually useless as a domain for fractional differential
equations.

Lizorkin’s approach for fractional integration was considered in [127] for the half-
axis R0+, and with Fourier transformation replaced by Mellin transformation. Let
S(R0+) be the space consisting of restrictions of Schwartz functions from the line to
the half-line and define

S+(R0+) :=
{

ϕ ∈ S(R0+) : lim
x→0

x−kϕ(m)(x) = 0,∀k, m ∈ N0

}

(6.11)

Φ+(R0+) :=
⎧

⎨

⎩

ϕ ∈ S+(R0+) :
∞
∫

0

xkϕ(x)dx = 0,∀k ∈ N0

⎫

⎬

⎭

(6.12)

Φα(R0+) :=
⎧

⎨

⎩

ϕ ∈ S+(R0+) :
∞
∫

0

xα−kϕ(x)dx = 0,∀k ∈ N0

⎫

⎬

⎭

, α ∈ H (6.13)

with topology generated by the seminorms

qk(ϕ) := sup
m≤k

sup
x>0

(1+ x)k |ϕ(m)(x)| (6.14)

with k ∈ N0. The Rubin fractional integrals of order α ∈ H are defined implicitly by
demanding that

〈

RbI
α− f , ϕ

〉

:=
〈

f , RLI
α
0+ϕ

〉

(6.15)
〈

RbI
α
0+ f , ϕ

〉

:=
〈

f , WI
α−ϕ
〉

(6.16)
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holds for all ϕ ∈ Φ+(R0+) in the first, resp. ϕ ∈ Φα(R0+) in the second relation. The
domains are

dom
(

RbI
α−
)

= (Φ+(R0+))′ (6.17)

dom
(

RbI
α
0+
)

= (Φ−α(R0+))′ (6.18)

the topological duals of the test function spaces Φ+(R0+) and Φ−α(R0+).

6.3 Erdelyi-McBride (R1)

Let α ∈ C, Reα > 0, m > 0. The Erdelyi-Kober operators are defined for functions
f : ]0,∞[→ R by [85]

(Iη,α
m f )(x) = mx−mη−mα

�(α)

x
∫

0

(

xm − ym)α−1
ymη+m−1 f (y)dy (6.19)

(K ζ,α
m f )(x) = mxmζ

�(α)

∞
∫

x

(

ym − xm)α−1
y−mζ−mα+m−1 f (y)dy (6.20)

and they are studied in [122, 123] with ζ = η+1−m−1 as Iη,α
m , K η+1−m−1,α

m withm >

0, complexα andηwithReα > 0,Reη > m−1−1 andRe(η+α) > m−1−1.Although
Erdelyi-Kober operators are related to Riemann-Liouville and Weyl operators as [85]

(K 0,α
1 f )(x) = WI

α−(x−α f ) (6.21)

(I0,α1 f )(x) = x−α(RLI
α
0+ f )(x) (6.22)

they are not identicalwith them.The extension to spaces of distributions via themethod
of adjoints is based on “fractional integration by parts” [128]

b
∫

a

(RLI
α
a+ f )(x)g(x)dx =

b
∫

a

f (x)(RLI
α
b−g)(x)dx (6.23)

which is written in [122, eq. (1.10)] as

〈

RLI
α
0+ f , g

〉

=
〈

f , WI
α−g
〉

(6.24)

for a = 0 and b = ∞. The idea is to define the Erdelyi-McBride fractional integral
EMIα0+ f of a distribution f ∈ D′+ by the right hand side of this relation, which remains
well defined although in general WIα−g /∈ D.
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A suitable space of test functions for the Erdelyi-Kober operators is constructed in
[123]. Let a ∈ R. The set of test functions

Ia :=
∞
⋃

�=1

Ia+�−1,� (6.25a)

Ia,� :=
{

f ∈E(]0,∞[) : f (x) = 0 for x > �, pa,k( f ) < ∞, k ∈ N0
}

, � > 0
(6.25b)

is equipped with seminorms

pa,k( f ) := sup
x>0

{

x1−a+k | f (k)(x)|
}

, k ∈ N0 (6.26)

determining the topology on Ia,�. The space D(]0,∞[) is dense in Ia . Similar
but somwhat larger spaces were proposed in [122] and [129]. The Erdelyi-McBride
pseudo-fractional integral EMIα0+ of order α ∈ C is defined by demanding that

〈

EMI
α
0+ f , g

〉

:= �(1− α)
〈

f , WI
α−(Y1−α · g)

〉

(6.27)

holds true for all g ∈ Ia . Its domain is the dual space

dom
(

EMI
α
0+
)

= I′
a (6.28)

with a < 1. It contains distributions of order zero having limited growth at 0+ but
arbitrary growth at +∞. For fixed α the operator EMIα0+ is bounded onI′

a .
The Erdelyi-McBride calculus of distributions is restricted to the half axis. Hence

it is not translation invariant and cannot be applied e.g. to the constant function on R.
Erdelyi-McBride operators for distributions combine convolution with multiplication.
Because they differ in this respect from ordinary fractional integrals operators we have
called them pseudo-fractional integral operators.

6.4 Braaksma-Schuitman (R1)

In [130] multiplicative convolution and Mellin transformation are employed to study
the Erdelyi-Kober operators Iη,α

m and K η,α
m . Let λ,μ ∈ R∪{±∞}, λ < μ. Let (λn)

∞
n=0

and (μn)∞n=0 be sequences of real numbers with λn ↓ λ and μn ↑ μ and λn < μn for
all n ∈ N. The space T (λ, μ) is defined as the space of all functions ϕ ∈ E(0,∞)

with the property

pn(ϕ) = sup
t>0

p=0,1,...,n
λn≤c≤μn

∣

∣

∣tc+p f (p)(t)
∣

∣

∣ < ∞ (6.29)
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for all n ∈ N. T (λ, μ) is a locally convex space with topology generated by the norms
pn . The Erdelyi-Kober operators are written multiplicatively as Mellin convolutions

(Iη,α
m f )(x) = m

�(α)

x
∫

0

{(

x

y

)m

− 1

}α−1 ( x

y

)−m(α+η)

f (y)
dy

y
(6.30)

for all f ∈ T (λ, μ), m(Reη + 1) > λ and

(K η,α
m f )(x) = m

�(α)

∞
∫

x

{

1−
(

x

y

)m}α−1 ( x

y

)mη

f (y)
dy

y
(6.31)

for all f ∈ T (λ, μ), Reα > 0 and mReη + μ > 0.
Given a positive number a > 0, let T ([0, a], λ) denote the subspace of T (λ,∞)

of functions with support contained in [0, a]. Similarly, let T ([a,∞), μ) denote the
subspace of T (−∞, μ) of functions with support contained in [a,∞). It is shown in
[130] that Iη,α

m is a continuous operator of T ([a,∞), μ) into itself, ifμ ≤ m(1+Reη),
and it is an automorphism, ifμ ≤ m(1+Reα+Reη) . Similarly, K η,α

m is a continuous
operator of T ([0, a], λ) into itself, if λ ≥ −mReη and it is an automorphism if
λ ≥ −mRe(α + η).

The operators Iη,α
m and K η,α

m are then extended by transposition to distributions as
continuous operators with domains

dom
(

Iη,α
m

) = T ′([0, a], 1− μ), μ ≤ m(1+ Reη) (6.32)

dom
(

K η,α
m

) = T ′([a,∞), 1− λ), λ ≥ −mReη (6.33)

where a > 0. Setting η = 0 and m = 1 leads to the definition of the Braaksma-
Schuitman pseudo-fractional integral of order α ∈ C via the relation

〈

BSI
α
0+ f , g

〉

:=
〈

f , K 0,α
1 g

〉

(6.34)

for all g ∈ T ([a,∞), 1− λ), λ ≥ 0, a > 0.
As in the Erdelyi-McBride case also the Braaksma-Schuitmann approach is not

translation invariant. Braaksma-Schuitmann operators cannot be compared with ordi-
nary fractional calculus operators insofar as they involve not only convolution but also
multiplication with fractional powers.
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6.5 Lamb (R1)

The distributional fractional calculus developed in [131, 132] is based on fractional
powers of the integral operators J and K defined as

(Jϕ)(x) =
x
∫

−∞
ϕ(y)dy, x ∈ R (6.35a)

(Kϕ)(x) =
∞
∫

x

ϕ(y)dy, x ∈ R (6.35b)

on test function spaces (1 ≤ p < ∞, μ ∈ R)

Dp,μ := { f ∈ D(R) : e−μx f (x) ∈ DL p
} = DL p · eμx (6.36)

D∞,μ :=
{

f ∈ D(R) : e−μx f (x) ∈ C0
v

}

= Ḃ · eμx (6.37)

whereDL p is the space of smooth functions such that all derivatives are in L p (defined
in [5, p. 199]). For p = ∞ the space DL p (R) is replaced by the subspace of those
functions from DL p , that also converge to zero at infinity, because D is dense in the
latter but not the former. Lamb defined the spaces Dp,μ for μ ∈ C [131, Def. 3.1],
although they do not depend on any non-zero imaginary part of μ. Hence it suffices
to parametrize them with μ ∈ R as we do it here.

