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This paper discusses selected aspects of the application of dynamic percolation models to ionic transport in mixed-ion 
superionie conductors. The discussion is based on an AB lattice gas model with hard-core repulsions and a ratio r, 0:::;; r:::;; oo, 
between the transition rates of particles A and B. The frequency-dependent conductivity for a tracer particle is calculated 
within an effective-medium theory. The motion of the background B-particles is regarded as providing a fluctuating disordered 
environment for the tracer particles A. A crossover frequency separating high-frequency and low-frequency response is found 
which scales with ras wc- r- 1

/
2

. The results for the dc Iimit are compared with simulations and are found tobe in very good 
agreement. 

An important dass of theoretical models for 
the study of hopping transport in superionie solids 
are lattice gases [1,2]. In the simplest form of this 
model two species of particles, A and B, occupy 
the sites of a regular lattice and interact with each 
other via a hard-core repulsive potential. The par
ticles perform random walks between vacant lattice 
sites. Their interaction prevents double occupancy 
of lattice sites. The transition rates may be differ
ent for the two types of particles. In more realistic, 
models the particles may also interact with each 
other via more extended potentials. The experi
mental system which has motivated the present 
investigation of such models is Na+;Ba++_ß"
alumina. In these systems, charge transport occurs 
via hopping of Na+ and Ba++ ions. The ionic 
motion is two-dimensional, being confined to the 
mirror planes. The underlying regular lattice of 
equilibrium positions is the two-dimensional 
honeycomb lattice. The activation energy for Na+ 
is roughly 0.35 eV while that for Ba++ is around 
0.58 eV [3]. At sufficiently low temperatures, the 
transition rates for the Ba++ will be so small that 
they can be considered frozen on the timescale of 
the experiment. In this case, the Na+ will experi
ence a disordered network of conduction paths. At 
higher temperatures, the network of available sites 
will become time dependent. 

My objective here is to discuss some results of 
recent calculations of the frequency dependent 
conductivity, a( w ), for simple lattice gas models 
of such systems [ 4-7]. Emphasis is placed on the 
concept of dynamic disorder and on correlation 
effects. The calculation of a( w) for hopping trans
port is based on the well-known fluctuation-dis
sipation theorem for localized quantities [8] which 
relates a( w) to the generalized frequency-depen
dent diffusion coefficient, D( w ), of a random 
walk. 

Despite much analytical work and simulations, 
a theory for the frequency-dependent conductivity 
over the full range of transition rates and con
centrations of the two species has remained dif
ficult because an exact calculation involves the 
solution of a many-particle master equation. For 
reviews, the reader is referred to refs. [1] and [9]. 
Most theoretical work concentrates on two special 
cases: one is the case of frozen B-particles ran
domly occupying the lattice sites, the other is the 
case of tracer diffusion where both species of 
particles are equally fast. Simulations on the other 
hand have considered mainly the dc limit. The 
basic idea for improving previous approaches was 
first introduced in ref. [4]. lt consists in viewing 
the tracer diffusion problern as diffusion in a 
dynarnically-disordered environment. 
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Given the transition rates wA, w8 of the two 
particles and the concentration p of B-particles, 
the problern is to calculate the frequency-depen
dent diffusion coefficient for a single A-particle 
moving in a time-rlependent background of B-par
ticles. The concentration p and the dimensionless 
ratio T = wAjw8 are the physical parameters of 
the model. The concentration of vacancies is 1 - p. 
For T = oo the A-particle moves in a frozen dis
ordered background of B-particles. For T = 0, one 
has a slow A-particle in a fast background, and 
the case T = 1 will be referred to as tracer diffu
sion. If T = oo and if the B-particles randomly 
occupy the lattice sites, there will exist a percola
tion threshold Pc above which the A-particle can
not find a connected path of vacancies. through 
the system, and thus o( w = 0) = 0 for p > Pc· If T 

is large but finite and p > Pc• the A-particle will 
eventually pass through the network, and one ex
pects a finite dc conductivity determined by T 

according to o(O) - 1/T. In this case, there will 
also exist a crossover frequency, wc, above which 
the A-particle will essentially see a frozen arrange
ment of B-particles. Above wc, the conductivity is 
expected to be strongly affected by the dynamics 
of the B-particles. This crossover frequency can 
again be related to the parameter T by the follow
ing qualitative argument. 

