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Fractional Evolution Equations and
Irreversibility

R. Hilfer!:2

1 ICA-1, Universitat Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
2 Ipstitut fiir Physik, Universitat Mainz, 55099 Mainz, Germany

Abstract. The paper reviews a general theory predicting the general importance of
fractional evolution equations. Fractional time evolutions are shown to arise from a mi-
croscopic time evolution in a certain long time scaling limit. Fractional time evolutions
are generally irreversible. The infinitesimal generators of fractional time evolutions are
fractional time derivatives. Evolution equations containing fractional time derivatives
are proposed for physical, economical and traffic applications. Regular non-fractional
time evolutions emerge as special cases from the results. Also for these regular time
evolutions it is found that macroscopic irreversibility arises in the scaling limit.

1 Introduction

An evolution equation for the time evolution of physical and other systems is
typically of the form [1]

d
1@ =B ®

where t € R denotes time and B is an operator on a Banach space (B, || - ||)
Depending on the initial data f(0) = fo for the state or observable f of the
system at time ¢ = 0 the problem is to find f(t) at later times ¢ > 0.

Many examples of (1) arise not only in physics but also in the social or
economical sciences (see other articles in this book and also [2]). All evolution
equations pertain to phenomena on a characteristic microscopic or macroscopic
time scale. If the time scale is changed then the form of an evolution equation will
usually also change. Of course this micro-macro transition affects the variables
f, or the operator B, or both. Recently, it was found that not only f and B, but
also the generator d/dt of the time evolution in (1) may change in a transition
from microscopic to macroscopic of time scales. Expressed somewhat imprecisely
the result states that the infinitesimal generator d/d¢ of time evolution may be
changed into a fractional derivative “d*/dt*” of order @ with 0 < @ < 1. My
objective in this paper is to discuss the origin of this result.

Derivates of fractional order exhibit algebraic scaling properties with non-
integer exponents. Extending classical evolution equations to fractional evolution
equations therefore introduces dynamic scaling in a natural way. It provides also
a more flexible class of solutions for the comparison with empirical data.

Given the generality and mathematical universality of the appearance of
fractional derivatives it is tempting to propose fractional evolution equations also
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for economical, social or traffic dynamics. Let me point out that this was done
implicitly already in [2] where continuous time random walk (CTRW) models
were introduced for modeling stochastic processes in the economical sciences.
One of the input functions for a CTRW model is the so called waiting time
density 1(t) that describes the distribution of time intervals between random
events (jumps). Random events may correspond to hopping (jumps) of particles
in physics, to purchases or business transactions in economical applications, or to
delays due to a traffic jam in a traffic model. Exploiting the relationship between
continuous time random walks and generalized master equations it was shown
in [3] that CTRW-models to a fractional master equation whenever P(t) is a
generalized Mittag-Leffler function. Many applications of fractional derivatives
in the economical sciences are therefore obtained simply by combining the results
from [2] and [3].

A concrete example from the economical sciences is the model for the prob-
ability distribution f(z,t) of cumulative sales z after time t introduced in [2,
p. 138]. Combined with the results from [3,4] the model from [2] is equivalent to
a fractional diffusion equation of the form

62
Dtaf(z7t) = B'@?f(zﬂ t) (2)

where Dy denotes a suitably defined fractional derivative operator of order « and
B is a constant. ! A precise formulation of such a fractional diffusion equation
and its exact solution are given in [6]. Exact solutions for a whole class of frac-
tional derivative operators are also given in [7]. Fractional equations could also
be postulated for traffic flow. An example would be the fractional differential
equation

Def(et) = A2 (e, t) + BL ja 1) 3)
¢ ’ 8z '\’ 0227V

where now f(z,t) denotes the probability distribution for the number z of cars
in a traffic jam at time ¢, and where A, B are phenomenological parameters. For
a = 1 this equation reduces to an equation proposed in [8]. Another example
would be a fractional Lighthill-Whitham model defined by the equations [9]

Gihinn =288 (ta)
Dffo(zt) = A~ Bf, (40)

where A and B are phenomenological parameters. Here f1(z,t) is a macroscopic
density of vehicles at position z at time ¢, and fy(z,t) is their average velocity.
An exact solution for the fractional relaxation equation (4b) is given in [7].