The spaces Dp,μ are Frechet spaces equipped with the topology generated by the
seminorms

q p,μ
k (ϕ) =

∥

∥

∥

∥

dk

dxk
(e−μx f (x))

∥

∥

∥

∥

p
(6.38)

where ‖ · ‖p is the usual L p-norm. If μ > 0, then J is a homeomorphism of Dp,μ

onto Dp,μ with inverse J−1 = d/dx . If μ < 0, then K is a homeomorphism of Dp,μ

onto Dp,μ with inverse K−1 = −d/dx [131, Thm 3.4] .
Fractional powers of a linear and continuous operator A = J , K on Dp,μ are

defined by the formula

(−A)α f = − sin(πα)

π

∞
∫

0

λα−1
[

(λ1−A)−1− λ

(1+λ2)

]

A f dλ−sin
(πα

2

)

A f

(6.39a)

(−A)α f = (−A)α−n(−A)n f (6.39b)

for the α-th power of a linear and continuous operator A on X with continuous inverse
A−1. Here 0 < Reα < 2 in eq. (6.39a) and n < Reα < n + 2, n = ±1,±2, . . . with
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(−A)n = (−A−1)m when n = −m, m > 0 in eq. (6.39b). The class of admissible
operators is restricted by the conditions:

(1) (0,∞) ⊂ ρ(A), where ρ(A) is the resolvent set of A.
(2) For each qk ∈ {qk}∞k=0 there exists a seminorm p ∈ {qk}∞k=0 such that

qk

([

Cλ(λ1− A)−1
]n

f
)

≤ p( f ) (6.40)

for all f ∈ X where λ > 0, n = 1, 2, . . . and the constant C > 0 is independent
of f , λ and n.

These conditions ensure convergence of the integral in (6.39a), intepreted as an
improper Riemann integral. It is shown in [131] that on Dp,μ the fractional pow-
ers of J and K are the Weyl fractional integrals (J )α = WIα+ and (K )α = WIα−.

The integrals J and K are then extended to operators ˜J and ˜K on the dual spaces
D′

p,μ by

〈˜J f , ϕ〉 = 〈 f , Kϕ〉 , 〈˜K f , ϕ〉 = 〈 f , Jϕ〉 (6.41)

where f ∈ D′
p,μ, ϕ ∈ Dp,μ and 〈·, ·〉 is the bilinear pairing of the dual system

(D′
p,μ, Dp,μ). Let α ∈ C with Reα > 0. The distributional Lamb fractional deriva-

tives and integrals are defined as the fractional powers of the extendedWeyl fractional
derivatives and integrals

LbI
α+ := (˜J )α (6.42)

LbI
α− := (˜K )α (6.43)

with

dom
(

LbI
α+
)

= D′
p,μ = D′

Lq · e−μx , μ < 0 (6.44)

dom
(

LbI
α−
)

= D′
p,μ = D′

Lq · e−μx , μ > 0 (6.45)

on D′
p,μ where (1/p) + (1/q) = 1.

Although it is defined for functions on the full real axis the Lamb-calculus does not
apply to exp(iωx) or trigonometric functions.

6.6 Khan-Lamb-McBride (R1)

Periodic distributions were considered in [133] with the objective to extend earlier
work of Butzer and Westphal [37] on periodic functions to distributions. In [133]
d = 1 and G = R/2πZ. The spaceA2π of test functions is defined as

A2π := {ϕ ∈ C∞(R);ϕ is 2π -periodic} (6.46)
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the vector space of smooth and 2π -periodic test functions equipped with the topology
generated by the seminorms

pk(ϕ) := ‖Dkϕ‖L2
2π

(6.47)

with k ∈ N0. The direction reversed Liouville-Weyl fractional operators

(LWD
α−ϕ)(x) =

∞
∑

k=−∞
(−ik)αϕke

ikx (6.48)

(LWI
α−ϕ)(x) =

∞
∑

k=−∞
(−ik)−αϕke

ikx (6.49)

are defined for all test functions ϕ ∈ A2π and α > 0.
The dual space A′

2π of A2π is equipped with the weak*-topology [133, p. 267].
The periodic fractional derivative and integral of periodic distributions f ∈ A′

2π are
then defined for α > 0 as

〈pDα+ f , ϕ〉 := 〈 f , LWD
α−ϕ〉 (6.50)

〈pIα+ f , ϕ〉 := 〈 f , LWI
α−ϕ〉 (6.51)

Both operators are endomorphisms on the distributional domain

dom
(

pD
α+ f
)

= dom
(

pI
α+ f
)

= A′
2π (6.52)

as shown in [133].

7 Generalized Schwartz fractional calculus for distributions

Schwartz’ fractional calculus was significantly extended in [53–55]. The extension
is based on generalizing the standard definition (5.7) of convolvability by support.
The generalized convolution was first introduced already in [134] but has remained
relatively unknown (it was rediscovered in [135], see also [136]). It is not usually
discussed in books on distributions. Notable exceptions are [137–139], but even these
books do not give the full picture. Additional information can be found in [135, 136,
140–144]. The generalized concept of convolution allows to extend and unify several
translation invariant definitions of fractional derivatives [55].

7.1 D′-convolution

The generalization of convolution proceeds in two steps. The first step is to define the
distributional integral in away analogous to eq. (3.4) formeasures. BecauseDL∞(Rd),
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Fig. 2 Schematic set-theoretic
illustration of inclusion and
subset relations for the various
domains of definition for
convolution discussed in the
text. The equation numbers refer
to the definitions of
D′-convolution (7.4),
E′-convolution (5.7),
M-convolution (3.17),
L1
loc-convolution (3.13),

C(R0+)-convolution (4.1c), and
d = 1 in (3.13) and (4.1c)

when equipped with a suitable topology [138, p. 11], is dual to D′
L1(R

d), the distri-

butional integral of a distribution f ∈ D′
L1(R

d) is defined as

∫

f := 〈 f , 1Rd

〉

(7.1)

where 1Rd is the constant function on R
d . The second step is to generalize convolv-

ability by support (5.8) (or E′-convolvability) to D′-convolvability by replacing E′
with D′

L1 in (5.8). For x, y ∈ R
d one has ϕ�(x, y) = ϕ(x + y) ∈ E(R2d) and (5.8)

becomes

( f ⊗ g) · ϕ� ∈E′(R2d) (7.2)

when f , g ∈ D′(Rd). Two distributions f , g ∈ D′(Rd) are calledD′-convolvable if
and only if

( f ⊗ g) · ϕ� ∈ D′
L1(R

2d) (7.3)

for ϕ ∈ D(Rd). This condition is always fulfilled if f , g fulfill (5.8), because
E′(R2d) ⊂ D′

L1(R
2d). Finally, D′-convolution of two D′-convolvable distributions

f , g is defined as

〈 f ∗ g, ϕ〉 =
∫

( f ⊗ g) · ϕ� (7.4)

for ϕ ∈ D(Rd). The various definitions of convolution are related as illustrated in
Figure 2.
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D′-convolution generalizes also the convolution formula (2.9) for periodic func-
tions as shown in Section 7.5 below. In addition, it generalizes the convolution of
Radon measures [98], [138, p. 7] defined as continuous linear functionals on the
space K(Rd) of continuous functions with compact support. Two Radon measures
μ, ν ∈ M(Rd) = (K(Rd))′ are convolvable if and only if ϕ�(μ ⊗ ν) is an inte-
grable Radon measure onR2d for each ϕ ∈ Cc(R

d). The spaceM1(Rd) of integrable
measures is defined as the dual ofCv(R

d). Because Radon measures are convolutions
[145, p. 300] and D′-convolution generalizes the convolution of Radon measures,
several results of [49, 50] for Weyl fractional integration of measures are contained in
the more general results for distributions.

Let L1
c(R

d) and Mc(R
d) denote the space of integrable functions with compact

support and the space of compactly supportedmeasures. Then all spaces in the diagram

L1
c(R

d) ⊂ Mc(R
d) ⊂ E′(Rd)

L1(Rd) ⊂ M1(Rd) ⊂ D′
L1(R

d)

∩ ∩ ∩ (7.5)

areD′-convolution algebras [139, p. 69].

7.2 Associativity ofD′-convolution

Let f1, . . . , f p ∈ D′(Rd), d ∈ N, p ∈ N, p ≥ 2. The simultaneous D′-convolution
is defined as

( f1 ∗ · · · ∗ f p)(ϕ) =
∫

( f1 ⊗ · · · ⊗ f p) · ϕ p� (7.6)

whenever ( f1, . . . , f p) isD′-convolvable, i.e. whenever

( f1 ⊗ · · · ⊗ f p) · ϕ p� ∈ D′
L1(R

dp) (7.7)

for all ϕ ∈ D(Rd). Here ϕ p�(x1, . . . , x p) = ϕ(x1+· · ·+x p). This definition follows
Definition 5 in [136, p. 373] and remarks from [138, Sec. 1.3]. Convolution is linear
and convolvability is preserved under addition in each factor. For the construction of
convolution modules the following law of associativity is fundamental.

