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A fractional diffusion equation based on Riemann-Liouville fractional derivatives is solved exactly. The
initial values are given as fractional integrals. The solution is obtained in terms ofH-functions. It differs
from the known solution of fractional diffusion equations based on fractional integrals. The solution of fractional
diffusion based on a Riemann-Liouville fractional time derivative does not admit a probabilistic interpretation
in contrast with fractional diffusion based on fractional integrals. While the fractional initial value problem
is well defined and the solution finite at all times, its values fort f 0 are divergent.

Anomalous subdiffusive transport appears to be a universal
experimental phenomenon.1-3 Examples occur in widely dif-
ferent systems ranging from amorphous semiconductors4,5

through polymers6-8 and composite heterogeneous films9 to
porous media.10,11 Theoretical investigations into anomalous
diffusion and continuous time random walks have been a major
focus of H. Schers research for many years.4,10,12,13The purpose
of this paper is to discuss a theoretical approach based on the
replacement of the time derivative in the diffusion equation with
a derivative of noninteger order (fractional derivative).

Many investigators have proposed the use of fractional time
derivatives for subdiffusive transport on a purely mathematical
or heuristic basis.8,14-20 From the perspective of theoretical
physics this proposal touches upon fundamental principles such
as locality, irreversibility, and invariance under time translations
because fractional derivatives are non-local operators that are
not invariant under time reversal.21 These issues are generally
avoided in heuristic and mathematical proposals, but were
discussed recently in the context of long time limits and coarse
graining.21 It was found that fractional time derivatives with
orders between 0 and 1 may generally appear as infinitesimal
generators of a coarse grained macroscopic time evolution.20-24

Differential equations involving fractional derivatives raise
a second basic problem, related to the first, that will be the focus
of this paper. The second problem is whether to replace the
integer order derivative by a Riemann-Liouville, by a Weyl,
by a Riesz, by a Gru¨nwald, or by a Marchaud fractional
derivative (see refs 25-28 for definitions of these different
derivatives). Different authors have introduced different deriva-
tives depending on the physical situation.21,29-31

Given the basic objective of introducing fractional derivatives
into the diffusion equation the present paper will be concerned
with the equation

where f(r, t) denotes the unknown field andCR denotes the
fractional diffusion constant with dimensions [cm/sR]. The
fractional derivative operator, denoted as D0+

R , is the Rie-
mann-Liouville derivative of orderR and with lower limit

R ∈ R. It is defined as25,28

where

is the Riemann-Liouville fractional integral with orderR and
lower limit a. Although many authors have investigated
fractional diffusion problems14-16,19,32,33it seems that eq 1 has
not been solved previously. In fact, it was recently questioned
whether an approach using eq 1 is consistent.29,34 It is the
purpose of this paper to solve eq 1 exactly, thereby establishing
its consistency for appropriate initial conditions.

Let me emphasize that eq 1 differs from the popular equation
introduced and solved in ref 16. The latter equation is obtained
by first rewriting the diffusion equation in integral form as

where C1 is the usual diffusion constant,δ(r) is the Dirac
measure at the origin, and where the initial conditionf(r, 0) )
f0δ(r) has been incorporated. Then the integral on the right hand
side is replaced by a fractional Riemann-Liouville integral to
arrive at the fractional integral form

or, upon differentiating both sides, at

whereCR is again a fractional diffusion constant. ForR ) 1
this reduces to eq 4. The exact solution of eq 5 is known and
given by eq 22 below.

In refs 35, 36, it was shown that eqs 5 have a rigorous relation
with continuous time random walks of the kind investigated
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frequently by Harvey Scher.4,10,12,13More precisely, eq 1 was
found to correspond exactly to a continuous time random walk
with the long tailed waiting time density35,36

whereτ0 is a time constant. HereEa,b(x) denotes the generalized
Mittag-Leffler function defined by

for all a > 0 andb ∈ C. ForR ) 1 this reduces to an exponential
waiting time density. For 0< R < 1 these waiting time densities
have a long tail decaying asψ(t) ∼ t-1-R for t f ∞.
Interestingly,ψ(t) ∼ tR-1 diverges algebraically fort f 0. It
follows from refs 20-24 that among the the waiting time
densities with long tails the densitiesψ(t; R, τ0) represent
important universality classes for continuous time random walks.

