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A fractional diffusion equation based on Riematrinouville fractional derivatives is solved exactly. The
initial values are given as fractional integrals. The solution is obtained in terrsfohctions. It differs

from the known solution of fractional diffusion equations based on fractional integrals. The solution of fractional
diffusion based on a Riemasthiouville fractional time derivative does not admit a probabilistic interpretation

in contrast with fractional diffusion based on fractional integrals. While the fractional initial value problem
is well defined and the solution finite at all times, its valuestfer O are divergent.

Anomalous subdiffusive transport appears to be a universala € R. It is defined a%28
experimental phenomenénd Examples occur in widely dif-
ferent systems ranging from amorphous semiconduttors (DS, f(x) = ﬂ(| Lo)(x) 2)
through polymers® and composite heterogeneous fithts ax
porous medid®! Theoretical investigations into anomalous
diffusion and continuous time random walks have been a major
focus of H. Schers research for many ye&&1213The purpose

where

1 _
of this paper is to discuss a theoretical approach based on the (15D = @ faX(X —y)* (y) dy 3)
replacement of the time derivative in the diffusion equation with
a derivative of noninteger order (fractional derivative). is the Riemanr Liouville fractional integral with orderx and

Many investigators have proposed the use of fractional ime |ower |imit a. Although many authors have investigated
derivatives for subdiffusive transport on a purely mathematical fractional diffusion problenid-16.19.32.33%t seems that eq 1 has
or heuristic basi:+2° From the perspective of theoretical ot peen solved previously. In fact, it was recently questioned
physics this proposal touches upon fundamental principles suchyyhether an approach using eq 1 is consistéft.It is the
as locality, irreversibility, and invariance under time translations pyrpose of this paper to solve eq 1 exactly, thereby establishing
because fractional derivatives are non-local operators that arejig consistency for appropriate initial conditions.
not invariant under time revers@li These issues are generally Let me emphasize that eq 1 differs from the popular equation

avoided in heuristic and mathematical proposals, but were jntroduced and solved in ref 16. The latter equation is obtained
discussed recently in the context of long time limits and coarse py first rewriting the diffusion equation in integral form as

graining?! It was found that fractional time derivatives with

orders between 0 and 1 may generally appear as infinitesimal _ t N

generators of a coarse grained macroscopic time evolgtiéh. fr )=o) + & ﬁ) Af(r, t) dt )
Differential equations involving fractional derivatives raise

a second basic problem, related to the first, that will be the focus

of this paper. The second problem is whether to replace the

integer order derivative by a Riemanhiouville, by a Weyl,

by a Riesz, by a Gmwald, or by a Marchaud fractional

derivative (see refs 2528 for definitions of these different

where C; is the usual diffusion constané(r) is the Dirac
measure at the origin, and where the initial conditign0) =
foo(r) has been incorporated. Then the integral on the right hand
side is replaced by a fractional Riemariniouville integral to
arrive at the fractional integral form

derivatives). Different authors have introduced different deriva- C .
tives depending on the physical situatfo-31 f(r, ) =fo0(r) + == [t = t)*Af(r, t') dt
Given the basic objective of introducing fractional derivatives (o)

into the diffusion equation the present paper will be concerned = f,0(r) + C (15, AD(r, 1) (5a)
with the equation

or, upon differentiating both sides, at
Dg,f(r, t) = C Af(r, t) Q)
0 _ 1-a
wheref(r, t) denotes the unknown field an@, denotes the ot fr, 9 = Co(Do AN, (5b)
fractional diffusion constant with dimensions [cif/sThe
fractional derivative operator, denoted ag, Dis the Rie-
mann-Liouville derivative of ordero. and with lower limit

whereC, is again a fractional diffusion constant. Far= 1
this reduces to eq 4. The exact solution of eq 5 is known and
given by eq 22 below.

