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Abstract. The paper reviews recent developments in local porosity theory, and dis-
cusses its application to the analysis of stochastic reconstruction models for sedimentary
rocks. Special emphasis is placed on the geometric observables in local porosity theory
and their relation with the Hadwiger theorem from stochastic geometry. In addition
recent results for the exact calculation of effective physical transport properties are
given for a Fontainebleau sandstone. The calculations pertain to potential type prob-
lems such as electrical conduction, dielectric relaxation, diffusion or Darcy flow. The
exact results are compared to the approximate parameterfree predictions from local
porosity, and are found to be in good agreement.

1 Introduction

An important subclass of heterogeneous and disordered systems are porous ma-
terials which can be loosely defined as mixtures of solids and fluids [1,20,30,55].
Despite a long history of scientific study the theory of porous media or, more
generally, heterogeneous mixtures (including solid-solid and fluid-fluid mixtures)
continues to be of central interest for many areas of fundamental and applied
research ranging from geophysics [26], hydrology [7,43], petrophysics [36] and
civil engineering [19,21] to the materials science of composites [17].

My primary objective in this article is to review briefly the application of
local porosity theory, introduced in [27,28,30], to the geometric characterization
of porous or heterogeneous media. A functional theorem of Hadwiger [23, p.39]
emphasizes the importance of four set-theoretic functionals for the geometric
characterization porous media (see also the paper by Mecke in this volume).
In contrast herewith local porosity theory has emphasized geometric observ-
ables, that are not covered by Hadwigers theorem [25,29,31]. Other theories
have stressed the importance of correlation functions [60,63] or contact distri-
butions [38,46,61] for characterization purposes. Recently advances in computer
and imaging technology have made threedimensional microtomographic images
more readily available. Exact microscopic solutions are thereby becoming pos-
sible and have recently been calculated [11,66,68]. Moreover, the availability of
threedimensional microstructures allows to test approximate theories and geo-
metric models and to distinguish them quantitatively.

Distinguishing porous microstructures in a quantitative fashion is important
for reliable predictions and it requires apt geometric observables. Examples of
important geometric observables are porosity and specific internal surface area
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[6,20]. It is clear however, that porosity and specific internal surface area alone
are not sufficient to distinguish the infinite variety of porous microstructures.

Geometrical models for porous media may be roughly subdivided into the
classical capillary tube and slit models [6], grain models [61], network models
[15,22], percolation models [16,54], fractal models [34,53], stochastic reconstruc-
tion models [1,49] and diagenetic models [4,51]. Little attention is usually paid
to match the geometric characteristics of a model geometry to those of the ex-
perimental sample, as witnessed by the undiminished popularity of capillary
tube models. Usually the matching of geometric observables is limited to the
porosity alone. Recently the idea of stochastic reconstruction models has found
renewed interest [1,50,70]. In stochastic reconstruction models one tries to match
not only the porosity but also other geometric quantities such as specific internal
surface, correlation functions, or linear and spherical contact distributions. Simi-
lar ideas have been proposed in spatial statistics [61]. As the number of matched
quantities increases one expects that also the model approximates better the
given sample. My secondary objective in this review will be to compare simple
stochastic reconstruction models and physically inspired diagenesis models with
the experimental microstructure obtained from computer tomography [11].

2 Problems in the Theory of Porous Media

2.1 Physical Problems

Many physical problems in porous and heterogeneous media can be formulated
mathematically as a set of partial differential equations

F P(r, t,u, ∂u/∂t, . . . ,∇ · u,∇ × u, . . . ) = 0, r ∈ P ⊂ R
3, t ∈ R (1a)

F M(r, t,u, ∂u/∂t, . . . ,∇ · u,∇ × u, . . . ) = 0, r ∈ M ⊂ R
3, t ∈ R (1b)

for a vector of unknown fields u(r, t) as function of position and time coordinates.
Here the two-component porous sample S = P ∪ M is defined as the union of
two closed subsets P ⊂ R

3 and M ⊂ R
3 where P denotes the pore space (or

component 1 in a heterogeneous medium) and M denotes the matrix space (or
component 2). In (1) the vector functionals F P and F M may depend on the
vector u of unknowns and its derivatives as well as on position r and time t. A
simple example for (1) is the time independent potential problem

∇ · j(r) = 0, r ∈ S (2)
j(r) + C(r)∇u(r) = 0, r ∈ S (3)

for a scalar field u(r). The coefficients
C(r) = CPχ

P
(r) + CMχ

M
(r) (4)

contain the material constants CP �= CM. Here the characteristic (or indicator)
function χ

