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H-function representations for stretched exponential relaxation and non-Debye susceptibilities
in glassy systems
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Analytical expressions in the time and frequency domains are derived for non-Debye relaxation processes.
The complex frequency-dependent susceptibility function for the stretched exponential relaxation function is
given for general values of the stretching exponent in terms ofH-functions. The relaxation functions corre-
sponding to the complex frequency-dependent Cole-Cole, Cole-Davidson, and Havriliak-Negami susceptibili-
ties are given in the time domain in terms ofH-functions. It is found that a commonly used correspondence
between the stretching exponent of Kohlrausch functions and the stretching parameters of Havriliak-Negami
susceptibilities are not generally valid.
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Amorphous polymers and supercooled liquids near
glass transition temperature are well known to exhibit n
exponential relaxation behavior in many experiments@1#. Di-
electric spectroscopy, viscoelastic modulus measureme
quasielastic light scattering, shear modulus and shear c
pliance, as well as specific heat measurements all s
strong deviations from the exponential Debye relaxat
function f (t)5exp(2t/t) wheret is the relaxation time@2#.

Most experimental works on glassy dynamics utilize on
a small number of empirical nonexponential expressi
when fitting to the observed experimental relaxation data.
of these phenomenological fitting formulas are obtained
the method of introducing a fractional ‘‘stretching’’ expone
into the Debye expression in the time or frequency doma
In the time domain this method leads to the ‘‘stretched
ponential,’’ or Kohlrausch, relaxation function, given as

f ~ t !5exp@2~ t/tb!b#, 0,b<1, ~1!

with exponentb and time constanttb @3#. Of course all
formulas obtained by the method of stretching exponents
constructed such that they reduce to the exponential De
expression when the stretching exponent becomes unity.
laxation in the frequency domain is described in terms o
normalized complex susceptibility

x̂~u!5
x~v!2x`

x02x`
512uL$ f ~ t !%~u!, ~2!

whereu52 iv, v is the frequency,x(v) is a dynamic sus-
ceptibility normalized by the corresponding isothermal s
ceptibility, x05 limv→0 Rex(v) is the static susceptibility
x`5 limv→` Rex(v) gives the ‘‘instantaneous’’ respons
and L$ f (t)%(u) is the Laplace transform of the relaxatio
function f (t). Extending the method of stretching exponen
to the frequency domain, one obtains the Cole-Cole sus
tibility @4#

x̂~u!5
1

11~uta!a
, 0,a<1, ~3!
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the Davidson-Cole expression@5#

x̂~u!5
1

~11utg!g
, 0,g<1, ~4!

or the combined Havriliak-Negami form@6# given in Eq.
~22! below. Most surprisingly, the analytical transformatio
between the time and frequency domains for general va
of the parameters in these simple analytical expressions s
to be unknown@7#, and authors working in the time domai
usually employ the stretched exponential function while a
thors working in the frequency domain use the stretched s
ceptibilities.

Despite the fact that inserting the Kohlrausch functi
into Eq.~2! does not yield~3! or ~4! @or the related Havriliak-
Negami susceptibility in Eq.~22! below#, practitioners have
tried to establish a relationship between these functions
order to facilitate the transition between the time and
frequency domains@7#. Equally important for practical pur-
poses is the transformation from expressions~3!, ~4!, or ~22!
in the frequency domain to the corresponding relaxat
functions in time@8#. It seems, therefore, that analytical e
pressions for the Kohlrausch susceptibility in the frequen
domain and for the Havriliak-Negami relaxation functions
the time domain are of general importance and broad in
est.

Great research activities have ensued from the obse
tion of Williams and Watts@3# that the Kohlrausch suscept
bility, obtained by inserting Eq.~1! into Eq. ~2!, has an ana-
lytical expression whenb51/2. Let me briefly recall their
result. One defines the normalized relaxation function as

f ~ t !5H f~ t !/f~0! for t>0,

0 for t,0,
~5!

where f(t) denotes an experimental relaxation functi
~such as the electrical polarization in dielectric experimen!
normalized by the isothermal susceptibilityf(0)5x02x` .
Recall now the well known Laplace transform@9#
©2002 The American Physical Society10-1
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L$exp~2At !%~u!5
1

u
2

Ap

2
u23/2expS 1

4uDerfcS 1

2Au
D ,

~6!

where

erfc ~x!5
2

Ap
E

x

`

exp~2y2!dy ~7!

