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Abstract—Time flow in dynamical systems is analysed within the framework of ergodic theory from
the perspective of a recent classification theory of phase transitions. Induced automorphisms are
studied on subsets of measure zero. The induced transformations are found to be stable convolution
semigroups rather than translation groups. This implies non-uniform flow of time, time irreversibility
and ergodicity breaking. The induced semigroups are generated by fractional time derivatives.
Stationary states with respect to fractional dynamics are dissipative in the sense that the measure of
regions in phase space may decay algebraically with time although the measure is time transforma-
tion invariant.

1. INTRODUCTION

A recent development of rapidly increasing interest in the area of fractals and nonlinear
dynamics are fractional dynamical systems [1-10]. A fractional dynamical system is defined
as a dynamical system involving fractional time derivatives.

Many authors have recently and in the past proposed to use fractional time derivatives
on heuristic or aesthetic grounds [1, 3-6, 8, 10-16]. None of these proposals is convincing
from the viewpoint of basic physics because fractional derivatives, contrary to integer ones,
are non-local operators. This is at variance with the principle of locality in physics [17] and,
consequently, the proposals must be viewed as postulates justifiable only a posteriori in a
particular modelling context. The purpose of the present paper is to give a general
model-independent justification for introducing fractional time derivatives into dynamical
systems. It is shown that non-local fractional dynamics arise generically from local integer
order dynamics in a certain limit. As a consequence it is found that the appearance of
fractional dynamics is related to the problems of time irreversibility [18] and ergodicity
breaking [19]. The results of the present paper are direct consequences of a recent
classification of phase transitions in statistical mechanics [7, 9].

Dynamical systems are discussed here in the sense of abstract ergodic theory as flows
or semiflows on measure spaces [20, 21]. The present paper introduces the concept of
ergodicity breaking into abstract ergodic theory as the phenomenon that the time evolution
induced by an ergodic time evolution on subsets with zero measure may not be ergodic.
Almost all dynamical systems occuring in physics are subsystems or larger systems. The
dynamics of the supersystem induces the dynamics of the subsystem of interest. The basic
idea is that there exists a microscopic theory describing the dynamical evolution of a large
supersystem from which the dynamical laws of each of its subsystems can be derived by a
process of systematic restriction or approximation.

Given any dynamical system describing a physical reality it is necessary to choose a basic
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time scale associated with the subsystem of interest. In a rarefied gas, for example, the
typical time between successive collisions is 107 s, and hydrodynamical processes, such as
gas flow in pipes or containers may reasonably be idealized as a long time limit. On the
other hand, the microscopic time scale of 107 s may itself be considered as the long time
limit of processes occurring on much shorter time scales. It is therefore necessary to study
the passage from one long time limit to another mathematically. The appropriate
mathematical idealization for moving up or down in the hierarchy of temporal (or spatial)
scales was recently introduced in the form of the so-called ensemble limit [7, 22, 23].

Let me conclude the introduction with a statement of the main result. Define T* to be
the reversible microscopic time evolution operator acting on density matrices or probability
distributions p(s) in the state or phase space I' of the dynamical system as a group of
translations through

T'p(s) = p(s — 1), (1)

where 5, t € R represent the microscopic time. The induced transformation S* on a subset
G CT is obtained from T’ by recording the recurrence of the same fixed state in I\NG. The
main result of this paper concerns the case when G has zero measure. In that case S’ will
generally have the form of a stable convolution semigroup whose action is given as

Sto(s) = % f:r'pmhm(r/t)dr, @

where ¢ = 0 and s € R now represent a renormalized macroscopic time, and 4 .(x) denotes
a stable one sided probability density with stability index 0 < w=1. While T’ can in
general be defined for all 1 € R the induced transformations Sy, exist only for ¢ =0, and
thus they form only a semigroup. For @ = 1 the infinitesimal generator of S} is found to be
identical to that of 7' and it is given by the ordinary time derivative —d/d¢. For 0 < w< 1
on the other hand one obtains fractional time derivatives of order @. In the latter case the
time evolution is not given by a uniform translation but involves memory effects as evident
from (2).