G
(r) of a set G is defined as

χ
G
(r) =

{
1 for r ∈ G

0 for r /∈ G.
(5)
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Hence C(r) is not differentiable at the internal boundary ∂P = ∂M, and this
requires to specify boundary conditions

lim
s→r

n · j(r + s) = lim
s→r

n · j(r − s), r ∈ ∂ P (6)

lim
s→r

n × ∇u(r + s) = lim
s→r

n × ∇u(r − s), r ∈ ∂ P (7)

at the internal boundary. In addition, boundary conditions on the sample bound-
ary ∂S need to be given to complete the formulation of the problem. Inital condi-
tions may also be required. Several concrete applications can be subsumed under
this formulation depending upon the physical interpretation of the field u and
the current j. An overview for possible interpretations of u and j is given in
Table 2.1. It contains hydrodynamical flow, electrical conduction, heat conduc-
tion and diffusion as well as cross effects such as thermoelectric or electrokinetic
phenomena.

Table 1. Overview of possible interpretations for the field u and the current j produced
by its gradient according to (3).

j \ u pressure el. potential temperature concentration
volume Darcy’s law electroosmosis thermal osmosis chemical osmosis
el. charge streaming pot. Ohm’s law Seebeck effect sedim. electricity
heat thermal filtration Peltier effect Fourier’s law Dufour effect
particles ultrafiltration electrophoresis Soret effect Fick’s law

The physical problems in the theory of porous media may be divided into
two categories: direct problems and inverse problems. In direct problems one is
given partial information about the pore space configuration P. The problem is
to deduce information about the solution u(r, t) of the boundary and/or initial
value problem that can be compared to experiment. In inverse problems one is
given partial information about the solutions u(r, t). Typically this information
comes from various experiments or observations of physical processes. The prob-
lem is to deduce information about the pore space configuration P from these
data.

Inverse problems are those of greatest practical interest. All attempts to vi-
sualize the internal interface or fluid content of nontransparent heterogeneous
media lead to inverse problems. Examples occur in computer tomography. In-
verse problems are often ill-posed due to lack of data [39,52]. Reliable solution
of inverse problems requires a predictive theory for the direct problem.

2.2 Geometrical Problems

The geometrical problems arise because in practice the pore space configuration
χ

P
(r) is usually not known in detail. The direct problem, i.e. the solution of

a physical boundary value problem, requires detailed knowledge of the internal
boundary, and hence of χ

P
(r).
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While it is becoming feasible to digitize samples of several mm3 with a res-
olution of a few µm this is not possible for larger samples. For this reason the
true pore space P is often replaced by a geometric model P̃. One then solves the
problem for the model geometry and hopes that its solution ũ obeys ũ ≈ u in
some sense. Such an approach requires quantitative methods for the comparison
of P and the model P̃. This raises the problem of finding generally applicable
quantitative geometric characterization methods that allow to evaluate the accu-
racy of geometric models for porous microstructues. The problem of quantitative
geometric characterization arises also when one asks which geometrical charac-
teristics of the microsctructure P have the greatest influence on the properties
of the solution u of a given boundary value problem.

Some authors introduce more than one geometrical model for one and the
same microstructure when calculating different physical properties (e.g. diffusion
and conduction). It should be clear that such models make it difficult to extract
reliable physical or geometrical information.

3 Geometric Characterizations

3.1 General Considerations

A general geometric characterization of stochastic media should provide macro-
scopic geometric observables that allow to distinguish media with different mi-
crostructures quantitatively. In general, a stochastic medium is defined as a prob-
ability distribution on a space of geometries or configurations. Distributions and
expectation values of geometric observables are candidates for a general geomet-
ric characterization.

A general geometric characterization should fulfill four criteria to be useful
in applications. These four criteria were advanced in [30]. First, it must be well
defined. This obvious requirement is sometimes violated. The so called “pore size
distributions” measured in mercury porosimetry are not geometrical observables
in the sense that they cannot be determined from knowledge of the geometry
alone. Instead they are capillary pressure curves whose calculation involves phys-
ical quantities such as surface tension, viscosity or flooding history [30]. Second,
the geometric characterization should be directly accessible in experiments. The
experiments should be independent of the quantities to be predicted. Thirdly,
the numerical implementation should not require excessive amounts of data. This
means that the amount of data should be mangeable by contemporary data pro-
cessing technology. Finally, a useful geometric characterization should be helpful
in the exact or approximate theoretical calculations.