denotes the complementary error function. Inserting this i
Eq. ~2! and restoringtb yields the known result@3#

x̂~u!5
1

2
A p

utb
expS 1

4utb
DerfcS 1

2Autb
D ~8!

for the complex susceptibility. According to@7# there are no
other cases ofbÞ1 for which an analytical expression
known for the Kohlrausch susceptibility. My objectives
this paper are~i! to provide analytical expressions for th
Kohlrausch susceptibility in the frequency domain in ter
of H-functions for allb, ~ii ! to derive analytical expression
for the Davidson-Cole, Cole-Cole, and Havriliak-Negami
laxation functions in the time domain, and~iii ! to show that
the approximate correspondence between Kohlrausch
Havriliak-Negami expressions in@7# is limited to a narrow
frequency range.

The objectives of this paper are achieved by employin
method based on so-calledH-functions@10#. TheH-function
of order (m,n,p,q)PN4 and with parametersAiPR1 ( i
51, . . . ,p), BiPR1 ( i 51, . . . ,q), aiPC ( i 51, . . . ,p),
and biPC ( i 51, . . . ,q) is defined forzPC, zÞ0 by the
contour integral@10,11#

Hp,q
m,nS zU~a1 ,A1!, . . . ,~ap ,Ap!

~b1 ,B1!, . . . ,~bq ,Bq!
D 5

1

2p i EL
h~s!z2sds,

~9!

where the integrand is

h~s!5

)
i 51

m

G~bi1Bis!)
i 51

n

G~12ai2Ais!

)
i 5n11

p

G~ai1Ais! )
i 5m11

q

G~12bi2Bis!

. ~10!

In Eq. ~9! z2s5exp$2s loguzu2i argz% and argz is not nec-
essarily the principal value. The integersm,n,p,q must sat-
isfy

0<m<q, 0<n<p, ~11!

and empty products are interpreted as being unity. For
conditions on the other parameters and the path of inte
tion the reader is referred to the literature@10# ~see@12#, p.
120ff for a brief summary!. The importance of these func
tions for the present purpose arises from the facts tha~i!
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they contain most special functions of mathematical phys
as special cases and~ii ! their Laplace transform is again a
H-function. Moreover, they possess series expansions
are generalizations of hypergeometric series.

Based on the convenient properties ofH-functions, the
first objective can now be tackled. An analytical express
for the Laplace transform of the Kohlrausch function is o
tained as

L$exp@2~ t/tb!b#%~u!5H11
11S u2bU~1,b!

~1/b,1!
D . ~12!

The result is readily obtained from calculating formally

L$Hp,q
m,n~z!%~u!5

1

2p i E0

`E
L
h~s!e2uzz2sds dz

5
1

2p i EL
h~s!us21G~12s!ds

5
1

u
Hp11,q

m,n11S 1

u U~0,1!~a1 ,A1!, . . . ,~ap ,Ap!

~b1 ,B1!, . . . ,~bq ,Bq!
D

~13!

using the identification

exp@2~ t/tb!b#5H01
10F S t

t D bU2
~0,1!

G , ~14!

and then employing identities amongH-functions @11,12#.
Equation~12! answers the question raised in Ref.@7# con-
cerning the existence of an analytical expression. It will
seen thatH-functions are not more difficult to compute tha
other transcendental functions. Inserting Eq.~12! into ~2!
leads, after some transformations involvingH-function iden-
tities, to the Kohlrausch susceptibility in the simple form

x̂~u!512H11
11S ~utb!bU~1,1!

~1,b!
D . ~15!

This analytical result reduces the calculation of the Ko
rausch susceptibility to a Mellin-Barnes integral of the for
~9!.

For practical purposes it is also of interest to have se
expansions for the analytical results. A Taylor series exp
sion can be obtained from Eq.~9! using the calculus of resi
dues. It reads for theH11

11 function

H11
11S zU~a,A!

~b,B!
D5 (

k50

` ~21!kG„b1~12a1k!B/A…
AG~k11!

3z2(12a1k)/A ~16!
0-2
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TABLE I. Normalized relaxation functions@ f (0)51# with relaxation timet. Series expansions in the rightmost column are asympt
series whenever the range of validity of a series expansion is given as a limit.

f (t) H-function Series

Debye exp(2t/t)
H01

10S t

t U2~0,1!
D (

k50

`
~21!k

G~k11!
S t
t D k

,
t
t

,`

exp(2t/t),
t

t
→`

Kohlrausch exp(2(t/tb)b)
H01

10S F t

tGbU2
~0,1!