My purpose in this article is not to discuss specific applications of fractional
calculus (see [5] for other examples), but rather to investigate the reasons for

! Not all definitions of fractional derivatives are suitable. For information about “suit-
able” definitions of fractional derivatives see [5).
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the importance of fractional time derivatives from a more fundamental point of
view. The results presented here provide a general justification for the usage of
fractional time derivatives in model equations pertaining to macroscopic time
scales [7]. Fractional time derivatives appear universally because they arise as
attractive fixed points in a scaling limit. This is similar to the thermodynamic
limit in the theory of phase transitions, and to the concept of universality in
that context. The appropriate scaling limit is introduced as a long time limit
describing a change between microscopic and macroscopic time scales. The re-
sults also contain a mathematical mechanism for the emergence of macroscopic
irreversibility from microscopic reversibility that does not depend on traditional
[10,11] phase space arguments.

2 Semi-groups and Long Time Limit

Consider a general time evolution T(¢) in physics, economics, or other sciences.
An example of what is meant by T(t) is given by the left hand side of (1). In
that case it is identified as a simple translation, defined as

T(t)f(s) = f(s — 1), ()

because the infinitesimal generator —d/dt of T(t) appears on the left hand side
of eq. (1). The subsequent considerations concern the possible operators that
may appear on the left hand side of an evolution equation.

A time evolution may be characterized generally as a pair ({T-(t) : 0 <t <
00}, (Br, | - |))- Here T (t) = T(t7) is a semi-group of operators {T(t) : 0 <
¢ < co} mapping a Banach space (B;(R),|| - ||) of functions f(s) = f(s7) on R
to itself. The elements of the Banach space represent the observables or states
of the system. The argument ¢ > 0 of T, (t) represents a time duration, the
argument s € R of f-(s) a time instant. The index 7 > 0 indicates the units
(or scale) of time. Below, 7 will again be frequently suppressed to simplify the
notation. The elements f,(s) = f(sT) € B, represent observables or the state
of a physical system as function of the time coordinate s € R. The semi-group
conditions require

T, (tl)TT(tZ)fT(tO) = T'r(tl + tZ)f‘r (tO) (63)
TT(O)fT(tO) = f'r(t()) (6b)

for t1,t2 > 0, to € R and f, € B,. The first condition defining the composition
law of the semi-group may be viewed as representing the unlimited divisibility
of time. The second condition is the unit element of the semi-group.

Reproducibility of experiments requires homogeneity with respect to time
translations. The postulate of homogeneity assumes that T() commutes with
translations, i.e.

T(t1)T(t2) f (to) = T(t2)T (1) f (to) (7)
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for all 2 > 0 and £9,%; € R. This postulate allows to shift the origin of time anq
it reflects the basic symmetry of time translation invariance for scientific laws.
A time evolution T(t) should also be causal in the sense that the function
9(to) = (T(t)f)(to) should depend only on values of f(s) for s < tp.
Finally, the time evolution T(¢) is assumed to be strongly continuous in ¢ by
demanding :

lim ||T(#)f - £ =0 (8)

for all f € B. It is also assumed to preserve boundedness in the sense that for
all ¢ and for f € LP(R) the assumption 0 < f < 1 almost everywhere implies
0 < T(t)f <1 almost everywhere. For simplicity it will also be assumed that
the operators T(t) are linear. For the general case see [7].

Let LP(R™) denote the Lebesgue spaces of p-th power integrable functions,
and let S denote the Schwartz space of test functions for tempered distributions
[12]. It is well known that all bounded linear operators on LP(R™) commuting
with translations (i.e. fulfilling (7)) are of convolution type [12]. More precisely,
suppose the operator T : LP{R") — L¢(R"), 1 < p, ¢, < oo is linear, bounded and
commutes with translations. Then there exists a unique tempered distribution p
such that Tf = pu« f for all f € 8. For p = ¢ = 1 the tempered distributions in
this theorem are finite Borel measures. If the measure is bounded and positive
this means that the operator T can be viewed as a weighted averaging operator.
In the following the case n = 1 will be of interest. A positive bounded measure
p on R is uniquely determined by its distribution function i : R — [0, 1] defined
by

#( = 00,2)
() = . ©)
The tilde will again be omitted to simplify the notation.