For simplicity only two-component media will be considered throughout this
paper, but most concepts can be generalized to media with an arbitrary finite
number of components.

3.2 Geometric Observables

Well defined geometric observables are the basis for the geometric characteriza-
tion of porous media. A perennial problem in all applications is to identify those
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macroscopic geometric observables that are relevant for distinguishing between
classes of microstructures. One is interested in those properties of the microstruc-
ture that influence the macroscopic physical behaviour. In general this depends
on the details of the physical problem, but some general properties of the mi-
crostructure such as volume fraction or porosity are known to be relevant in
many situations. Hadwigers theorem [23] is an example of a mathematical result
that helps to identify an important class of such general geometric properties of
porous media. It will be seen later, however, that there exist important geometric
properties that are not members of this class.

A two component porous (or heterogenous) sample S ⊂ R
d consists of two

closed subsets P ⊂ R
d and M ⊂ R

d called pore space P and matrix M such
that S = P ∪ M. Its internal boundary is denoted as ∂P = ∂M = P ∩ M. The
boundary ∂G of a set is defined as the difference between the closure and the
interior of G where the closure is the intersection of all closed sets containing
G and the interior is the union of all open sets contained in G. A geometric
observable f is a mapping (functional) that assigns to each admissible P a real
number f(P) = f(P∩S) that can be calculated from P without solving a physical
boundary value problem. A functional whose evaluation requires the solution of
a physical boundary value problem will be called a physical observable.

Before discussing examples for geometric observables it is necessary to specify
the admissible geometries P. The set R of admissible P is defined as the set of
all finite unions of compact convex sets [23,44,57,58,61] (see also the papers by
M. Kerscher and K. Mecke in this volume). Because R is closed under unions
and intersections it is called the convex ring. The choice of R is convenient for
applications because digitized porous media can be considered as elements from
R and because continuous observables defined for convex compact sets can be
continued to all of R. The set of all compact and convex subsets of R

d is denoted
as K. For subsequent discussions the Minkowski addition of two sets A,B ⊂ R

d

is defined as

A + B = {x + y : x ∈ A,y ∈ B}. (8)

Multiplication of A with a scalar is defined by aA = {ax : x ∈ A} for a ∈ R.
Examples of geometric observables are the volume of P or the surface area

of its boundary ∂P. Let
Vd(K) =

∫
Rd

χ
P
(r)ddr (9)

denote the d-dimensional Lebesgue volume of the compact convex set K. The
volume is hence a functional Vd : K → R on K. An example of a compact convex
set is the unit ball B

d = {x ∈ R
d : |x| ≤ 1} = B

d(0, 1) centered at the origin 0
whose volume is

κd = Vd(Bd) =
πd/2

Γ (1 + (d/2))
. (10)

Other functionals on K can be constructed from the volume by virtue of the
following fact. For every compact convex K ∈ K and every ε ≥ 0 there are
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numbers Vj(K), j = 0, . . . , d depending only on K such that

Vd(K + εBd) =
d∑

j=0

Vj(K)εd−jκd−j (11)

is a polynomial in ε. This result is known as Steiners formula [23,61]. The num-
bers Vj(K), j = 0 . . . , d define functionals on K similar to the volume Vd(K).
The quantities

Wi(K) =
κiVd−i(K)(

d
i

) (12)

are called quermassintegrals [57]. From (11) one sees that

lim
ε→0

1
ε
(Vd(K + εBd)− Vd(K)) = κ1Vd−1(K), (13)

and from (10) that κ1 = 2. Hence Vd−1(K) may be viewed as half the surface
area. The functional V1(K) is related to the mean width w(K) defined as the
mean value of the distance between a pair of parallel support planes of K. The
relation is

V1(K) =
dκd

2κd−1
w(K) (14)

which reduces to V1(K) = w(K)/2 for d = 3. Finally the functional V0(K) is
evaluated from (11) by dividing with εd and taking the limit ε→ ∞. It follows
that V0(K) = 1 for all K ∈ K \ {∅}. One extends V0 to all of K by defining
V0(∅) = 0. The geometric observable V0 is called Euler characteristic.