Proposition 2 (Thm 2 in [143]) If the p-tuple ( f1, . . . , f p), p ∈ N, p ≥ 2 with
fi ∈ D′ \ {0} is D′-convolvable, then

f1 ∗ · · · ∗ f p = f1 ∗ · · · ∗ fq ∗ ( fq+1 ∗ · · · ∗ f p) (7.8)

for q ∈ {1, . . . , p − 2}, where the right hand side is well defined in the sense of
definition (7.6)

The set of lower semicontinuous functions f : Rd → [0,∞] becomes a semigroup
for convolution as group operation, if convolution is pointwise defined. This follows
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from Fubini’s theorem [99, p. 55] and allows to formulate the following convenient
convolvability criterion:

Proposition 3 A p-tuple ( f1, . . . , f p), p ≥ 2, fi ∈ D′ is convolvable if and only if
for all test functions ϕk ∈ D the convolution of the regularisations

|ϕ1 ∗ f1| ∗ · · · ∗ |ϕp ∗ f p| (7.9)

is a finite-valued function.

Proof The criterion is equivalent to the criterion given in [140, p. 19] after a linear
transformation of Rdp. ��

The construction of convolution duals (F)∗M , perfection (F)∗∗M and (F)∗MM for
measures can be carried over to distributions andD′-convolution by replacingM with
D′. Let 〈F〉C,+ (resp. 〈F〉C,+,∗) denote the complex linear span (resp. convolution
algebra) generated by F ⊆ D′ (resp. by F ⊆ D′ with (F)∗MD′ �= {0}).
Theorem 2 (Thm 8, [54]) Let F ⊆ D′. If (F)∗MD′ �= {0}, then every tuple from F is
convolvable and (F)∗MD′ is a convolution module over 〈F〉C,+,∗.

Denote as I+ the space of lower semicontinous functions f : Rd → [0,∞], and
let W ⊆ I+. The W -weighted L1-space of distributions is defined as

D′
L1,W = { f ∈ D′ : ∀w ∈ W : ‖(ϕ ∗ f )w‖1 < ∞} . (7.10)

Its definition depends only on the translation invariant cone ideal generated by W ,
which is defined as

〈W 〉tici =
{

v ∈ I+ : ∃wk ∈ W , xk ∈ R
d : v ≤ Tx1w1 + · · · + Txn wn

}

, (7.11)

where (Tx f )(y) = f (y − x) is translation by x .

Proposition 4 Let F ⊆ D′(Rd). The convolution dual (F)∗D′ and the maximal module
(F)∗MD′ can be represented as weighted L1-spaces of distributions

(F)∗D′ = D′
L1,W , with W =

{

|ϕ ∗ qf | : ϕ ∈ D(Rd), f ∈ F
}

(7.12)

(F)∗MD′ = D′
L1,V , with V = 〈W 〉∗ (7.13)

where 〈W 〉∗ is the set of simultaneous convolution products formed with elements in
W , and qf is the reflection of f defined in (10.37).

Proof With the notation w = |ψ1 ∗ f1| ∗ · · · ∗ |ψp ∗ f p| one obtains

‖(ϕ ∗ g)qw‖1 = (|ϕ ∗ g| ∗ |ψ1 ∗ f | ∗ · · · ∗ |ψp ∗ f p|)(0) (7.14)

for all g, fk ∈ D′ and ϕ,ψk ∈ D. Applying Proposition 3 concludes the proof. ��
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7.3 Generalized Schwartz fractional derivative

To formulate the extension of Schwartz’ fractional derivatives SDα+ and integrals SIα+
succinctly the following discussion is presented for d = 1. The extension to d �= 1 is
considered at the end.

The generalized Schwartz fractional derivative Dα+ is defined exactly as the
Schwartz derivative in eq. (5.4) as

Dα+ f := f ∗ Y−α (7.15)

forα ∈ Cbut nowusing theD′-convolution (7.4) resulting in the significantly enlarged
domain

dom
(

Dα+
) = (Y−α)∗D′ (7.16)

for α ∈ C. The generalized Schwartz fractional integral is defined as a derivative of
negative order Iα+ := D−α+ for α ∈ C.

Using (7.12) and some simple calculations the domain (7.16) can be describedmore
explicitly. Let ϕ ∈ D(R). For α ∈ C \ (−N0) there exists C < ∞ such that

∣

∣

∣

∣

(

1− y

x

)α−1 − 1

∣

∣

∣

∣

≤ C
y

x
(7.17)

for all x ≥ 2y > 0. Using this inequality gives the asymptotic behaviour

(Yα ∗ ϕ)(x) = xα−1

�(α)

∫

ϕ(y)
(

1− y

x

)α−1
dy

= Yα(x)

∫

ϕ(y)dy +O(xα−2) (7.18)

for x →∞. The extended domains can now be described as weighted L1(R)-spaces.
Define the power logarithmic weights

wμ(x) := wμ,0(x) (7.19)

wμ.n(x) :=
(

1+ x2
)μ/2 [

1+ log
(

1+ x2
)]n

(7.20)

for μ, x ∈ R, n ∈ N0. Using the shorthand notation f+ := f ·
 and f− := f · q
, an
asymptotic expansion shows that

〈|Yα ∗D|〉tici =
〈

wReα−1+
〉

tici
(7.21)
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for α ∈ C \ (−N0). Thus, the enlarged domain dom
(

Dα+
)

is

(Y−α)∗D′ = D′
L1,w−Reα−1−

=
⎧

⎨

⎩

f ∈ D′(R); ∀ϕ ∈ D(R) :
∞
∫

1

|( f ∗ ϕ)(−x)|
xReα+1 dx < ∞

⎫

⎬

⎭

(7.22)

for α ∈ C \ N0 by virtue of Proposition 4.

Theorem 3 The index law

Iα+(Iβ+ f ) = Iα+β
+ f (7.23)

holds if {α, β} ∩ (−N0) �= ∅, or if f ∈ D′
L1,vα,β

with vα,β := wReα−1− ∗ w
Reβ−1
− .

Proof Apply Propositions 2 and 3 to the simultaneous convolution Yα ∗ Yβ ∗ f . ��
Proposition 5 Convolutions of power logarithmic weights satisfy

〈

w
p−1
+ ∗ w

q−1
+
〉

tici
=
〈

w
p+q−1
+

〉

tici
for p, q > 0, (7.24a)

〈

w−1+ ∗ w
−1,n
+

〉

tici
=
〈

w
−1,n+1
+

〉

tici
for n ∈ N0, (7.24b)

〈

w
p−1
+ ∗ w

q−1
+
〉

tici
=
〈

w
max{p,q}−1
+

〉

tici
for p < 0 or q < 0. (7.24c)

Proof Equations (7.24a) and (7.24b) are contained in [146, Lemma 2.2]. Equation
(7.24c) follows from [147, VIII.8]. ��

Let H := {z ∈ C : Rez > 0}, H := {z ∈ C : Rez ≥ 0} and H0 := H ∪ {0} and
define the following sets

P± := {wn± : n ∈ N
}

, (7.25a)

Q± := {wq
± : q < −1

}

, (7.25b)

R± :=
{

w
−1,n
± : n ∈ N0

}

(7.25c)

of weights. ThenD′
L1,P− = O′

C +D′+.

Theorem 4 Let α ∈ C. The maximal invariant domain of the Schwartz fractional
integral is given by

dom
(

Iα+
) = (Yα)∗MD′ =

⎧

⎪

⎨

⎪

⎩

D′
L1,P− if Reα > 0,

D′
L1,R− if Reα = 0 and α �= 0,

(Yα)∗D′ if Reα < 0 or α = 0.

(7.26)
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Fractional integrals with orders α ∈ C define a group operating bijectively onD′
L1,P− .

Fractional integrals with orders α ∈ iR define a group operating bijectively on
D′

L1,R− . Fractional integrals with orders α ∈ −H define a semigroup operating on

D′
L1,R− . Fractional integrals with orders α ∈ −H define a semigroup operating on

D′
L1,Q− .

Proof Apply Proposition 4, Theorem 2 and Proposition 5. ��

In [119, p. 126] it has been argued at length that fractional derivatives of the power
function x �→ xn, n ∈ N do not exist in general, not even in the sense of distributions.
The generalized Schwartz derivative Dα+(xn) defined above, however, exists if and
only if α ∈ N0 or α ∈ C with Reα > n.