D (
k50

`
~21!k

G~k11!
S t
tb

D bk

,
t

tb
,`

exp@2~t/tb!b#,
t

tb
→`

Cole-Cole Ea@2(t/ta)a#
H12

11S F t

ta
GaU~0,1!

~0,1!~0,a!
D (

k50

`
~21!k

G~ak11!
S t
t D ak

,
t

ta
,`

(
k51

`
~21!k11

G~12ak!
S t
ta

D 2ak

,
t

ta
→`

Cole-Davidson G(g,t/tg)
G(g) 12

1

G~g!
H12

11S t

tg
U~1,1!

~g,1!~0,1!
D 12

1
G~g! (k50

`
~21!k

~k1g!G~k11!
S t
tg

D k1g

,
t

tg
,`

exp~2t/tg!

G~g!
S t
tg

Dg21F11(
k50

`

)
j51

k

~g2j!F t
tg

G2kG, t
tg

→`

Havriliak-Negami
12

1

G~g!
H12

11S F t

tH
GaU~1,1!

~g,1!~0,a!
D 2

1
G~g! (k50

`
~21!kG~k1g!

G~ak1ag11!G~k11!
F t
tH

Ga(k1g)

,
t

tH
,`

aÞ1 1
G~g!(k51

`
~21!k11G~k1g!

G~12ak!G~k11!
S t
tH

D2ak

,
t

tH
→`
ity
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for B2A<0. Using this result, the Kohlrausch susceptibil
is found to have the series expansion~for uutbu.0)

x̂~u!512 (
k50

` ~21!kG~bk11!

G~k11!
~utb!2bk, ~17!

which reduces its computation to elementary additions
multiplications. The result agrees with a direct evaluation
the Laplace transform of the series expansion for
stretched exponential function. Finally, the asymptotic
pansion

x̂~u!512
1
b (

k50

` ~21!kG@~k11!/b#

G~k11!
~utb!k11 ~18!

holds for uutbu→0. It shows that the imaginary part in
creases linearly at low frequencies similarly to the Co
Davidson susceptibility.

Using the method ofH-functions sketched above also a
lows one to find analytical expressions for the relaxat
functions corresponding to stretched susceptibilities. The
sults are summarized in the two tables below. Table I gi
all relaxation functions, theirH-function representations, an
their power series expansions, while Table II summarizes
06151
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susceptibilities in the frequency domain, theirH-function
representations, and their power series expansions. In t
tables the notation

G~a,x!5E
a

`

ya21e2ydy ~19!

denotes the complementary incomplete gamma function,
the abbreviation

Ea~x!5 (
k50

` xk

G~ak11!
~20!

is the Mittag-Leffler function. In addition, the shorthand n
tation

Ha~x!5H11
11S 2xU~1,1!

~1,a!
D ~21!

was introduced for writing the Kohlrausch susceptibility.
0-3
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TABLE II. Normalized frequency-dependent complex susceptibilities (u52 iv). Series expansions in the rightmost column a
asymptotic series whenever the range of validity of a series expansion is given as a limit.

x̂(u) H-function Series

Debye 1

11ut H11
11S utU~0,1!

~0,1!
D (

k50

`

~21!k~ut!k, uutu,1

2(
k50

`

~21!k~ut!2k21, uutu.1

Kohlrausch 12Hb@2(utb)b#
12H11

11S ~utb!bU~1,1!

~1,b!
D 12(

k50

`
~21!kG„~k11!/b…

bG~k11!
~utb!k11, uutbu→0

12(
k50

`
~21!kG~bk11!

G~k11!
~utb!2bk, uutbu.0

Cole-Cole 1

11(uta)a H11
11S ~uta!aU~0,1!

~0,1!
D (

k50

`

~21!k~uta!ak, uutau,1

2(
k50

`

~21!k~uta!2a(k11), uutau.1

Cole-Davidson 1

(11utg)g

1

G~g!
H11

11S utgU~12g,1!

~0,1!
D (

k50

`
~21!kG~k1g!

G~g!G~k11!
~utg!k, uutgu,1

2(
k50

`
~21!kG~k1g!