The geometric observables Vi have several important properties. They are
Euclidean invariant (i.e. invariant under rigid motions), additive and monotone.
Let Td ∼= (Rd,+) denote the group of translations with vector addition as group
operation and let SO(d) be the matrix group of rotations in d dimensions [5].
The semidirect product Ed = Td%SO(d) is the Euclidean group of rigid motions
in R

d. It is defined as the set of pairs (a, A) with a ∈ Td and A ∈ SO(d) and
group operation

(a, A) ◦ (b, B) = (a +Ab, AB). (15)

An observable f : K → R is called euclidean invariant or invariant under rigid
motions if

f(a +AK) = f(K) (16)

holds for all (a, A) ∈ Ed and all K ∈ K. Here AK = {Ax : x ∈ K} denotes the
rotation of K and a + K = {a}+ K its translation. A geometric observable f is
called additive if

f(∅) = 0 (17a)
f(K1 ∪ K2) + f(K1 ∩ K2) = f(K1) + f(K2) (17b)

holds for all K1,K2 ∈ K with K1∪K2 ∈ K. Finally a functional is called monotone
if for K1,K2 ∈ K with K1 ⊂ K2 follows f(K1) ≤ f(K2).
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The special importance of the functionals Vi(K) arises from the following
theorem of Hadwiger [23]. A functional f : K → R is euclidean invariant, additive
and monotone if and only if it is a linear combination

f =
d∑

i=0

ciVi (18)

with nonnegative constants c0, . . . , cd. The condition of monotonicity can be
replaced with continuity and the theorem remains valid [23]. If f is continuous
on K, additive and euclidean invariant it can be additively extended to the
convex ring R [58]. The additive extension is unique and given by the inclusion-
exclusion formula

f

(
m⋃
i=1

K1

)
=

∑
I∈P(m)

(−1)|I|−1f

(⋂
i∈I

Ki

)
(19)

where P(m) denotes the family of nonempty subsets of {1, . . . ,m} and | I | is the
number of elements of I ∈ P(m). In particular, the functionals Vi have a unique
additive extension to the convex ring R [58], which is again be denoted by Vi.

For a threedimensional porous sample with P ∈ R the extended functionals
Vi lead to two frequently used geometric observables. The first is the porosity of
a porous sample S defined as

φ(P ∩ S) = φ3(P ∩ S) =
V3(P ∩ S)
V3(S)

, (20)

and the second its specific internal surface area which may be defined in view of
(13) as

φ2(P ∩ S) =
2V2(P ∩ S)
V3(S)

. (21)

The two remaining observables φ1(P) = V1(P ∩ S)/V3(S) and φ0(P) = V0(P ∩
S)/V3(S) have received less attention in the porous media literature. The Euler
characteristic V0 on R coincides with the identically named topological invariant.
For d = 2 and G ∈ R one has V0(G) = c(G) − c′(G) where c(G) is the number
of connectedness components of G, and c′(G) denotes the number of holes (i.e.
bounded connectedness components of the complement).

3.3 Definition of Stochastic Porous Media

For theoretical purposes the pore space P is frequently viewed as a random set
[30,61]. In practical applications the pore space is usually discretized because of
measurement limitations and finite resolution. For the data discussed below the
set S ⊂ R

3 is a rectangular parallelepiped whose sidelengths are M1,M2 and
M3 in units of the lattice constant a (resolution) of a simple cubic lattice. The
position vectors ri = ri1...id = (ai1, . . . , aid) with integers 1 ≤ ij ≤ Mj are
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used to label the lattice points, and ri is a shorthand notation for ri1...id . Let
Vi denote a cubic volume element (voxel) centered at the lattice site ri. Then
the discretized sample may be represented as S =

⋃N
i=1 Vi. The discretized pore

space P̃ defined as
P̃ =

⋃
{i:χ

P

(ri)=1}
Vi. (22)

is an approximation to the true pore space P. For simplicity it will be assumed
that the discretization does not introduce errors, i.e. that P̃ = P, and that each
voxel is either fully pore or fully matrix. This assumption may be relaxed to allow
voxel attributes such as internal surface or other quermassintegral densities. The
discretization into voxels reflects the limitations arising from the experimental
resolution of the porous structure. A discretized pore space for a bounded sample
belongs to the convex ring R if the voxels are convex and compact. Hence,
for a simple cubic discretization the pore space belongs to the convex ring. A
configuration (or microstructure) Z of a 2-component medium may then be
represented in the simplest case by a sequence

Z = (Z1, . . . , ZN ) = (χ
P
(r1), . . . , χ

P
(rN )) (23)

where ri runs through the lattice points and N =M1M2M3. This representation
corresponds to the simplest discretization in which there are only two states for
each voxel indicating whether it belongs to pore space or not. In general a voxel
could be characterized by more states reflecting the microsctructure within the
region Vi. In the simplest case there is a one-to-one correspondence between P

and Z given by (23). Geometric observables f(P) then correspond to functions
f(Z) = f(z1, . . . , zN ).