2. DEFINITIONS AND STATEMENT OF THE PROBLEM

Consider a dynamical system with phase or state space I'. Let % denote a o-algebra of
measurable subsets of I', and u a countably additive non-negative set function on % such
that w(I') = 1. The time evolution of the system is given as a flow, i.e. as the action of the
additive group R of real numbers on I'. A flow is defined as a one-parameter family of
automorphisms 7': I' - I' such that 7" = [ is the identity, 7°*' = T°T' for all ¢, s € R and
such that for every measurable function f the function f(7'x) is measurable on the direct
product I' X R. An automorphism 7 is defined as an invertible map 7: I'— I such that for
every G € 4§ also TG, T™'G € 4. The measure u is called invariant under the flow T' if at
all times ¢ € R one has w(G) = w(T'G) = w((T") ' G) for all G € 4. An invariant measure
is called ergodic if it cannot be written as a non-trivial convex combination of invariant
measures, i.e. if u=Aw + (1 —A)u, with w;, u, invariant and 0 <A<1 implies A=1,
wy=p or A=0, u, =yu. The existence of the inverse (T/) '=T"' for a flow is
an expression for microscopic reversibility. Viewed actively (Heisenberg picture) the flow
acts on measurable functions (observables) f: I' >R through T°f(x(1)) = f(x(t + s)).
Viewed passively (Schrodinger picture) the observables are time independent, and now the
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flow acts on time dependent measures p(G, t) through right translation T'p(G,s) =
p(G, s — t) as given in (1). The infinitesimal generator of 7' is defined as the strong limit

A = lim , 3)
1—0* t
where 7= T’ denotes the identity. One has A = —d/ds for right translations. The
invariance of the measure u can be expressed as Ay = —du/dr = 0 and it implies
WG, 1) = u(G) )

forall Ge%4, t e R.

A concrete example of the general definitions is provided by a differentiable dynamical
system. In continuous time it may be defined as a set of differential equations on the phase
space I' = R”

dx(t
S L0 5)

t
in discrete time as a set of difference equations

x(t + A1) = F(x(1)), (6)

where x € R” and F, F: R" — R" are in general non-linear mappings. The flow T’ is then
defined such that T'x is the solution of (5) for which x(0) = x. Liouville’s theorem
furnishes an invariant measure as a solution to the stationary Liouville equation. Often the
continuous time flow T is replaced with a discrete time evolution TV with N € N as in (6)
which is generated by the automorphism 7 = 7*'. The continuous time evolution T* is
recovered from the discrete one TV in the limit N — @, Ar— 0 with Az < N7,

Consider now the discretized time evolution 7 = T*' on an arbitrary subset G CT. A
point x € G is called recurrent with respect to G if there exists a k = 1 for which T*x € G.
The Poincaré recurrence theorem asserts that if y is invariant under T and G €6 then
almost every point of G is recurrent with respect to G. A set G € 4 is called a u-recurrent
set if p-almost every x € G is recurrent with respect to G. By virtue of Poincare’s
recurrence theorem the transformation T defines an induced transformation or induced
automorphism § on subsets G of positive measure, u(G) > 0, through

Sx(s) = TWx(s) = x(s + 15(x)) (7)
for almost every x € G. The recurrence time 75(x) of the point x, defined as
16(x) = Atmin {k = 1: T*x € G}, (8)

is positive and finite for almost every point x € GG. Because G has positive measure it is
again a probability measure space with the induced measure v = u/u(G). If u was invariant
under 7 then v is invariant under S, and ergodicity of u implies ergodicity also for v [20].
The definition of § above is x-dependent. This raises the problem how to define § on
measures. A natural idea is to average over the x-dependence. If u is ergodic, and G a
recurrent set with positive measure then the average recurrence time (t) is defined as

N
1 .1 ;
(1) = ——| 15du = lim —> (5" 'x), 9
w(G)Je ¢ N Ngl )
where the last equality holds by virtue of the ergodic theorem. Kac’s lemma [20} gives
At
(r) = (10)

wG)
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and it suggests to interpret S formally as an average

§=(T") = J— Tedu~ T, (11)
wG) e
where the last relation resembles a mean field type approximation. Accepting this
approximation §‘ becomes formally

S'= lim $Y= lim TN = 77O (12)
At—>0,N-sx Ar—0,N-x
NAt—t NAt—t

in the continous time limit. Thus S* and 7' are identical except for a renormalization of
time scale.