G~g!G~k11!
~utg!2(k1g), uutgu.1

Havriliak-Negami 1

@11(utH)a#g

1

G~g!
H11

11S ~utH!aU~12g,1!

~0,1!
D (

k50

`
~21!kG~k1g!

G~g!G~k11!
~utH!ak, uutHu,1

2(
k50

`
~21!kG~k1g!

G~g!G~k11!
~utH!2a(k1g), uutHu.1
th
a
th

he
1
u

fit

p
ta

ar
a
e

t.
f
the
half

ity
e

re

hl-
th

in
wer

l-
the
em-
eter

or
Having computable analytical expressions at hand for
Kohlrausch susceptibility, it becomes possible to investig
the mappings between the Kohlrausch susceptibility and
Havriliak-Negami susceptibility@6#

x̂~u!5
1

„11~utH!a
…

g
~22!

that were postulated in Ref.@7#. Table I and Fig. 5 of Ref.@7#
present fits for the Kohlrausch susceptibility using t
Havriliak-Negami expression as a fit function. Figure
shows the real and imaginary parts of the Kohlrausch s
ceptibility with b50.25 plotted as crosses (3) in a doubly
logarithmic plot. The corresponding Havriliak-Negami
from @7# with a50.5164, g50.3706, andtH /tb510 is
shown as the solid line. In all calculationsx`51 and x0
510 unless stated otherwise.

Because it is known that the phenomenological susce
bility functions are often inadequate for fitting experimen
relaxation spectra, some researchers prefer to discuss
stretching exponents but the width of the imaginary p
@13#. Figure 2 plots three characteristic frequencies for
three stretched susceptibility functions against their resp
06151
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tive stretching exponent. The first isf 0, the location of the
maximum of the imaginary part. The second isf 2 , the lo-
cation of the lower half-width point of the imaginary par
The third isf 1 , the location of the upper half-width point o
the imaginary part. The half-width points are defined as
frequencies at which the imaginary part has decayed to
of its maximum value.

Figure 2 shows that while the Cole-Cole susceptibil
~dashed line for maximum, solid line with triangles for th
half widths! is symmetric, the other two susceptibilities a
asymmetric. For small values ofb ~respectively,g) the
Cole-Davidson is more strongly asymmetric than the Ko
rausch susceptibility. Note also that the lower half-wid
point moves to higher frequencies for diminishingg in the
Cole-Davidson case. The total width of the relaxation peak
decades is the difference between the upper and the lo
half width. For a5b5g50.2 the total width of the Cole-
Cole function is roughly 7 decades, the width of the Koh
rausch susceptibility is roughly 5 decades, and that of
Cole-Davidson is roughly 2.5 decades. Figures 2 and 1 d
onstrate that the mapping between the Kohlrausch param
b and the Cole-Davidson parameterg that is often employed
by practitioners @2# becomes increasingly inaccurate f
small values of the stretching exponents.
0-4
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H-FUNCTION REPRESENTATIONS FOR STRETCHED . . . PHYSICAL REVIEW E65 061510
In summary, the present paper has given unified repre
tations of nonexponential relaxation and non-Debye susc
tibilities in terms ofH-functions. These representations le
to computable expressions that were used to investigate
relations between the Kohlrausch susceptibility and othe

FIG. 1. Comparison of the Havriliak-Negami fit~solid line! with
a50.5164,g50.3706, andtH510 for a Kohlrausch susceptibility
(3) with b50.25 andtb51. The values were taken from Ref.@7#,
p. 7310, Table I. In all casesx`51 andx0510.
ys
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functions. TheH-function representations given here c
help to facilitate the computational transformation betwe
the frequency and time domains in theoretical considerati
and experiment.

FIG. 2. Location of the frequency of the maximumf 0, fre-
quencyf 2 of the lower half width, and frequencyf 1 of the upper
half width of the imaginary part of Cole-Cole, Kohlrausch, a
Cole-Davidson susceptibility functions as a function of the resp
tive stretching exponentsa,b,g. The upper and lower half-width
frequenciesf 6 are indicated by solid lines connected with symbo
@Cole-Cole susceptibility function (n), Kohlrausch susceptibility
(s), Cole-Davidson (h)#. The location of the maximum of the
imaginary part is indicated by a dashed line for the Cole-Cole fu
tion, by a solid line without symbols for the Kohlrausch functio
and by a dash-dotted line for the Cole-Davidson function. The
laxation time is alwayst51.
ys.
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