" Part of the special issue “Harvey Scher Festschrift’. Dedicated to N refs 35, 36, it was shown that egs 5 have arigorous relation
Harvey Scher on the occasion of his 60th birthday. with continuous time random walks of the kind investigated
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frequently by Harvey Schérl01213More precisely, eq 1 was  with r = |r|. To invert the Laplace transform it is convenient to
found to correspond exactly to a continuous time random walk use the relation
with the long tailed waiting time densit§®6 MLt .
u -s
o Moy @ = MILIOI@Ia-9
1t t ra--s
(_) Eo. a(_ ) (6)

Yt a, 79 = T_o %

between the Laplace transform and the Mellin transform

wherery is a time constant. Hel, i(X) denotes the generalized M {f(D)} (5) = f “ 57 Y(t) ot (15)
Mittag—Leffler function defined by 0

of a functionf(t). SettingA =r/,/C,, A = o/2,v = (d — 2)/2,

“ andu = o(d — 2)/4 and using the general relation

Eao¥) = Z) —F (ak+ b) (7)
k M (g0} (9= b %> bp> 0) (16)
foralla> 0 andb € C. Fora = 1 this reduces to an exponential P
waiting time density. For 6< a0 < 1 these waiting time densities  |eads to
have a long tail decaying ag(t) ~ t1-% for t — oo,
Interestingly,y(t) ~ t¢~1 diverges algebraically for — 0. It M {f(r, u)} (5 =
follows from refs 206-24 that among the the waiting time foo 2 A1 (2) (s )l
densities with long tails the densities(t; a, 7o) represent = (2nC,) AT A M {K,(u}((s+w)/2) (17)
important universality classes for continuous time random walks.

Note that eqs 5 and 1 are not equivalent. The difference The Mellin transform of the Bessel function re&ts
between egs 5 and 1 has to do with the initial conditions. An
appropriate initial condition is found by analyzing the stationary M {K ()} (5) = 23—2r(5+ V)F(S - V) (18)
case. One finds that the fractional integral Y 2 2

_ Inserting this, using eq 14, and restoring the original variables
1579 8(r, 04) = f,,,0() (C) then yields

is preserved during the time evolution. This is a nonlocal initial 0. ro\21-(o)
condition. It implies the divergence dfr, t) ast — 0, as is M{f(r, 0} (8) = 2 ( \/—) x
characteristic for fractional stationari{:24
Equation 1 with initial condition (eq 8) can be solved exactly ( ( ) ) (1 _ §)
by Fourier-Laplace techniques. Let the Fourier transformation ( ) a o (19)
2

be defined as ra--s
F {f(r)} (q) = fRdeiq'r f(r)dr (9) for the Mellin transform of. Comparing this with the definition
of the generaH-function in eqs 23, 24 allows one to identify
. . . the H-function parameters am =0, n=2,p=2,q =1,
Fourier and Laplace transformation of eq 1 now yields A=A =1, a=1- (d2) + (1 — (L), a = (1 —
¢ (L)), by =0, andB; = 1, if (ad/2) — (. — 1) > 0. Then the
0
f(q, u) = . o - (10) result becomes
C.,a +u
() = ro\20- (o))
Inverting the Laplace transform gives o(r Jr)d/2 2
f(q, t) = f, t@ VE, (—C %" 11 /—Z/u( _d ( _1) 1) (( _1)1)
(q ) 0,00 a,a( aq ) ( ) Hgi 2 Ca i l 2+ 1 (1,(1' 1 (1,(1 (20)
r 0,1

Settingg = 0 shows thalf(r, t) cannot be a probability density
because its normalization would dependtoHence eq 1 does

not admit a probabilistic interpretation contrary to eq 5. This may be simplified using eqs 337 to become finally

To obtainf(r, t) it is advantageous to first invert the Fourier foqlaD)
transform in eq 10 and only later the Laplace transform. The f(r, t) = 0n 2 (0, @) (21)
Fourier transform may be inverted by noting the forntla (r’m)¥? 4c (@2, 1), (1, 1)
_ i 1~(di2) This result should be compared with the known solution
@ [ () K= 57— (12) P
q ) = — O o2 (1,0) (22)
which leads to ¥ Pac |2, 1), (1,1)

f(r, u) = fo,(27C,) "

po\@2) ru“jz of eq 5 in which casé(r, t) is also a probability density.
pe— u@ 2)/4K(d 212 In summary, this paper has shown that fractional diffusion
\/C—a «/C_a based on RiemanfLiouville derivatives requires a fractional
(13) initial condition given by eq 8. With this initial condition the
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fractional Cauchy problem can be solved exactly in terms of L =L (—c +iy;, —0 + iy, P,,P,);