Now, let T(¢) be a strongly continuous time evolution as defined above fulfill-
‘ing the conditions of homogeneity and causality, and being such that f € LP(R)
and 0 < f <1 almost everywhere implies 0 < Tf < 1 almost everywhere. Then
T(t) corresponds uniquely to a convolution semi-group of measures y; through
the formula

T()f(s) = (e * F)(s) = / £(s — )dpu(s") (10)

with supp u: C Rt for all ¢ > 0. Here a convolution semi-group of measures on
R is a family {u: : t > 0} of positive bounded measures on R with the properties
that

uw(R) <1 fort >0, (11a)
Pirs = g ¥ ps  for t,s >0, (11b)
6 = lim (11¢)

t—0
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where § is the Dirac measure at 0 and the limit is the weak limit.
The problem of interest is to take a scaling limit of T(t) f(s) in which both
t — oo and s — oo simultaneously. 2 This is conveniently done by discretizing
T(t) using t € N. Then reintroducing the time scale 7 one has T;(n) = T(n7) =
T(7)" = T,(1)". Suppressing again the time scale 7 the scaling limit of interest
may be defined through iteration of T(1) =T as
lim (T"f)(s) (12)

n,§—00
§=0,3

whenever it exists. Here o, denotes a sequence of rescaling factors such that
limy,—y00 0n, = 00. The scaling limit is called causal if supp p C Ry where p = p;
is the measure corresponding to T = T(1) by virtue of (10)

3 Result

If a causal (ultra-)long time limit, as defined in (12), exists and is non-degenerate
then the sequence o, of rescaling factors must have the form

n =% A(n) (13)

where 0 < a < 1 and A(n) fulfills lim,, o A(bn)/A(n) = 1 for all b > 0. Such a
function A(n) is called slowly varying [14,15]. The universal exponent a and the
slowly varying function A(n) are determined by the asymptotic behavior of the
measure py corresponding to T = T(1) by (10), i.e. they are determined by the
microscopic evolution.

The basic result was obtained in [6,13,16-19]. Define the Fourier transform
of a function f as usual through

(oo}

flw) = / &L £(t) dt. (14)

—0o0

Let f(s) be such that the limit lima—o af(aw) = :\f.(w) defines the Fourier trans-
form of a function f(s). Then the (ultra-)long time scaling limit exists if and
only if it is of the form

e = | y by _ [z vy dy
ol (T71)(5) ‘/ ha (3) 5 ‘/Tyf(s)" OF
S=0nS 0 0

=T (D) (15)

2 This scaling limit was called ”ultra-long time limit” in [13] because it goes over to
time evolutions on time scales longer than infinite.
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where £ > 0 and 0 < o < 1 are constants, the functions hq(z) are given by

0,1
ha(e) = — 30 (1 ((O, 1ja)>’ (16)

and T3f(3) = f(5 — t) denotes the translation semi-group in the rescaled vari-
ables t and 3. The definition of the H-function Hp:"(z) in (16) is given in the
Appendix. The constant « is determined by the measure p, corresponding to T,
and agrees with that appearing in (13) for the normalizing constants.

The constant ¢ is nonnegative. This result receives its significance from the
fact that the operator T,(2)f(3) defined by (15) is again a semi-group in the
variable ¢. Therefore T,, (t) may be identified as the macroscopic time evolution
arising in the long time scaling limit from the microscopic time evolution defined
by T. The result # > 0 then states that a macroscopic time evolution is always
a semi-group never a group. The result remains valid also if T is invertible, i.e.
if the microscopic time evolution is reversible. This finding seems related to the
questions surrounding the origin of macroscopic irreversibility versus microscopic
reversibility that have received renewed attention [10,11].