7.4 Discrete Grünwald-Letnikov calculus and the continuum limit

This section discusses discretized fractional integrals and derivatives on domains of
sequences and distributional domains in analogy with the continuous case. Discretized
functions are sequences, i.e. functions defined ondom ( f ) = hZ instead ofR for some
step size h > 0. Let ChZ be the space of all discrete functions hZ → C. Analogous
to the monomials Yα from (5.2) define the discrete power function as

yα,h(hk) :=
⎧

⎨

⎩

(−1)k
(

α

k

)

hα k ∈ N0

0 k ∈ Z \ N0

(7.27)

for α ∈ C and h > 0. Define the associated discrete Grünwald-Letnikov fractional
derivative as

dGLD
α+,h f (hk) :=

∑

l∈Z
f (h(k − l))yα,h(hl) (7.28)

for k ∈ Z and f ∈ dom
(

dGLDα+,h

)

with the natural domain

dom
(

dGLD
α+,h

)

:=
{

f ∈ C
hZ :

∑

k∈N

| f (−hk)|
kReα+1 < ∞

}

(7.29)

for α ∈ C \ N0 and dom
(

dGLDα+,h

)

= C
hZ for α ∈ N0. Thus, dGLDα+,h is the discrete

convolution operator (·)∗yα,h on the discrete convolution dual of {yα,h}. The operators
(7.28) were considered, for example, in [148]. With Equation (7.29) we provide a
precise definition of their natural domain.
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Every discrete function f ∈ C
hZ can be identified with a distribution δhZ( f ) ∈

D′(R) (even with a Radon measure) via

δhZ( f ) :=
∑

k∈Z
f (hk)δkh (7.30)

where δx is the Dirac distribution at x ∈ R and h > 0 the step size. The distribution
corresponding to yα,h is

Yα,h := δhZ(yα,h) =
∑

k∈Z
yα,h(hk)δkh . (7.31)

The generalized Grünwald-Letnikov fractional derivative of order α ∈ C with step
h > 0 is then defined as

GLD
α
h f := f ∗ Y−α,h =

∑

k∈N
y−α,h(hk)Tkh f (7.32)

where (Tx f )(y) := f (y − x) is the translation operator. The domain is

dom
(

GLD
α
h

)

= (Y−α,h
)∗
D′ = (Y−α)∗D′ . (7.33)

The definition (7.32) can be understood in terms ofD′-convolution or in terms of the
series on the right hand side, that is absolutely convergent inD′. The second equality
in (7.33) is proved analogous to (7.22).

Proposition 6 Let α ∈ C \ −N0 and ϕ ∈ D(R). There exist C, x ∈ R+ such that

∣

∣(Yα − Yα,h) ∗ ϕ
∣

∣ ≤ h · C · T−xw
Reα−1+ for all 0 < h ≤ 1. (7.34)

Thus, Yα,h → Yα with respect to the normal topology T∗((Yα)∗∗D′) for all α ∈ C.

Proof The estimate (7.34) is proved similar to Theorem 1.3 in [90]. The second state-
ment is clear from the definition of the normal topology T((Yα)∗∗D′) in Definition 8
from [55] and Theorem 3.11 in [149]. ��

Proposition 6 and Theorem 8 in [55, p. 143] imply that

lim
h↘0

dGLD
α+,h f = f ∗

(

lim
h↘0

Y−α,h

)

= f ∗ Y−α = Dα+ f (7.35)

for all f ∈ (Y−α)∗D′ .
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7.5 Periodic distributions

7.5.1 Induced kernels for convolution with periodic distributions

Fractional derivatives and integrals for periodic functions and distributions were
already discussed in Sections 2.1, 2.2, 2.5 and 6.6. They are naturally induced by
their counterparts on the real line or on the integers.

Periodic functions can be identified with functions on the unit circle understood
as the quotient R/2πZ. More generally, consider two commutative Lie groups G, H .
Recall, that every commutative Lie group is isomorphic to R

a × Z
b × (R/Z)c × D

for some a, b, c ∈ N0 and a finite Abelian group D. Below, G = R or G = hZ and
H = 2πZ with h = 2π/�, � ∈ N will be considered.

Let A : G → H be an affine mapping, i.e. a homomorphism followed by a shift y
with y ∈ H . Define the image A( f ) of a distribution f ∈ D′(G) under A as

〈A( f ), ϕ〉 := 〈 f · (ϕ ◦ A), 1G〉 (7.36)

for all ϕ ∈ D(H), whenever this is well defined. The image of a distribution under a
mapping is analogous to the image of a Radon measure under a mapping, see [97, Ch.
V, §6, No. 4, Def. 2] or Subsection 3.3. On the other hand, the pullback of a distribution
f ∈ D′(H) under A is defined by (the arrow under the limit sign means convergence
inE′(H))

〈A∗( f ), ϕ〉 := lim
ψ→δ

〈( f ∗ ψ) ◦ A, ϕ〉 (7.37)

for all ϕ ∈ D(G). This extends the classical definition of A∗( f ) := f ◦A for functions
f ∈ C(H). See [116, Ch. VI] for a more general discussion of pullbacks.
Let H ↪→ G → G/H be a short exact sequence of commutative Lie groups and

denote the projection as PH : G → G/H . The pullback P∗H is injective on D′(G/H)

and induces a bijection on its range D′
H (G), where D′

H (G) denotes the set of dis-
tributions from D′(G) that are invariant under H . The convolution of a distribution
g ∈ D′

L∞(G/H) with the projected kernel PH ( f ) of a distribution f ∈ D′
L1(G) is

related to convolution with the original kernel f via

P∗H
[

PH ( f ) ∗G/H g
] = f ∗G P∗H (g). (7.38)

This can now be applied to the continous case where G = R with H = 2πZ and to
the discrete case where G = hZ with H = 2πZ.

In the special case G = R and H = Z equation (7.38) follows from

∫

R/Z

P( f )(ỹ)g(x − ỹ)d ỹ =
∫

R/Z

∑

z∈ỹ

f (z)g(x − ỹ)d ỹ =
∫

R

f (y)P∗
Z
(g)(x − y)dy

(7.39)
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for x ∈ R, f ∈ L1(R) and g ∈ L1(R/Z) via Fubini’s Theorem and a unique contin-
uous extension argument using the continuity of ∗: D′

L1 ×D′
L∞ → D′

L∞ .

7.5.2 Continuous case

Here G = R with H = 2πZ. The space E(R/2πZ) of test functions on the unit
circle is isomorphic to the space of periodic test functions A2π from [133]. Thus
D′(R/2πZ) is isomorphic toA′

2π . Define the space of 2π -periodic distributions as

D′
2π (R) := { f ∈ D′(R);T2π z f = f for all z ∈ Z}. (7.40)

Distributions fromD′(R/2πZ) are lifted uniquely as

D′(R/2πZ) → D′
2π (R)

f �→ f2π := P∗2πZ( f ) (7.41)

fromD′(R/2πZ) toD′
2π (R). For α ∈ H one has Y−α ∈ D′

L1(R) and

P2πZ(Y−α) = Ψ−α (7.42)

extending Ψα from eq. (2.11) to negative indices, which is then not convergent as a
function, but only as a distribution. The series

Ψα(x) =
∑

k∈Z×
(ik)αeikx (7.43)

converges absolutely in D′(R/2πZ) [5, Ch. VII §1] for all α ∈ C. Eqs. (7.38) and
(7.42) imply that for all α ∈ H ∪ {0} and for f ∈ D′

2π (R) one has

pD
α f = Ψ−α ∗ f = Y−α ∗ f2π = Dα+ f2π (7.44)

where the fractional derivative pDα on dom
(

pDα
) = D′(R/2πZ) is defined as con-

volution with Ψ−α . This fractional derivative is naturally induced by the generalized
Schwartz fractional derivative Dα+ on the space of periodic distributions.

7.5.3 Discrete case

In the discrete case one has G = hZ with H = 2πZ. Now the projected discrete
Grünwald-Letnikov kernel is defined as

P2πZ(y−α,h) = ψ−α,h,� (7.45)
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Fig. 3 Diagram illustrating the continuum limit h → 0 and the projections P�, resp. P2π , of fractional
derivative operators on discrete dGLDα

h , resp. continuous D
α+, distributions to their periodic counterparts

pdGLDα
h,�

, resp. pDα . The horizontal arrows hold for all α ∈ C, the vertical arrows for α ∈ H ∪ {0}

with � ∈ N and h = 2π/� and reads as

ψ−α,h,�(h(m + �Z)) = 1

hα

∑

k∈m+�N0

(−1)k
(

α

k

)

(7.46)

form ∈ N0 and 0 ≤ m < �. The generalized Grünwald-Letnikov fractional derivative
of order α ∈ C with step h = 2π/� and period � is then defined as

GLD
α
h,� f := f ∗ ψ−α,h,� (7.47)

with domain

dom
(

GLD
α
h,�

)

= a(hZ/2πZ), (7.48)

wherea(hZ/2πZ) is the space of all sequences on the quotient hZ/2πZ, which can
be identified with the space of periodic sequences with period � = 2π/h. For α ∈ C

the limit

lim
�→∞�α

�−1
∑

m=0

∑

k∈N0

(−1)k
(

α

m + k�

)

δ2πm/� = Ψ−α (7.49)

recovers the kernel on R/2πZ, extending the definition of Ψ−α to α ∈ iR \ {0}.
Due to the generality of D′-convolution the continuum limit from discrete to

continuous fractional derivatives and the projection from non-periodic to periodic
distributions can be freely combined as illustrated in Figure 3.