Often one is interested in the dynamics induced on subsystems G C I such as subspaces
of lower dimensionality in which many or all points are recurrent with respect to G but
which have measure zero, u(G)=0. A typical example occurs when passing to a
description involving a reduced number of degrees of freedom. The problem of interest in
this paper arises from the observation that for a set G with ergodic measure u(G) =0 in
which all points are recurrent the mean recurrence time diverges while the recurrence time
of every point x € GG exists and is finite. This suggests that the induced transformation §
remains well defined on G but its action cannot simply be given as 7%, The divergence of
() indicates that the flow of time must be erratic and strongly fluctuating, and that any
mathematical description must involve a renormalization of time scale.

3. AVERAGING THE INDUCED DYNAMICS

The problem then is to attach a meaning to (11) in the case where G has measure zero.
The necessity to define S as an average (T") results from the x-dependence of S and
represents a fundamental difference between the original flow and an induced transforma-
tion which is not emphasized in traditional ergodic theory. The idea of the present
approach originated in [7, 9] and consists in defining {...) as a time average rather than a
phase space average as in (11). The advantage is that this can be done also for subsets of
measure zero, as long as these are again measure spaces.

Let (T, %4, u) denote the original measure space on which the time flow T is defined and
discretized into T .= T*'. Let (G, &, v) denote a subspace G CT of measure u(G) =10
with o-algebra &. For concreteness assume that T' is a subset of R” and p is an
m-dimensional measure, while G is a subset of R” with an n-dimensional Lebesgue
measure v where n<m. Let y(I'’) =1 and W(G) = 1. One has 8 C %, in the sense that
B e$ for all B €%. Moreover u(B) =0 for all B e & while W B) = « for all sets B € 9
with p(B) > 0. Assume that G is v-recurrent under T in the sense that v-almost every
point (rather than y) is recurrent with respect to G. Define

G, = {xe G: t(x) < kAt} (13)

as the set of points whose recurrence time is < kAt. Then the step function defined on the
time intervals kAr <1 <(k + 1)At for all k e N as
Gy)
nG)
and as P(r) = 0 for all r < A, is a probability distribution function for the recurrence times

on G.
The probability distribution of recurrence times P(r) allows the problem stated in the

P(1) = (14)
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previous section to be overcome, and to define § on measures as the mathematical
expectation

Sp(B, 1) = (T"p(B, 1)) = f T'o(B, t)dP(7) =fp(B, t — 1)dP(1), (15)
0 0
where B C G and p is a measure on G. Thus S is a convolution operator in time
Sp(B) = p(B) * P, (16)
and repeated application yields
S¥p(B) = (S""'p(B)) * P = p(B) * P* ...+ P = p(B) * Py, (17)
—_—
N factors

where the last equation defines the N-fold convolution Py(¢). This may be interpreted as
the probability density function for a random variable

In=1+ ...+ 18 (18)

representing the sum of N independent and identically distributed random recurrence times
7; with common distribution P(t).

4. CLASSIFICATION OF INDUCED DYNAMICS

The last section has shown that § acts on measures as a convolution rather than a simple
shift. This section studies the continuous time limit for S defined in (15). This amounts to
studying the limit N — «, Ar— 0 for the distributions Py(¢). The question is whether it is
possible to choose Ar— 0 in such a way that Py(r) converges. This question is answered
positively in probability theory [24], and it is well known [7} that the possible limit
distributions

P.(t) = lim Py(t) (19)
Nox
At—0
must be stable distribution functions if the limit exists. Note that a trivial centering of the

variable Jy to zero is implicit in this formulation (see [7,9]). The positivity of the
recurrence times 7, = 0 for all i € N puts the constraint

P.(t)=0 for =0 (20)

on the possible limiting distributions. The remaining stable limit distributions are then
characterized by two numbers 0 < @ =<1 and D =0. The number w is called the index of
stability while D is the width of the distribution. For 0 < @ < 1 the limiting densities can be

written as
PX
painy = 20 L hw( 7 ) (21)
df Dl/m Dl/w
where
1 wof 1] (0, 1))
ho(x) = —H | — 22
() wx ”(x 0, 1/m) 22)

is defined in terms of H-functions [25] whose definition is given in the appendix. For o= 1
the limiting density

i) = lim Ay(x) = 8(x = 1) (23)
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is the Dirac distribution concentrated at x = 1. If the limit exists, and D #0, the
discretization At must have the form

At ~ (NA(N)) V=, (24)
where A(N) is a slowly varying function [24], i.e.
. (25)
= AG)

for all b > 0.