H-functions, and the solution is similar to the exact solution of D>0; 0<|z<o (29a)
the fractional integral form in eq 5. However contrary to eq 5 '
whose solution is a probability density, and which is related to L =L (—o, +iy,, —c0 +iy,; P,,P);
continuous time random walks, the solution of eq 1 does not . 1
admit a probabilistic interpretation. D=0, 0<iz7<E (29b)
The reader may aek Why itis |mportant for theoretical physu:s L =L (—oo, +iy;, —o0 + iy, P.P):;
and chemistry to investigate different forms of fractional .
diffusion. An answer was given already in refs-2®4, and D=0; |zZ7=E ;C=0;ReF <0 (29¢)
recently again in refs 39, 40. In these works it was found that =~ . . ]
fractional time derivatives arise generally as infinitesimal L =L (o +iyy 00+ iyz PaPy);
generators of the time evolution when taking a long-time scaling D>0; 0<|z <o (30a)
limit. Hence the importance of investigating fractional equations =~ . . ]
arises from the necessity to sharpen the concepts of equilibrium,- = L (© T 1712, @ + 172 Po,Py);
stationary states, and time evolution in the long time limit. D=0; |z2>E"* (30b)
APPENDIX: H-FUNCTIONS L =L (o +iyy 0 +iyy PyPy);
The H-function or order i, n, p, q) € N* and parameters D=0; [Z/=E%C=0;ReF<0 (30c)
AeRy(i=1,..,p),BeR(i=1,..0,a€Ci=1,..p), wherey; < y.. Herel (z;, z2; G1, G,) denotes a contour in the

andb € C(i = 1, ...,
contour integraft—4°

q) is defined forz € C, z= 0 by the complex plane starting at and ending at, and separating the

points inG; from those inGz, and the notation

mr|@n A s @AY 1 s + B S B, 31
Hp,qr(z (b, BY, vy 0 BY) ) 2ni[’7(s)z ds (23) a ' Z; A ;1 &
where the integrand is D=S B — Ai (32)
r b+ B, r 1— P
I ( S) ( a1 A|S) E= I—l AIA, B;BI (33)
n(s) = (24) ==
p q o
I'(a; + As I'l—b —Bs
T r@*as T 0 ) F=Y b~ Z at(e-@2+l  (34)
In eq 23,z° = exp{—slog |z — i arg Zt and argz is not was employed. The H-functions are analytic for= 0 and

necessarily the principal value. The integens n, p, gmust
satisfy

0<m=aq, 0<n=p (25)

and empty products are interpreted as being unity. The

parameters are restricted by the condition

multivalued (single valued on the Riemann surface of Zpg
A change of variables in eq 23 shows

Hmy( (a-ll A:L) (ap1 Ap)) —
(bl’ Bl) (bq1 Bq)
1-b,B),...,(1—b,B

P —_ (1—a1, Al)’ ceey
NP,=0 (26)
which allows us to transform aH-function withD > 0 and
where argzto one withD < 0 and arg(1d). Fory > 0
P,={poles of[(1 — & — A9} = Hmr( @y, Ay, ... @y, Ap)) -
1-a+k 7P|y, B). ... 0 B)
———eC:i=1,...,njkeN
A 0 Hmr( J@n YA, - @, VAp)) (36)
(by, ¥By), ... Oy ¥By)
= {poles ofl'(b; + B;s)} =
—b —k while fory € R
{ 5 <C M ke No} (27) Zy Hm{ (@, A, .. (ap,Ap))z
(bl' Bl) (bq1 Bq)
are the poles of the numerator in eq 24. The integral converges
if one of the following conditions hold& Hm r( @t 7ALAY, - @ T YA A ) 37)
. . (b + '}/Bl, Bl) (b + )/Bql Bq)
L =L (c—iw,c+ico; P,,P.); largz < Cal2; holds.
CcC>0 (28a)
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