7.6 Extensions to higher dimension

Let α = (α1, . . . , αd) ∈ C
d , x = (x1, . . . , xd) ∈ R

d , and

Y(d)
α =

d
⊗

i=1

Yαi = Yα1 ⊗ . . . ⊗ Yαd (7.50)
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the multinomial homogeneous distribution, which generalizes the one-dimensional
monomial distribution from (5.2). The generalized Schwartz fractional integral Iα+ is
defined as the mapping

Iα+ : D′(Rd) → D′(Rd)

f �→ f ∗ Y(d)
α (7.51)

for allD′-convolvable (d + 1)-tuples ( f ,Yα1 , . . . ,Yαd ). Its inverse

Dα+ f = f ∗ Y(d)
−α = Iα+ f (7.52)

is the generalized Schwartz fractional derivativeDα+. On the severely restricted domain
D′(Rd

0+) ⊂ D′(Rd) the generalized law of additivity

Iα+ Iβ+ = Iα+β
+ (7.53)

holds true for all α, β ∈ C
d [52]. Note thatD′(R0+) ⊂ dom

(

SDα+
)

, even for d = 1.
Another often studied generalization of fractional derivatives to higher dimension

are fractional powers (−�)α/2 of the (negative) Laplacian with general α ∈ C [32,
45, 150–154]. These operators differ from the operators discussed so far, and in par-
ticular from the generalized Schwartz fractional derivative Dα+, because their kernel is
different. The generalized fractional Riesz derivative RDα for distributions is defined
as the convolution mapping

RD
α : (R−α)∗D′ → D′(Rd)

f �→ RD
α f = (−�)α/2 f := R−α ∗ f (7.54)

where

Rα(x) := �((d − α)/2)

2απd/2�(α/2)
|x |α−d (7.55)

for all α ∈ H \ (d + 2N0), is the Riesz kernel [32], [136, p. 369], [152]. Because the
Riesz kernels are convolvable if and only if Re(α + β) < d the fractional Laplacian
becomes an endomorphism on the domain

dom
(

RD
α
)

=
{

f ∈ D′(Rd); ∀ϕ ∈ D(Rd) :
∫ |(ϕ ∗ f )(x)|

(1+ x2)d+α
dx < ∞

}

(7.56)

for α > 0, α /∈ 2N [55, Sec. 8].
This domain was envisaged in [151, 152] as the dual of the space

Dα(Rd) =
{

ϕ ∈E(Rd); ∀β ∈ N
d
0 : sup ‖(∂βϕ)(1+ x2)d+α‖∞ < ∞

}

(7.57)
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equipped with the seminorms ϕ �→ ‖(∂βϕ)(1 + x2)d+α‖∞ and β ∈ N
d
0 . But with

this topology the dual (Dα(Rd))′ is not contained in D′(Rd), contrary to statements
in [151, Sec. 2.1] and [152], becauseD(Rd) is not dense inDα(Rd). However, using
the seminorms ϕ �→ ‖(∂βϕ)(1 + x2)d+αψ‖∞ with ψ ∈ Cv(R

d) and β ∈ N
d this

shortcoming can be repaired similar to [138, Prop. 1.3.1]. For more details see [55]
and [155, II.5.d]

We remark also that the test function space T introduced for fractional powers of the
negative Laplace operator in Definition 3.1 [156, p. 261] is nothing but T = DL1(Rd).
Therefore its dual is T′ = D′

L∞(Rd), which is smaller than our domain dom
(

RDα
)

above. This follows from the structural properties of amalgam spaces described in
[155, Sec. II.3]

For d = 1 the generalized fractional Riesz derivatives enjoy special properties [55].
An example is the factorization into causal and anticausal fractional derivatives

RD
2α f = (−�)α f = Dα+(Dα− f ) = Dα−(Dα+ f ) (7.58)

for Reα > 0 and all f ∈ dom
(

Dα+
)∩ dom

(

Dα−
)

. Thus, the factorization is valid only
on a strict subdomain of the fractional Laplacian. Note, that the power of the Laplacian
in [55, eq. (8.5)] should be α, not 2α.

8 Laplacemultiplier approach for distributions

Liouville’s formula as used by Weyl [82, Satz 2] defines fractional derivatives as
Laplace multipliers. This mathematical interpretation provides yet another approach
to define fractional derivatives of distributions. At the first glance, Fourier transform
of tempered distributions [5, Ch. VIII] seems to be the right tool for this. However,
defining domains is difficult, because themultiplication of a tempered distributionwith
a continuous function, such as R � x �→ xα , α > 0, is not necessarily well defined.
This issue will be resolved using pointwise defined D′

L1 -Fourier-Laplace transforms
that are based on integration of distributions. This approachwas only brieflymentioned
in [5, Ch.VIII] and has, up to some exceptions such as [139], not been discussed further
in the literature.

Let expz : Rd → C with expz(x) = exp(z · x). Because expz ∈E for all z ∈ C
d a

common approach is to define the Fourier-Laplace transform of a distribution via the
dual system (E′,E) as

L{ f }(z) := 〈 f , exp−iz〉 (8.1)

and then to extend it at least in some subsets of Cd to more general distributions [116,
137, 139, 157]. Using the dual pair (S′,S) Schwartz also studied the Fourier-Laplace
transform as the distribution-valued mapping

{

z ∈ C
d : f expz ∈ S′} � ζ �−→ L

{

f expζ

}∈ S′. (8.2)
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Using the dual pair (D′
L1 ,DL∞) instead, the Fourier-Laplace transform can be under-

stood as a function-valued mapping.
For any f ∈ D′, E ⊆ D′ define the f -dependent set of E-conjugate (Fourier)-

Laplace variables as

L
d( f , E) :=

{

z ∈ C
d : f exp−z ∈ E

}

. (8.3)

TheD′
L1 -Laplace transform of a distribution f ∈ D′(Rd) is defined via the distribu-

tional integral at the points z ∈ L
d( f ,D′

L1) ⊆ C
d as

L{ f }(z) :=
∫

f exp−z . (8.4)

Proofs for the following continuity properties of these Laplace transforms were briefly
sketched in [5, Ch. VIII]:

Theorem 5 Let f ∈ D′. The sets Ld( f ,D′
L1), L

d( f ,O′
C ) and L

d( f ,S′) are of the

form A + iRd where A ⊆ R
d is convex. All three sets have the same interior. The

function

L
d( f ,D′

L1) � z �−→ L{ f }(z) (8.5)

is continuous on P + iRd for every convex polytope P ⊆ Re
(

L
d( f ,D′

L1)
)

. It is

holomorphic on the interior of Ld( f ,S′), where it agrees with the generalized rotated
Fourier-Laplace transform ̂f (iz) in the sense of [116, Sec. 7.4].

Proof The equation D′
L1 · expix = D′

L1 holds for all x ∈ R
d , which proves that

L
d( f ,D′

L1) = Re[Ld( f ,D′
L1)] + iRd .

Let P be a convex polytope with vertices ξ1, . . . ξn ∈ Re[Ld( f ,D′
L1)] ⊆ R

d ,
n ∈ N. Set h := expξ1

+ . . . + expξn
. Then h ∈E, f · h ∈ D′

L1 and

{expz

h
: z ∈ P + i[−R, R]

}

∈ B(DL∞) (8.6)

holds for all R > 0, where B(DL∞) is the set of all bounded subsets of DL∞ . From
this follows P ⊆ L

d( f ,D′
L1), because

f expz = ( f h)
expz

h
∈ D′

L1 ·DL∞ ⊆ D′
L1 (8.7)

for all z ∈ P . This proves that Re[Ld( f ,D′
L1)] is convex.

If P is a convex polytope contained in Re[Ld( f ,D′
L1)] and z a point in its interior,

then expz /h ∈ S and

S′ ·
(expz

h

)

⊆ O′
C (8.8)
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implying z ∈ L
d( f ,O′

C ). Thus Ld( f ,O′
C ) contains the interior of Ld( f ,S′).