As a convenient theoretical idealization it is frequently assumed that porous
media are random realizations drawn from an underlying statistical ensemble. A
discretized stochastic porous medium is defined through the discrete probability
density

p(z1, . . . , zN ) = Prob{(Z1 = z1) ∧ . . . ∧ (ZN = zN )} (24)

where zi ∈ {0, 1} in the simplest case. It should be emphasized that the prob-
ability density p is mainly of theoretical interest. In practice it is usually not
known. An infinitely extended medium or microstructure is called stationary or
statistically homogeneous if p is invariant under spatial translations. It is called
isotropic if p is invariant under rotations.

3.4 Moment Functions and Correlation Functions

A stochastic medium was defined through its probability distribution p. In prac-
tice p will be even less accessible than the microstructure P = Z itself. Partial
information about p can be obtained by measuring or calculating expectation
values of a geometric observable f . These are defined as

〈f(z1, . . . , zN )〉 =
1∑

z1=0

. . .

1∑
zN=0

f(z1, . . . , zN )p(z1, . . . , zN ) (25)
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where the summations indicate a summation over all configurations. Consider
for example the porosity φ(S) defined in (20). For a stochastic medium φ(S)
becomes a random variable. Its expectation is

〈φ〉 =
〈V3(P)〉
V3(S)

=
1

V3(S)

∫
S

〈
χ

P
(r)

〉
d3r

=
1

V3(S)

N∑
i=1

〈zi〉V3(Vi) =
1
N

N∑
i=1

〈zi〉

=
1
N

N∑
i=1

Prob{zi = 1} =
1
N

N∑
i=1

Prob{ri ∈ P} (26)

If the medium is statistically homogeneous then

〈φ〉 = Prob{zi = 1} = Prob{ri ∈ P} =
〈
χ

P
(ri)

〉
(27)

independent of i. It happens frequently that one is given only a single sample,
not an ensemble of samples. It is then necessary to invoke an ergodic hypothesis
that allows to equate spatial averages with ensemble averages.

The porosity is the first member in a hierarchy of moment functions. The
n-th order moment function is defined generally as

Sn(r1, . . . , rn) =
〈
χ

P
(r1) . . . χ

P
(rn)

〉
(28)

for n ≤ N . (If a voxel has other attributes besides being pore or matrix one may
define also mixed moment functions Si1...in(r1, . . . , rn) = 〈φi1(r1) . . . φin(rn)〉
where φi(rj) = Vi(P ∩ Vj)/Vi(Vj) for i = 1, . . . d are the quermassintegral den-
sities for the voxel at site rj . ) For stationary media Sn(r1, . . . rn) = g(r1 −
rn, . . . , rn−1−rn) where the function g depends only on n−1 variables. Another
frequently used expectation value is the correlation function which is related to
S2. For a homogeneous medium it is defined as

G(r0, r) = G(r − r0) =

〈
χ

P
(r0)χ

P
(r)

〉
− 〈φ〉2

〈φ〉 (1− 〈φ〉) =
S2(r − r0)− (S1(r0))2

S1(r0)(1− S1(r0))
(29)

where r0 is an arbitrary reference point, and 〈φ〉 = S1(r0). If the medium is
isotropic then G(r) = G(|r|) = G(r). Note that G is normalized such that
G(0) = 1 and G(∞) = 0.

The hierarchy of moment functions Sn, similar to p, is mainly of theoretical
interest. For a homogeneous medium Sn is a function of n − 1 variables. To
specify Sn numerically becomes impractical as n increases. If only 100 points
are required along each coordinate axis then giving Sn would require 102d(n−1)

numbers. For d = 3 this implies that already at n = 3 it becomes economical to
specify the microstructure P directly rather than incompletely through moment
or correlation functions.
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3.5 Contact Distributions

An interesting geometric characteristic introduced and discussed in the field
of stochastic geometry are contact distributions [18,61, p. 206]. Certain special
cases of contact distributions have appeared also in the porous media literature
[20]. Let G be a compact test set containing the origin 0. Then the contact
distribution is defined as the conditional probability

HG(r) = 1− Prob{0 /∈ M + (−rG)|0 /∈ M} = 1− Prob{M ∩ rG = ∅}
φ

(30)

If one defines the random variable R = inf{s : M ∩ sG �= ∅} then HG(r) =
Prob{R ≤ r|R > 0} [61].