4 Infinitesimal Generators

The fundamental importance of the semi-groups T, (?) for time evolutions in
physics and other sciences as universal attractors for macroscopic time evolutions
seems to have been noticed for the first time in (6,7,13,16-19]. This is surprising
because their mathematical importance has long been recognized [14,20-22]. In
particular the infinitesimal generators are known to be fractional derivatives
[23,24,21,14]. The infinitesimal generators are defined as

Aaf(_s.) — llm Ta(t)f(‘f) - f(S) . (17)
i—0 i
Formally A, may be calculated by Laplace transformation in (15).
To obtain the Laplace transformation of hqy note first that
1-1/0,1/a
ha(z) = ~HY) (| 7 M1/ (18)
o 0, 1)

by virtue of relations (39) and (37) given in the Appendix. Using the Laplace
transform of a general H-function from (40), the order reduction formula (35)
and the reciprocal relation (37) one finds

(—7 _)
ot (“ o, 1/a)>

a

=e ¥ (19)

x
ha(u) = / ¢ ho(z) do
0
1
(8%
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where the last equality follows from the Mellin transform

7xs—lﬂgs (rc (=)

0 (O’Bl)

from the definition (23). With (19), (15), (17) and the convolution theorem one
finds by Laplace inversion

n+ico e
AaF(5) = lim — / e’ (e—t—t'—l) f(@) du

) dz = I'(B1s) (20)

i—0 27i
n—100
n-+ioc0 e
1 5T 1 e
= — 1 PR —
omi / ¢ zi%( 7 )f(“’)
n—1ico
n+1i00
1 .
e / e*u%f(u) du. (21)
n—1i00

This formal result can be made rigorous [25]. The infinitesimal generator A, of
the macroscopic time evolutions T, (f) is therefore related to the infinitesimal
generator A = —d/dt of T; through

AT E) = —(~A)F () / s 16 4
0

ia) / y Ty - 1DF(E) dy
0

= —D*f(3) | (22)

showing that A, is the fractional power of the derivative d/df. The last equal-
ity defines the fractional derivative of order a, denoted as D%, through the
Marchaud-Hadamard-Balakrishnan algorithm [23,25].

5 Conclusion

The preceding results demonstrate that fractional time derivatives may arise
from a suitable scaling limit as the infinitesimal generators of time evolutions on
macroscopic time scales. The order « of the derivative is restricted to the unit in-
terval, and its value is determined by the microscopic time evolution. Physically,
the order « is a quantitative measure for the decay of the temporal correlations
or history dependence in the microscopic time evolution. For the most frequent
case a = 1 the results show that macroscopic irreversibility of regular evolution
equations such as (1) may be the viewed as a general consequence of a long time
scaling limit.
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Appendix: Definition and Properties of H-Functions

The H-function of order (m,n,p,q) € N* and parameters A4; € Ry(i=1,... .D),
BieRi(i=1,...,9),0;,€C(i=1,...,p),and b; € C(i=1,...,q) is defined
for z € C,z # 0 by the contour integral [26-30]

(a1, 41),. .., (ap, Ap) 1
gmn | o, =_— [ n(s)z™* ds 23
. ( (b1, By),...,(bg, By) 27i / (23)

where the integrand is
I+ Bis) [[ P - ai — Ais)
n(s) = pizl i=lq ‘ 0
II rt+4is) T[ 1@ -0 - Bis)
i=n+1 i=m+1

In (23) 27° = exp{—slog|z| — iargz} and argz is not necessarily the principal
value. The integers m, n, p, ¢ must satisfy

0<m<gq, 0<n<p (25)

and empty products are interpreted as being unity. The parameters are restricted
by the condition

P.NP, =0 (26)
where
P, = {poles of I'(1 — a; — A;s)} = {———1—Zi'+k €eC:i=1,...,m;ke No}
—b; —k l

IP’b:{polesofF(bi-l—Bis)}:{ E(C:izl,...,m;kENg} (27)