Further, if z ∈ P converges to z0 ∈ P , then expz /h converges to expz0 /h in E
and thus also within Bc [138, p. 11]. Because multiplication D′

L1 ×Bc → D′
L1 is

hypocontinuous, it follows that

L{ f }(z) =
∫

f h
expz

h
z→z0−−−→

∫

f h
expz0

h
= L{ f }(z0) (8.9)

and thus L{ f }is continuous on P + iRd .
The convexity of Ld( f ,S′) can be proved in the same way (see [117, p. 191]). For

g ∈ D′
L1(R

d) the function z �→ g̃(z) := D′
L1
〈g, exp−iz〉DL∞ is continuous with at

most polynomial growth by Proposition 1.6.6(2) from [139]. Hence L{ f }(z) = ˜f (iz)
and applying Theorem 7.4.2 from [116] yields analyticity of L{ f }(z) on the interior
of Ld( f ,S′). ��
Remark 1 The injectivity of the Fourier transform onD′

L1 entails the injectivity of the
D′

L1 -Fourier-Laplace transform from Equation (8.4).

Proposition 7 Let f , g ∈ D′, z ∈ C
d and i ∈ {1, . . . , d}.

(1) If ( f , g) is D′-convolvable, then ( f expz, g expz) is also D′-convolvable and

( f expz) ∗ (g expz) = ( f ∗ g) expz . (8.10)

(2) If z ∈ L
d( f ,D′

L1), then

f ∗ expz = L{ f }(z) · expz . (8.11)

(3) If (∂i f , g) and ( f , ∂i g) are D′-convolvable and (ϕ ∗ f ) · (ψ ∗ qg) is vanishing at
infinity for all ϕ,ψ ∈ D, then

(∂i f ) ∗ g = f ∗ (∂i g) (8.12)

Proof Let ϕ ∈ D.

(1): Using ( f expz) ⊗ (g expz) = ( f ⊗ g) exp�z and (ϕ expz)
� = ϕ� exp�z gives

〈( f expz) ∗ (g expz), ϕ〉 =
∫

( f ⊗ g)(ϕ expz)
�

= 〈 f ∗ g, ϕ expz〉 = 〈( f ∗ g) expz, ϕ〉. (8.13)

(2): Equation (8.11) is clear for f ∈ E′ and can be extended to the general case via
approximate units using Lemma 3.5 and Theorem 7.1 from [158].

(3): This follows from Proposition 1 in [159, p. 534] and the remarks subsequent to
Equation (1) in [160, p. 202–203].

��
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Theorem 6 (ConvolutionTheorem) If the pair ( f , g)of distributions isD′-convolvable,
then L

d( f ∗ g,D′
L1) ⊇ L

d( f ,D′
L1) ∩ L

d(g,D′
L1) and

L{ f ∗ g}(z) = L{ f }(z) · L{g}(z) (8.14)

for all z ∈ L
d( f ,D′

L1) ∩ L
d(g,D′

L1).

Proof Let z ∈ L
d( f ,D′

L1) ∩ L
d(g,D′

L1), f , g ∈ D′ and ϕ,ψ ∈ D. Then one has

| f ∗ ϕ| · exp−z ∈ L1(Rd), |g ∗ ψ | · exp−z ∈ L1(Rd) and thus

(| f ∗ ϕ| · |g ∗ ψ |) · exp−z = (| f ∗ ϕ| · exp−z) ∗ (|g ∗ ψ | · exp−z) ∈ L1(Rd) (8.15)

This entailsD′-convolvability of ( f , g, expz) and thus alsoD
′-convolvability of ( f ∗

g, expz). Computing

L{ f ∗ g}(z) · expz = ( f ∗ g) ∗ expz

= f ∗ (g ∗ expz)

= ( f ∗ expz) · L{g}(z)
= L{ f }(z) · L{g}(z) · expz (8.16)

concludes the proof. ��
Corollary 1 Let f ∈ D′(Rd) and κ ∈ N

d
0 . Then L

d( f ,D′
L1) ⊆ L

d(∂κ f ,D′
L1) and

L
{

∂κ f
}

(z) = zκL{ f }(z) (8.17)

for all z ∈ L
d( f ,D′

L1).

Proof It is left to the reader to prove that Ld(∂κδ,D′
L1) = C

d and L{∂κδ}(z) = zd .
Then equation (8.17) follows from the convolution theorem. ��

As stated in Theoreme XXV, 1◦ in [5, p. 201] and the corollary of Proposition 3.5.3
in [117, p. 347] the spaceD′

L1 can be represented as

D′
L1(R

d) =
〈

∂κ f : f ∈ L1(Rd), κ ∈ N
d
0

〉

C,+
=
〈

∂κμ : μ ∈ M1(Rd), κ ∈ N
d
0

〉

C,+ (8.18)

where 〈 · 〉C,+ denotes the linear span. Accordingly, represent f ∈ D′
L1 as the sums

f =∑κ ∂κ fκ =∑κ ∂κμκ with a finite number of fκ ∈ L1(Rd) and μκ ∈ M1(Rd).
Then Corollary 1 above implies that

∫

f =
∫

Rd

f0(x)dx =
∫

Rd

dμ0(x) (8.19)
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holds for the distributional integral. Using this one computes

L{Y−α}(z) = zα (8.20)

for all (α, z) ∈ H
d × H

d . This can be extended to all (α, z) ∈ (H ∪ {0})d × H
d
by

virtue of Theorem 5, and to all (α, z) ∈ C
d ×H

d using Corollary 1.
Let d = 1 and α ∈ C. The Laplace multiplier fractional derivative LTDα is defined

implicitly by the relation

L
{

LTD
α f
}

(z) = zαL{ f }(z) (8.21)

for all z ∈ L( f ,D′
L1)∩H, or z ∈ L( f ,D′

L1)∩H in case Reα > 0 or α = 0. As usual,
the fractional power zα = exp(α(log |z| + i arg(z))) with arg(z) ∈ (−π, π) is taken
on the principal branch. The distribution LTDα f is well-defined due to Remark 1. The
domain of definition

dom
(

LTD
α
)

=
⋃

μ∈M

D′
L1(R) · eμx (8.22)

with the sets

M =

⎧

⎪

⎨

⎪

⎩

R0+ α ∈ H \ N,

R+ α ∈ −H \ {0},
R α ∈ N0,

(8.23)

is smaller than the domain of the corresponding generalized Schwartz fractional oper-
ator from equation (7.16). The Laplace multiplier fractional integral LTIα is defined
as LTIα := LTD−α .

A close relation with Lamb’s operators in Section 6.5 emerges from comparison
with eq. (6.44). The spaces Dp,μ with μ < 0 in (6.44) are an inductive system
with respect to set-theoretic inclusion. If one takes their inductive limit one obtains
the Laplace multiplier domains in (8.22). One finds dom

(

LbIα+
) = dom

(

LTIα
)

for
Reα ≥ 0 and α �= 0, while dom

(

LbDα+
) ⊂ dom

(

LTDα
)

for Reα > 0 or α = 0. The
relation between Lamb’s fractional operators and Laplace multipliers may become
understandable, because zα can be viewed as the fractional power of a multiplication
operator, so that both approaches are based on fractional powers.

9 Towards unification of fractional calculus

9.1 Illustrative examples

To illustrate the greater generality of Dα+ as compared to other fractional deriva-
tives, this subsection collects various examples of functions and distributions
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f : R → C. They show that Dα+ holds some promise for the unification of transla-
tion invariant approaches to fractional calculus. The examples are

A : fA(x) = 1
B : fB(x) = ex

C : fC(x) = eix

D : fD(x) = eix
2

E : fE = e−
√
1+x2

F : fF(x) = 
(x)ex2−x−2

G : fG(x) = (
√
1+ x2)α−0.1, α > 0

H : fH(x) = 
(−x)

I : fI(x) = δ(x)

J : fJ(x) = δ′(x)

K : fK(x) = Y1/2(x) /∈K: 2α < 1

L : fL(x) =
∞
∑

k=1

ϕ[k(x + k)]kα+1/2, α > 0, ϕ ∈ D, ϕ > 0 /∈L: 2α ≥ 1

M : fM(x) = sgn(sin(x)) /∈1
M: 2α ≥ 1, /∈2

M: α p > 1

An entry ∈ in the table below means that fi ∈ dom
(

XYDα
)

for all α > 0, where XY
indicates the type of fractional derivative. An entry /∈ means that fi /∈ dom

(

XYDα
)

for all α > 0. The table lists /∈i if inclusion or exclusion depends on α, where the
condition is given above together with the definition of fi .

fA fB fC fD fE fF fG fH fI fJ fK fL fM dom ( · ) equation

∈ /∈ ∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ ∈ /∈1M LWDα (2.8)
∈ /∈ ∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈2M LGDα

p (2.25)
∈ /∈ ∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ LGDα (2.26)
∈ /∈ ∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ /∈ ∈ pDα+ (6.52)
/∈ ∈ /∈ /∈ ∈ ∈ /∈ /∈ /∈ /∈ /∈K /∈ /∈ WDα+ (2.16)
∈ ∈ ∈ ∈ ∈ ∈ ∈ /∈ /∈ /∈ /∈ /∈ /∈ MDα+ (2.20)
∈ ∈ ∈ ∈ ∈ /∈ ∈ /∈ /∈ /∈ /∈ ∈ /∈ GLDα+ (2.22)
/∈ /∈ /∈ /∈ /∈ ∈ /∈ /∈ ∈ ∈ ∈ /∈ /∈ SDα+ (5.5)
/∈ /∈ /∈ /∈ ∈ ∈ /∈ /∈ ∈ ∈ ∈ /∈ /∈ aWDα+ (6.7)
/∈ ∈ /∈ ∈ ∈ /∈ /∈ /∈ ∈ ∈ ∈ /∈L /∈ LTDα (8.22)
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ Dα+ (7.26)

Riemann-Liouville operators and other non-translation-invariant operators are
missing from this table, because they operate on sometimes very different domains.
Comparisonwith translation invariant operatorswould require extensions, embeddings
or projections that influence the comparison. Lizorkin type operators and operational
calculus operators are missing, because they operate not on distributions but equiva-
lence classes thereof.