Note that eqs 5 and 1 are not equivalent. The difference
between eqs 5 and 1 has to do with the initial conditions. An
appropriate initial condition is found by analyzing the stationary
case. One finds that the fractional integral

is preserved during the time evolution. This is a nonlocal initial
condition. It implies the divergence off(r, t) as t f 0, as is
characteristic for fractional stationarity.20,24

Equation 1 with initial condition (eq 8) can be solved exactly
by Fourier-Laplace techniques. Let the Fourier transformation
be defined as

Fourier and Laplace transformation of eq 1 now yields

Inverting the Laplace transform gives

Settingq ) 0 shows thatf(r, t) cannot be a probability density
because its normalization would depend ont. Hence eq 1 does
not admit a probabilistic interpretation contrary to eq 5.

To obtainf(r, t) it is advantageous to first invert the Fourier
transform in eq 10 and only later the Laplace transform. The
Fourier transform may be inverted by noting the formula37

which leads to

with r ) |r|. To invert the Laplace transform it is convenient to
use the relation

between the Laplace transform and the Mellin transform

of a functionf(t). SettingA ) r/xCR, λ ) R/2, ν ) (d - 2)/2,
andµ ) R(d - 2)/4 and using the general relation

leads to

The Mellin transform of the Bessel function reads38

Inserting this, using eq 14, and restoring the original variables
then yields

for the Mellin transform off. Comparing this with the definition
of the generalH-function in eqs 23, 24 allows one to identify
the H-function parameters asm ) 0, n ) 2, p ) 2, q ) 1,
A1 ) A2 ) 1/R, a1 ) 1 - (d/2) + (1 - (1/R)), a2 ) (1 -
(1/R)), b1 ) 0, andB1 ) 1, if (Rd/2) - (R - 1) > 0. Then the
result becomes

This may be simplified using eqs 35-37 to become finally

This result should be compared with the known solution

of eq 5 in which casef(r, t) is also a probability density.
In summary, this paper has shown that fractional diffusion

based on Riemann-Liouville derivatives requires a fractional
initial condition given by eq 8. With this initial condition the
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fractional Cauchy problem can be solved exactly in terms of
H-functions, and the solution is similar to the exact solution of
the fractional integral form in eq 5. However contrary to eq 5
whose solution is a probability density, and which is related to
continuous time random walks, the solution of eq 1 does not
admit a probabilistic interpretation.

The reader may ask why it is important for theoretical physics
and chemistry to investigate different forms of fractional
diffusion. An answer was given already in refs 20-24, and
recently again in refs 39, 40. In these works it was found that
fractional time derivatives arise generally as infinitesimal
generators of the time evolution when taking a long-time scaling
limit. Hence the importance of investigating fractional equations
arises from the necessity to sharpen the concepts of equilibrium,
stationary states, and time evolution in the long time limit.

APPENDIX: H-FUNCTIONS

The H-function or order (m, n, p, q) ∈ N4 and parameters
Ai ∈ R+(i ) 1, ...,p), Bi ∈ R+(i ) 1, ...,q), ai ∈ C(i ) 1, ...,p),
and bi ∈ C(i ) 1, ..., q) is defined forz ∈ C, z * 0 by the
contour integral41-45

where the integrand is

In eq 23,z-s ) exp{-s log |z| - i arg z} and argz is not
necessarily the principal value. The integersm, n, p, qmust
satisfy

and empty products are interpreted as being unity. The
parameters are restricted by the condition

where

are the poles of the numerator in eq 24. The integral converges
if one of the following conditions holds:45

whereγ1 < γ2. HereL (z1, z2; G1, G2) denotes a contour in the
complex plane starting atz1 and ending atz2 and separating the
points inG1 from those inG2, and the notation

was employed. The H-functions are analytic forz * 0 and
multivalued (single valued on the Riemann surface of logz).