Two very different cases arise in the continuous time limit N — «, Ar — 0 for induced
automorphisms S on subsets G CT of measure u(G) = 0: firstly, for 0<w<1 and p a
measure on G the continuous time transformation reads

Sap(B. 1) = [ p(B. 1 - s)h( )ds
0

* (26)
=1 [ TS p(B. 1)ho(s/t*) ds,
t*Jo

where the macroscopic time parameter r* was introduced as
t* = DY = 0. 27
Secondly, for @ = 1 it follows from (23) that

Sip(B.0) = [ p(B. 1~ s)é(i* - )3 = p(B.1~1*) = T p(B.1),  (28)
- t t*

which resembles (12). Note, however, that the result (28) differs from (12) in two
important aspects. First, u(G) = 0 for (28) and thus the tranformation §*" corresponds to a
time shift by an infinite amount in the sense of (12). Secondly, while (12) remains well
defined for negative ¢ the transformation S does not exist for ¢* <0 by virtue of (27).
Therefore, S/ in (12) is time reversible while the renormalized induced automorphism
8" is time irreversible. Of course this irreversibility holds true also in the case 0 < @ < 1.

5. INDUCED GENERATORS AND FRACTIONAL DYNAMICS

This section investigates the condition of invariance or stationarity for the induced
renormalized semigroups S, whose renormalized macroscoplc time parameter * =0 is
given by (27). Invariance of the measure v on G under Sy, requires

SUV(B, t) = v(B. 1) (29)

for tr>0 and BCG. For 0<®@<1 (29) may be called the condition of fractional
invariance or fractional stationarity. Using (3) the invariance condition becomes

A v(B, 1) =0 (30)

for 1 >0 where A, is the infinitesimal generator of the semigroup S;:. For w=1 the
relation (28) implies A,v(B,t)= —dv(B,t)/dt =0, and thus in this case invariant
measures conserve volumes in phase space as usual. A very different situation arises for
w<l.

For 0<wm<1 it is well known [24] that the infinitesimal generators of S’ may be
interpreted as the distribution s ”~' [26] evaluated on the time translation group 7°°

Ap(t) = c*[s

S0

~m=I(Ts ~ T%dsp(1) = c+f 7T dsp(r), (31)



Time flow in dynamical systems 1481

where ¢* >0 is a constant. Comparing (31) with the Balakrishnan algorithm [27-29] for
fractional powers of the generator of a semigroup T*

N . (I -T"\"
(~A)pU)=p$( )p
- t
1
T (—a@)
shows that if A = —d/d¢ denotes the infinitesimal generator of the original time evolutlon
T' then A, ={(—A)” is the infinitesimal generator of the induced time evolution S... For

0<w<l1 the generators A, for S, are fractional time derivatives [15, 28, 26]. The
differential form (30) of the fractional invariance condition for v becomes

(32)

j 57N = T)p(t)ds

v(B,1)=0 (33)
dr”
for 1 > 0 which was first derived in [7, 9]. Its solution is
v(B, 1) = Cot™ ! (34)

for + >0 with C, a constant. This shows that v(B) for a fractional stationary dynamical
state is not constant. Fractional stationarity or fractional invariance of a measure v implies
that phase space volumes v(B) shrink with time. Thus fractional dynamlcs is dissipative.
More generally (33) reads A,v(B, 1) = 8(¢) with solution v(B, t) = Cot7 " for t =0 in the
sense of distributions. The stationary solution with @ =1 has a jump discontmulty att =0,
and is not simply constant.

The transition from an original invariant measure 4 on I to a fractional invariant
measure v on a subset G of measure u(G) = 0 is called invariance breaking or ergodicity
breaking because invariance is a prerequisite for ergod1c1ty Note, however, that the
resulting fractional dynamical system (G, 8, v, § w) may again exhibit fractional ergodicity.
Fractional ergodicity is defined analogously to ergodicity by replacing invariance with
fractional invariance.

The solution (34) develops a singularity when extrapolated backwards in time r— 0
because it holds only after renormalization in the limit y(G)—> 0, N — ¢, At — 0. This
singular behaviour is not unphysical but expresses ergodicity breaking as a spontaneous
dynamically generated reduction of the accessible regions in phase space.