Distributions growing too fast, e.g. exponentially, on the left half axis fall outside
the domain of all fractional derivative operators. After they have been excluded, there
remains only one domain that contains all examples, namely that of the generalized
Schwartz fractional derivative Dα+ = I−α+ in the last row.
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9.2 Unification theorem

The following theoremsummarizes various examples of translation invariant fractional
derivative operators that can be obtained as special cases of the generalized Schwartz
fractional derivative Dα+ defined in Section 7.3 with domain (7.26).

Theorem 7

(a) It holds SDα+ ⊂ Dα+ for α ∈ C.
(b) It holds MDα+ ⊂ Dα+ for α ∈ R+ \ N.
(c) It holds aWDα+ ⊂ Dα+ for α ∈ C.
(d) It holds GLDα+ ⊂ Dα+ for α ∈ C.
(e) It holds LbDα+ ⊂ Dα+ for α ∈ H.
(f) It holds pDα+ ⊂ Dα+ for α ∈ R0+.
(g) It holds LTDα+ ⊂ Dα+ for α ∈ C.

Proof The inclusions of the domains are obvious in each case and it remains to verify
the extension part. Part (a) is clear from Figure 2. For (c) and (e), one notes first, that

MD
α+ϕ = aWD

α+ϕ = LbD
α+ϕ = Dα+ϕ (9.1)

for all ϕ ∈ D. The equalities (9.1) extend to the respective domains of aWDα+ and
LbDα+ by the density of D and the continuity of transpose operators. For (b), one
uses (9.1) and continuity properties of Lebesgue integrals. Part (d) follows from the
considerations in Subsection 7.4. Part (f) was treated in Subsection 7.5.2. Part (g)
follows from the convolution theorem (Theorem 6). ��

9.3 WeakWeyl-, Marchaud- and Grünwald-Letnikov derivatives

The generalized Schwartz fractional derivative Dα+ from eq. (7.15) can be interpreted
as a weak formulation of fractional derivatives in the following sense:

Theorem 8 (a) Let α ∈ C and f ∈ O′
C +D′+. Then

(Dα+ f ) ∗ ϕ = WD
α+( f ∗ ϕ) (9.2a)

for all ϕ ∈ D with the right hand side defined point wise by eq. (2.15).
(b) Let α ∈ R+ \ N and f ∈ (Y−α)∗D′ . Then

(Dα+ f ) ∗ ϕ = MD
α+( f ∗ ϕ) (9.2b)

for all ϕ ∈ D with the right hand side defined point wise by eq. (2.17).
(c) Let α ∈ C and f ∈ (Y−α)∗D′ . Then

(Dα+ f ) ∗ ϕ = GLD
α+( f ∗ ϕ) (9.2c)

for all ϕ ∈ D with the right hand side defined point wise by eq. (2.21).
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Proof Associativity yields (Dα+ f ) ∗ ϕ = Dα+( f ∗ ϕ) for f ∈ (Y−α)∗D′ . Thus, it is
clear that the equations hold for f ∈E′. The general case is obtained by considering
approximations f θn → f via an approximate unit (θn), that is, a sequence θn ∈ D

that is bounded in DL∞ and satisfies θn → 1 inE. It is readily seen, that the limits
limn→∞ XDα+(( f θn) ∗ ϕ) = XDα+( f ∗ ϕ) hold for X = W,M,GL. ��

The theorem implies that it is possible to employ the Grünwald-Letnikov fractional
derivative of functions to define the generalized Schwartz fractional derivative of
distributions by the formula

〈Dα+ f , ϕ〉 := GLD
α+( f ∗ qϕ)(0) (9.3)

for all α ∈ C, f ∈ (Y−α)∗D′ and ϕ ∈ D. The same is possible for the Marchaud
fractional derivative if α ∈ R+ \ N.

10 Appendix

10.1 General notation

Natural, integer, real and complex numbers are denoted N,Z,R,C, and N0 is the
set of natural numbers with zero. Positive real numbers are denoted R+ :=]0,∞[,
non-negative real numbers as R0+ := [0,∞[. The set R+ := [0,∞] consists of the
non-negative real numbers including infinity with the convention 0 · ∞ = 0. The
open resp. closed complex half plane is written H resp. H. The shorthand notations
Xd := X × . . . × X for d-fold cartesian products and X× := X \ {0} for excluding
zero are used.

10.2 Locally convex spaces

A few basic concepts of locally convex spaces are collected here for convenient ref-
erence. A seminorm on a vector space X is a function q : X → R0+ such that
q(λx) = |λ|q(x) and q(x + y) ≤ q(x) + q(y). Let A be an arbitray set of indices.
The topology of a locally convex space can be defined by a family (qa)a∈A of semi-
norms by choosing the family of sets ({x ∈ X; qa(x) < λ})a∈A,λ>0 and their finite
intersections as neighbourhoods of zero. This topology is Hausdorff if and only if for
every x �= 0 there is an a ∈ A such that qa(x) �= 0.

A set B ⊆ X is bounded if every seminorm qa, a ∈ A is bounded on B. The
concept of bounded set is not very important in normed spaces (Y , ‖ · ‖), because it is
then the same as the concept of “subset of a ball”, where a ball of radius R is defined
by {y ∈ Y : ‖y‖ ≤ R}. In locally convex spaces there does not in general exist a
fundamental system of bounded neighbourhoods of zero. Indeed, a Hausdorff locally
convex space is normable if and only if it has at least one bounded neighbourhood of
zero [117, p. 108]. A locally convex space is metrizable if and only if it is Hausdorff
and its topology can be generated by a countable family of seminorms.
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The topological dual space X ′ of a locally convex space X is the space of continuous
linear functionals x ′ : X → C, often written as x ′(x) = 〈x ′, x〉 a bracket or product.
For any subset A ⊂ X its polar Ao in X ′ is the set of all x ′ ∈ X ′ such that |〈x ′, x〉| ≤ 1
for all x ∈ A.

Let S denote a family of subsets of X . The so called S-topology on the dual
space X ′ is the topology which has a fundamental system of neighbourhoods of zero
consisting of the finite intersections of the polars of the sets A ∈ S. Themost important
S-topologies on X ′ arise from choosing S = {{x} ⊂ X; x ∈ X} or S = {A ⊂
X; A bounded}. The former is called topology of pointwise convergence or weak*
topology and denoted as σ(X ′, X), while the latter is called topology of bounded
convergence or strong topology and denoted as β(X ′, X). When X is a normed space,
then β(X ′, X) is the usual dual norm topology.

10.3 Function spaces

Let � ⊆ R
d be an open set, M a σ -algebra of subsets of �, and μ a measure on M.

The Lebesgue spaces of equivalence classes of integrable functions over the measure
space (�,M, μ) are defined as

L p(�,μ) := { f : � → R ; f p is integrable} (10.1)

with norm

‖ f ‖p :=
⎛

⎝

∫

�

| f (s)|pdμ(s)

⎞

⎠

1/p

(10.2)

and their locally integrable variants are

L p
loc(�,μ) := { f : � → R ; f p is integrable on every compact K ⊂ �}. (10.3)

For p = ∞

L∞(�,μ) := { f : � → R | f is measurable and ‖ f ‖∞ < ∞} (10.4)

where

‖ f ‖∞ := sup {|z| : z ∈ fess(�)} (10.5)

and

fess(�) := {z ∈ C : μ ({x ∈ � : | f (x) − z| < ε}) �= 0 for all ε > 0} (10.6)

is the essential range of f .
Let � ⊆ R

d be open with boundary ∂�. For � = R
d the phrase “for all x ∈ ∂�”

means “for all |x | → ∞”. Denote with C
� the set of all complex valued functions
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Fig. 4 Inclusion relations between some function spaces (k ≤ m)

f : � → C. The notation for spaces of functions is (κ ∈ N
d , |κ| = κ1 + . . . + κd ,

k ∈ N)

C(C,�) := C(�) := C0(�) := { f ∈ C
�; f is continuous} (10.7)

Ck(�) := { f ∈ C
�; ∂κ f is continuous, |κ| ≤ k} (10.8)

Ck
b (�) := { f ∈ Ck(�); ∂κ f is bounded, |κ| ≤ k} (10.9)