A change of variables in eq 23 shows

which allows us to transform anH-function with D > 0 and
arg z to one withD < 0 and arg(1/z). For γ > 0

while for γ ∈ R

holds.

References and Notes

(1) Blumen, A.; Klafter, J.; Zumofen, G. InOptical Spectroscopy of
Glasses; Zschokke, I., Ed.; D. Reidel Publ. Co.: Dordrecht, 1986; p 199.

Hp,q
m,n(z|(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq) ) ) 1
2πi∫

L

η(s)z-s ds (23)

η(s) )

∏
i)1

m

Γ(bi + Bis)∏
i)1

n

Γ(1 - ai - Ais)

∏
i)n+1

p

Γ(ai + Ais) ∏
i)m+1

q

Γ(1 - bi - Bis)

(24)

0 e m e q, 0 e n e p (25)

Pa ∩ Pb ) L (26)

Pa ) {poles ofΓ(1 - ai - Ais)} )

{1 - ai + k

Ai
∈ C : i ) 1, ...,n; k ∈ N0}

Pb ) {poles ofΓ(bi + Bis)} )

{-bi - k

Bi
∈ C : i ) 1, ...,m; k ∈ N0} (27)

L ) L (c - i∞, c + i∞; Pa,Pb); |argz| < Cπ/2;

C > 0 (28a)

L ) L (c - i∞, c + i∞; Pa,Pb); |argz| ) Cπ/2;

C g 0; cD < -ReF (28b)

L ) L (-∞ + iγ1, -∞ + iγ2; Pa,Pb);
D > 0; 0 < |z| < ∞ (29a)

L ) L (-∞, + iγ1, -∞ + iγ2; Pa,Pb);

D ) 0; 0 < |z| < E-1 (29b)

L ) L (-∞, + iγ1, -∞ + iγ2; Pa,Pb);

D ) 0; |z| ) E-1; C g 0; ReF < 0 (29c)

L ) L (∞ + iγ1, ∞ + iγ2; Pa,Pb);
D > 0; 0 < |z| < ∞ (30a)

L ) L (∞ + iγ1, ∞ + iγ2; Pa,Pb);

D ) 0; |z| > E-1 (30b)

L ) L (∞ + iγ1, ∞ + iγ2; Pa,Pb);

D ) 0; |z| ) E-1; C g 0; ReF < 0 (30c)

C ) ∑
i)1

n

Ai - ∑
i)n+1

p

Ai + ∑
i)1

m

Bi - ∑
i)m+1

q

Bi (31)

D ) ∑
i)1

q

Bi - ∑
i)1

p

Ai (32)

E ) ∏
i)1

p

Ai
Ai ∏

i)1

q

Bi
-Bi (33)

F ) ∑
i)1

q

bi - ∑
i)1

p

aj + (p - q)/2 + 1 (34)

Hp,q
m,n(z|(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq) ) )

Hq,p
n,m(1z|(1 - b1, B1), ..., (1- bq, Bq)

(1 - a1, A1), ..., (1- ap, Ap) ) (35)

1
γ

Hp,q
m,n(z|(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq) ) )

Hp,q
m,n(zγ|(a1, γA1), ..., (ap, γAp)

(b1, γB1), ..., (bq, γBq) ) (36)

zγ Hp,q
m,n(z|(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq) ) )

Hp,q
m,n(z|(a1+ γA1, A1), ..., (ap + γAp, Ap)

(b1 + γB1, B1), ..., (bq + γBq, Bq) ) (37)

3916 J. Phys. Chem. B, Vol. 104, No. 16, 2000 Hilfer



(2) Shlesinger, M.Ann. ReV. Phys. Chem.1988, 39, 269.
(3) Weissman, M.ReV. Mod. Phys.1988, 60, 537.
(4) Scher, H.; Montroll, E.Phys. ReV. B 1975, 12, 2455.
(5) Even, U.; et al.Phys. ReV Lett. 1984, 52, 2164.
(6) Cates, M.Phys. ReV Lett. 1984, 53, 926.
(7) Stanley, H.J. Stat. Phys.1984, 36, 843.
(8) Schiessel, H.; Blumen, A.Fractals 1995, 3, 483.
(9) Niklasson, G.; Granqvist, C.Phys. ReV. Lett. 1986, 56, 256.