B;

are the poles of the numerator in (24). The integral converges if one of the
following conditions holds [30]

L =L(c—ioco,c+ioo;Pg,Py); |argz| < Crm/2; C >0 (28a)
L=L(c—io0,c4ic0;Pg,Py); |argz|=Cn/2; C>0; ¢D< —ReF
(28Db)
L=L(—00 +iv,~00+iv2;Pa,Pp); D >0; 0<|z| <oo (29a)
L =L(~00+im,—00+1i7;Pe,Ps); D=0; 0<|z|<E™" (29b)
L =L(~00+iv,—00+iy2; P, Py); D=0; |zl=E"C>0;ReF <0

(29¢)
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L = L(co +iy1,00 +i72;Pa,Pe); D <0; 0< 2] <00 (30a)
L= L(oo +iv1,00 +im; Po, By); D=0; [2| > E" (30b)
L= L(co + 71,00 +i72; Pa, By); D =0; |2| = E5C >0;ReF <0 (30c)
where 71 < 7. Here L(z1,292;G1,Gy) denotes a contour in the complex plane

starting at z; and ending at z; and separating the points in Gy from those in
Gs, and the notation

n P m g
C= ZAl— > AH—ZB,— > B (31)
=1 i=n+1 =1 i=m-+1
q p
D=3 Bi-) 4 (32)
1;1 qz:l
p=114~ 1[5 33)
1,_—; ;
F= Ebz—zaﬁr(p 9)/2+1 (34)
=1 i=1

was employed. The H-functions are analytic for z # 0 and multi-valued (single
valued on the Riemann surface of log z).

The following properties of a general H-function are used in the text. First,
the order reduction formula

g™ (al’Al) (G'QaA2) (CLp,Ap)
pd (b1,B1 (b2, Ba) ..., (bg—1, Bg—1)(a1, A1)

),
JA . (ap, A
_qul (2 2) (p p) (35)
’ (bl,Bl) . a(bq—lan—l)
holds for n > 1 and ¢ > m, and similarly
ar (al,Al),(az,Aﬂ--- ,(ap—l,Ap—l)(bl,Bl)
pa (blyBl)a(b%BQ)'-- ,(bquq)
a1, A1), s (Qp—1, Ap—
Hmlqlz(l 1) (pl pl) (36)
(by, Bs), ... ,(bg, Bg)
for m > 1 and p > n. A change of variables in (23) shows
H;nén 2 (alvAl)a"' ’(aPaAp)
' (bl’Bl)"" a(anBq)
nmn 1 (1—b1,Bl),...,(l—bq,Bq)
=H " | - (37)
z (1_0'1"41)"-- a(l_a’piAP)
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which allows to transform an H-function with D > 0 and argz to one with
D < 0 and arg(1/z). For v > 0
(a1, 41), - - ,(a,,,A,,>>

1 n
~ v (z (b1, B1), ... , (b, B
1,01)5.-+3\Yg, q)

_ e | @074, ()
P (bla ’)’Bl), ey (bq,’qu)
while for v € R
z'yH;'}qn <z
—gmn |, (a1 +vA1, A1), .. ,(ap +vAp, Ap)
o (b1 + 7By, B1), ..., (bg + vBqg, By)

holds. Finally, the Laplace transform of an H-function is

CAH ) ) = [y (a: (01, 1), (2, 4p) ) a

2 (blaBl)a-'- 7(bq’BQ)
(1—by — By, By),...,(1—b, — By, B,)
— Hn—|—1,m (u
q,p+1
1 m,n+1 1
= EHIH'L(] (a

(0, 1)(1 — Q) —Al,Al),... ,(1 — ap — AP’AP)
for Res > 0, C > 0, |argz| < $Cn and mini<j<m Re(b;/B;) > —1.

(b13B1)7"' >(b(I’Bq)

(a1, A1),... 7(a'paAp))

(39)

(Oa 1)(0,1,141), e ?(a‘Pﬂ AP)

(b1, B1), ..., (bg, By) (40)
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