Ck
v (�) := { f ∈ Ck(�); (∂κ f )(x) = 0 for all x ∈ ∂�, |κ| ≤ k} (10.10)

Ck
c (�) := { f ∈ Ck(�); ∂κ f has compact support , |κ| ≤ k} (10.11)

E(�) := C∞(�) (10.12)

D(�) := C∞
c (�) (10.13)

K(�) := C0
c (�) (10.14)

D0+(�) := { f ∈E(�);supp f ⊆ R
d
0+} (10.15)

Dk
L p (�) := { f ∈ Ck(�); ∂κ f ∈ L p(�), |κ| ≤ k}, 1 ≤ p ≤ ∞ (10.16)

DL p (�) := D∞
L p (�) = { f ∈E(�) : ∂κ f ∈ L p(�), |κ| < ∞}, 1 ≤ p ≤ ∞

(10.17)

B(�) := DL∞(�) = D∞
L∞(�) = C∞

b (�) (10.18)

Ḃ(�) := { f ∈E(�) : ∂κ f ∈ C0
v (�), |κ| ≤ k} (10.19)

S(�) := { f ∈E(�); ∀k ∈ Z, κ ∈ N
d
0 , ε > 0 ∃ρ > 0 :

|(1+ |x |2)k∂κ f | ≤ ε if |x | > ρ} (10.20)

OC (�) :=
{

f ∈E(�); ∃k ∈ N0,∀κ ∈ N
d
0 : (1+ |x |2)−k∂κ f ∈ C(�)

}

(10.21)

OM (�) :=
{

f ∈E(�); ∀κ ∈ N
d
0 , ∃k ∈ N0 : (1+ |x |2)−k∂κ f ∈ C(�)

}

(10.22)

Ck,α(�) := { f ∈ Ck(�); ∃ C > 0,∀x, y ∈ � :
|∂κ f (x) − ∂κ f (y)| ≤ C |x − y|α, |κ| ≤ k }, 0 < α ≤ 1 (10.23)

If K ⊂ � is compact, the spaces of functions f : K → C are denoted

X(K ) := { f ∈ X;supp f ⊆ K } (10.24)
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Table 1 Comparison of
notations for function spaces,
� ⊆ R

d open

here [5], page# [117], page# [161], page#

C(�) C�, 20 C(�), 83 C(�), 9

Ck (�) Ek (�), 89 Ck (�), 9

Ck
b (�) Bk (�), 91 Ck

B (�), 95

Ck
v (�) Bk

0(�), 91

Ck
c (�) Dk , 21 Dk (�), 171

E(�) E, 88 E(�), 165 C∞(�), 9

D(�) D�, 26 D(�), 165 C∞
0 (�), 9

K (�) K(�), 164 C0(�), 9

Dk
L p (�) W k,p(�), 45

DL p (�) DL p , 199 W∞,p(�), 45

B(�) B, 199 B(�), 92 W∞,∞(�), 45

Ḃ(�) Ḃ, 199 B0(�), 91

S(Rd ) S, 233 S, 91

whereX∈{C,Ck,Ck
v ,Ck

b ,E,D, Ḃ}. In these cases the topology ofX(K ) is the sub-
space topology inherited from X(�). As an example, for d = 1 and K = [a, b] ⊂ R

ACk([a, b]) := { f ∈ Ck([a, b]); f (k) is absolutely continuous} (10.25)

are the absolutely continuous functions on [a, b].
The spaces Ck,α(�) are known as Hölder spaces. For 0 < α < β ≤ 1 they obey

Ck,β(K ) ⊂ Ck,α(K ) ⊂ Ck(K ) if K ⊂ � [161, p. 10]. The spaceOM (�), consists of
slowly increasing smooth functions,whileOC (�) is the space of very slowly increasing
smooth functions. The spacesDL p (�) of Lebesgue integrable test functions are known
as Sobolev spaces, and often denoted as W∞,p(�). Table 1 compares our notation for
some function spaces with other widespread notations in the literature.

Bc(�) is defined as the spaceB(�) equipped with the finest locally convex topol-
ogy that induces the topology of E(�) on the subsets of B(�) which are bounded
w.r.t its Frechet topology generated by the seminorms ϕ �→ ‖∂κϕ‖∞, κ ∈ N

d
0 . This

topology is weaker than the Frechet topology onB(�) = DL∞(�). However,B(�)

andBc(�) have the same bounded subsets.

10.4 Spaces of Radonmeasures

Spaces of Radon measures are defined as topological duals of spaces of continuous
functions,

M(�) := (K(�))′ (10.26)

Mc(�) := (C(�))′ (10.27)

M p(�) :=
(

D0
Lq (�)

)′
1/p + 1/q = 1, p, q �= ∞, (10.28)
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where only the case p = 1 is needed here.

10.5 Distribution spaces

Spaces of distributions are defined as topological duals X′ of smooth function spaces 
X ⊆ D equipped with the strong topology β(X′, X) of uniform convergence on 
bounded subsets of X [5, p. 71], [145, p. 300],[117, p. 201].

D′(�) := (D(�))′ (10.29)

E′(�) := (E(�))′ (10.30)

S′(Rd) :=
(

S(Rd)
)′

(10.31)

D′
L p (�) := (DLq (�))′ 1/p + 1/q = 1, p, q �= ∞ (10.32)

=
⎧

⎨

⎩

f ∈ D′(�); ∃m ∈ N0 : f =
∑

|κ|≤m

∂κ fκ for fκ ∈ L p, κ ∈ N
d
0

⎫

⎬

⎭

O′
C (�) :=

{

f ∈ D′(�); ∀k ∈ N0 : (1+ |x |2)k f ∈ D′
L∞(�)

}

(10.33)

O′
M (�) := { f ∈ D′(�); ∃m ∈ N0∀k ∈ N0 : (10.34)

(1+ |x |2)k f =
∑

|κ|≤m

∂κ fκ for fκ ∈ L p, κ ∈ N
d
0

⎫

⎬

⎭

The spaceS′ of tempered distributionsS′ is the dual of the space of rapidly decreas-
ing (Schwartz) functionsS. The spaceE′ of distributions with compact support is the
dual of the space of smooth functionsE.O′

C (�) resp.O′
M (�) are the spaces of rapidly

decreasing resp. very rapidly decreasing decreasing distributions. The following con-
tinuous inclusions (with 1/p + 1/q = 1 and 1 < p ≤ q < ∞)

D ⊂ S = S ⊂ DL1 ⊂DL p ⊂DLq ⊂ Ḃ ⊂DL∞ ⊂ OC ⊂ OM ⊂ E

∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩
K ⊂ * = * ⊂ * ⊂ * ⊂ * ⊂Ḋ0

L∞ ⊂D0
L∞ ⊂ * = * ⊂ C

∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩
C′ ⊂ * = * ⊂ M1 ⊂ * ⊂ * ⊂ * ⊂ * ⊂ * = * ⊂ K ′

∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩
E′ ⊂ O′

M ⊂ O′
C ⊂ D′

L1 ⊂D′
L p ⊂D′

Lq ⊂ Ḃ′ ⊂ B′ ⊂ S′ = S′ ⊂ D′

apply to some of the spaces of smooth and continuous functions, Radon measures
and distributions. For the first and last row see [5, p. 420]. Other chains of inclusions
may exist between some spaces as evident from Figure 4 for differentiable functions
and, for � = R

d from (3.12) and (7.5). Spaces for the missing entries in the third
row can be constructed using Amalgam spaces with local component K ′, that were
considered in [155, Sec. V.2], by choosing suitable global components.
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Table 2 Notation of common
distribution spaces using eqs.
(10.35) and (10.36)

X DX Y Ref

Cc D D′
C E E′ [5, p. 89]

CP S S′ [5, p. 237]

Lq DLq D′
L p [5, p. 200]

Cv Ḃ D′
L1 [5, p. 200]

Given a locally convex space X of distributions, Schwartz defined its pre-image
under the mapsE � f �→ f (m), m ∈ N0 as the following set of smooth functions

DX =
{

f ∈E : f (m) ∈ X ,∀m ∈ N0

}

(10.35)

equipped with the coarsest topology such that all the maps DX � f �→ f (m), m ∈ N0
are continuous (projective topology). He then introduced the distribution spaces

Y = (DX )′ (10.36)

the space of continuous linear functionals on DX equipped with the topology of
uniform convergence on bounded subsets ofDX (Table 2).

The reflection of a locally integrable function f (x) with respect to the origin,
denoted qf (x), is defined as [5, p. 167]

qf (x) = f (−x) (10.37)

so that with

〈 qf , ϕ〉 =
∞
∫

−∞
f (−x)ϕ(x)dx =

∞
∫

−∞
f (x)ϕ(−x)dx = 〈 f , qϕ〉 (10.38)

the reflection of a distribution is defined by

〈 qf , ϕ〉 = 〈 f , qϕ〉 (10.39)
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