(10) Berkowitz, B.; Scher, H.Phys. ReV. Lett. 1997, 79, 4038.
(11) Klemm, A.; Müller, H.; Kimmich, R.Phys. ReV. E 1997, 55, 4413.
(12) Montroll, E.; Scher, H.J. Stat. Phys.1973, 9, 101.
(13) Scher, H.; Lax, M.Phys. ReV. B 1973, 7, 4491.
(14) Berens, H.; Westphal, U.Acta Sci. Math. (Szeged)1968, 29, 93.
(15) Nigmatullin, R.Phys. Status Solidi B1986, 133, 425.
(16) Schneider, W.; Wyss, W.J. Math. Phys.1989, 30, 134.
(17) Hilfer, R.The Continuum Limit for Selfsimilar Laplacians and the

Greens Function Localization Exponent, 1989, uCLA-Report 982051.
(18) Nonnenmacher, T.J. Phys. A: Math. Gen.1990, 23, L697.
(19) Jumarie, G.J. Math. Phys.1992, 33, 3536.
(20) Hilfer, R. Fractals 1995, 3, 549.
(21) Hilfer, R. Applications of Fractional Calculus in Physics; World

Scientific Publ. Co.: Singapore, 2000.
(22) Hilfer, R. Phys. ReV. E 1993, 48, 2466.
(23) Hilfer, R. Chaos, Solitons Fractals1995, 5, 1475.
(24) Hilfer, R. Physica A1995, 221, 89.
(25) Butzer, P.; Trebels, W.Hilberttransformation, gebrochene Integra-

tion und Differentiation; Westdeutscher Verlag, Ko¨ln und Opladen, 1968.
(26) Ross, B.Fractional Calculus and Its Applications, Vol. 457 of

Lecture Notes in Mathematics; Springer: Berlin, 1975.
(27) Hilfer, R. In Scale InVariance and Beyond; Dubrulle, B., Graner,

F., Sornette, D., Eds.; Springer: Berlin, 1997; p 53.
(28) Butzer, P. L.; Westphal, U. InApplications of Fractional Calculus

in Physics; Hilfer, R., Ed.; World Scientific: Singapore, 2000; p 1.

(29) Nonnenmacher, T. F.; Metzler, R. InApplications of Fractional
Calculus in Physics; Hilfer, R., Ed.; World Scientific: Singapore, 2000; p
377.

(30) Schiessel, H.; Friedrich, C.; Blumen, A. InApplications of
Fractional Calculus in Physics; Hilfer, R., Ed.; World Scientific: Singapore,
2000; p 331.

(31) West, B.; Grigolini, P. InApplications of Fractional Calculus in
Physics; Hilfer, R., Ed.; World Scientific: Singapore, 2000; p 171.

(32) Wyss, W.J. Math. Phys.1986, 27, 2782.
(33) Hilfer, R. Fractals 1995, 3 (1), 211.
(34) Metzler, R.; Barkai, E.; Klafter, J.;Phys. ReV. Lett.1999, 82, 3563.
(35) Hilfer, R.; Anton, L.Phys. ReV. E, Rapid Commun.1995, 51, 848.
(36) Hilfer, R. In Anomalous Diffusion: From Basis to Applications;

Kutner, A. P. R., Sznajd-Weron, K., Eds.; Springer: Berlin, 1999; p 77.
(37) Butzer, P.; Nessel, R. J.Fourier Analysis and Approximation;
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