Let the dynamics of the B-particles be such that 
its effect can be modelled as independently 
fluctuating bonds. The lattice bonds between 
nearest-neighbour sites are classified at each in
stant as conducting or open if they connect two 
vacant sites. Otherwise they will be classified as 
being blocked. Each bond is assumed to fluctuate 
independently between these two possibilities, 
blocked or open, with a relaxation time, T. The 
bond system is assumed to be in a stationary state 
in which the probability for each bond to be 
blocked is p, while the probability of an open 
bond is 1 - p. The A-particle is started at time 
t = 0. The number of bonds remaining in the same 
state as at t = 0 decreases exponentially with time. 
As long as the A-particle does not jump across a 
bond that has changed its state since t = 0, it 
explores the configuration of t = 0 as if it were 
frozen. This defines the crossover time as the time 
after which the walker first encounters a bond that 

has switched at least once since t = 0. Consider n 
steps of the A-particle. The average length of the 
time interval during which all of the n crossed 
bonds remain in their original state is T jn. The 
crossover occurs when this average time equals the 
number of steps, i.e. n · 1 - T jn, where it is as
sumed that 1/wA defines the units of time. There
fore one expects tc- T1

/
2 for the crossover time 

and wc- T- 1
;

2 for the crossover frequency. 
The problern can be approached more quantita

tively using an effective-medium approach. The 
idea is to apply the analytic continuation rule of 
dynamic percolation theory [10] which was origi
nally derived for an artificial background dy
namics. If D( w) is the generalized frequency-de
pendent diffusion coefficient of the A-particle in 
the dynamically disordered system, then the rule 
states that D(u) = Da(u + 1/T), where u = iw is 
the spectral variable corresponding to Laplace 
transformation with respect to time and Da is the 
generalized frequency-dependent diffusion coeffi
cient for the frozen system (i.e. for T = oo ). The 
same analytic continuation rule was found to apply 
within effective-medium theory to the model of 
independently fluctuating bonds discussed above 
[11]. The analytic continuation rule allows the 
calculation of D for the problern with dynamic 
disorder from the calculation of the same quantity 
for frozen disorder. 

Figure 1 shows the result for Re D( w) -
Re o( w ), where Da was obtained from the single
bond effective-medium approximation for bond 
percolation [8]. One finds a crossover from o( w) 
- 1/T for w < wc to the behaviour of the frozen 
problern at high frequencies. The crossover 
frequency is seen to scale with wc- T- 112

• These 
results confirm the simple scaling argument above. 
Formulating the problern in the language of con
tinuous time random walks shows however that 
the low-frequency behaviour can be different if 
correlations between A- and B-particles give rise 
to a sequential mechanism for the release fo the 
A-particle from a finite duster of vacant sites [5). 

The EMA calculation based on the analytic 
continuation rule given above an also be checked 
against simulation results. Such results are availa
ble for the honeycomb lattice from ref. [12] where 
the dc conductivity was measured as a function of 
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Fig. 1. Real part of the generalized diffusion coefficient Re D( w) as a function of frequency, w, in a logarithmic plot for several 
ralues of -r. The result shown is representative for blocker concentrations p above and bounded away from the conductivity 

threshold. o(O, T = oo) = 0. 

B-particle concentration. More precisely, in fig. 2 
:he correlation factor /= D(O)/D(oo) has been 
Jlotted as a function of p. The crosses are the 
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simulation results for r = 1 from ref. [12]. Al
though the theoretical curves contain no adjusta
ble fit parameters, they are found to agree very 
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Fig. 2. Correlation factor f versus concentration p for several values of T for the hexagonallattice. The crosses are simulation results 
from ref. [12] for the case T = 1. There are no adjustable fit parameters. 
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well with the simulations_ Similar simulations 
[13,14] for an fcc lattice gave equally good agree
ment [4]. 

Finally, I would like to comment on the effect 
of correlations. Correlations can arise from 
Coulomb interactions, correlated hops of groups 
of particles or lattice relaxation effects. In general 
these will change the transition rate of the A-par
ticle to the previously occupied site as compared 
with the rate for transitions to all other neighbour
ing sites. This leads immediately to a generaliza
tion of Fürth's model for correlated random walks 
[15-17] to disordered systems [6,7]. This gives rise 
to several interesting effects [6], two of which are 
mentioned here. For certain values of the correla
tion strength, the real part of o( w) can show a 
maximum as a function of frequency. For other 
values of the correlation strength crossover be
haviour can give rise to approximate 'power laws' 
Re o( w) - wa with a = 0.5 over much more than a 
decade in frequency. 

Conclusions 

Summarizing, this paper has discussed recent 
work on hopping transport in dynamically dis
ordered systems. For details the reader is referred 
to refs. [4] and [6]. lt was shown that tracer 
diffusion in lattice gases can profitably be viewed 
as a dynamic disorder problern (see also ref. [18] 
for the same idea in a different context). In par
ticular, such an approach gives very good agree
ment between the results of Monte Carlo simula
tions and an analytic effective-medium treatment. 

The work described here was performed in 
collaboration with Professor Dr R. Orbach. The 

author thanks the German Norwegian Research 
Cooperation (Project B-2) for financial support. 
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