The foregoing results provide a general and model-independent justification for studying
fractional dynamical systems such as the following formal modification of (5)

d”x(1) _
de”®

which can be interpreted by applying the inverse operator d"¥/ds~“ to obtain an integral
equation

= F,(x(1)), (35)

= 1 ' _ -1
X0 = %0+ o Jou $)7'Fo(x(5)) ds (36)

taking the initial condition x(0) = x, into account. A particular example is the fractional
Liouville equation for a density matrix p(¢)

900 _ gop(r) 37)
dr®

discussed first in [7]. Here £7 denotes a fractional Liouville operator acting linearly on p.
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The solution of (37) is obtained as

— i uf (O, 1/CU) )
p(1) lez( £t ©. 1/m)(0, 1) Po> (38)

where p, is the initial density matrix p(0) = p,.

6. CONCLUSIONS

The present paper extends the definition of induced automorphisms within ergodic
theory from subsets of positive measure to subsets of measure zero. The extension requires
a renormalization of time scale because the recurrence times are state dependent and their
averages diverge. It is found that the renormalized induced time evolution forms
a semigroup even if the original time evolution was a group. This provides a new general
and model-independent mechanism for the origin of macroscopic time irreversibility.
The typical recurrence times remain finite, and thus the origin of irreversibility is related to
the difference between the typical behaviour of a recurrent trajectory and its average
behaviour [18].

An equally important result of this work is that not only time translation invariant states
are time evolution invariant. Instead time evolution invariant (or stationary) states are
more generally those which are stable time convolution invariant. This has implications for
the observation of time flow itself which requires a stationary (time evolution invariant)
measurement apparatus. The measurement of discrete time is based on counting periods or
recurrences of a periodic (deterministic) or recurrent (stochastic) process (the clock). A
continuous time is obtained by adding the duration of single periods or recurrences. This
method of measuring time assumes that the laws governing the clock itself are invariant
under the evolution of time, i.e. that the periodic or recurrent clock process is stationary.
Traditionally this assumption is expressed by postulating that the period or average
recurrence time (7) of the clock defined in (9) is finite and constant. The present paper
points out that the clock is in general a subsystem G C T of a larger dynamical system with
more degrees of freedom which implies u(G) = 0 and therefore (t) = ®. After renormal-
ization the possible stationarity conditions are classified by the stability index @. The
renormalization may be iterated allowing different clock processes in a hierarchy of time
scales. As a consequence the measured time may appear uniform or accelerated depending
upon whether the renormalized time evolution of a ‘clock’ process has the same stability
index as the time evolution used as a reference in the definition of stationarity. Uniformity
of time flow is therefore a relative concept.
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APPENDIX: DEFINITION OF H-FUNCTIONS

The general H-function is defined as the inverse Mellin transform (25]

[Ir, - B)[ITA ~ a; + Ajs)
=1 j=1

mn (alvAl)"'(aP~ AP)) 1
H z == = - sds, Al
PQ( (by, By) .. (bg. By) 27rij(» 0 G e (AD)
IT Tt = b; + Bis) ] T'(a; — Ajs)
j=m+l j=n+l1
where the contour € runs from ¢ — i= to ¢ + i~ separating the poles of I'(b; — B;s), (j=1, ..., m) from those

of (1 —a;+ Ass), (j=1, ..., n). Empty products are interpreted as unity. The integers m, n, P, Q satisfy
0= m=<Q and 0= n < P. The coefficients A; and B, are positive real numbers and the complex parameters aj,
b, are such that no poles in the integrand coincide. If

n P m Q
Q=3X4,- X A +3B - ¥ B >0 (A2)
j=1 i=1 1

Jj=n+l J=m=

then the integral converges absolutely and defines the H-function in the sector |arg z| < Qu/2. The H-function is
also well defined when either

q P
6=>B,-2A;>0 with 0<iz|]<o (A3)
=1 J=1
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or

P Q

5=0 and 0<'z|<R=[]4; “[[BF. (Ad)
j=1 j=1

The H-function is a generalization of Meijers G-function and many of the known special functions are special

cases of it.
Recently the results obtained here were shown to hold also in the ultra long time limit [30].