For the unit ball G = B(0, 1) in three dimensions HB is called spherical
contact distribution. The quantity 1−HB(r) is then the distribution function of
the random distance from a randomly chosen point in P to its nearest neighbour
in M. The probability density

p(r) =
d
dr

(1−HB(r)) = − d
dr
HB(r) (31)

was discussed in [56] as a well defined alternative to the frequently used pore
size distrubution from mercury porosimetry.

For an oriented unit interval G = B
1(0, 1; e) where e is the a unit vector one

obtains the linear contact distribution. The linear contact distribution written
as L(re) = φ(1 −HB1(0,1;e)(r)) is sometimes called lineal path function [70]. It
is related to the chord length distribution pcl(x) defined as the probability that
an interval in the intersection of P with a straight line containing B

1(0, 1; e) has
length smaller than x [30,61, p. 208].

3.6 Local Porosity Distributions

The idea of local porosity distributions is to measure geometric observables in-
side compact convex subsets K ⊂ S, and to collect the results into empirical his-
tograms [27]. Let K(r, L) denote a cube of side length L centered at the lattice
vector r. The set K(r, L) is called a measurement cell. A geometric observable
f , when measured inside a measurement cell K(r, L), is denoted as f(r, L) and
called a local observable. An example are local Hadwiger functional densities
f =

∑d
i=1 ciψi with coefficients ci as in Hadwigers theorem (18). Here the local

quermassintegrals are defined using (12) as

ψi(P ∩ K(r, L)) =
Wi(P ∩ K(r, L))
Vd(K(r, L))

(32)

for i = 1, . . . , d. In the following mainly the special case d = 3 will be of interest.
For d = 3 the local porosity is defined by setting i = 0,

φ(r, L) = ψ0(P ∩ K(r, L)). (33)
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Local densities of surface area, mean curvature and Euler characteristic may be
defined analogously. The local porosity distribution, defined as

µ(φ; r, L) = 〈δ(φ− φ(r, L))〉 , (34)

gives the probability density to find a local porosity φ(r, L) in the measurement
cell K(r, L). Here δ(x) denotes the Dirac δ-distribution. The support of µ is
the unit interval. For noncubic measurement cells K one defines analogously
µ(φ;K) = 〈δ(φ− φ(K))〉 where φ(K) = φ(P∩K) is the local observable in cell K.

The concept of local porosity distributions (or more generally “local geom-
etry distributions” [28,30]) was introduced in [27] and has been generalized in
two directions [30]. Firstly by admitting more than one measurement cell, and
secondly by admitting more than one geometric observable. The general n-cell
distribution function is defined as [30]

µn;f1,... ,fm(f11, . . . , f1n; . . . ; fn1, . . . , fnm;K1, . . . ,Kn) =
〈δ(f11 − f1(K1)) . . . δ(f1n − f1(Kn)) . . . δ(fm1 − f1(K1)) . . . δ(fmn − fm(Kn))〉

(35)

for n general measurement cells K1, . . . ,Kn and m observables f1, . . . , fm. The
n-cell distribution is the probability density to find the values f11 of the local
observable f1 in cell K1 and f12 in cell K2 and so on until fmn of local observable
fm in Kn. Definition (35) is a broad generalization of (34). This generalization is
not purely academic, but was motivated by problems of fluid flow in porous media
where not only ψ0 but also ψ1 becomes important [28]. Local quermassintegrals,
defined in (32), and their linear combinations (Hadwiger functionals) furnish
important examples for local observables in (35), and they have recently been
measured [40].

The general n-cell distribution is very general indeed. It even contains p from
(24) as the special case m = 1, f1 = φ and n = N with Ki = Vi = K(ri, a).
More precisely one has

µN ;φ(φ1, . . . , φN ;V1, . . . ,VN ) = p(φ1, . . . , φN ) (36)

because in that case φi = zi = 1 if Vi ∈ P and φi = zi = 0 for V /∈ P. In
this way it is seen that the very definition of a stochastic geometry is related
to local porosity distributions (or more generally local geometry distributions).
As a consequence the general n-cell distribution µn;f1,... ,fm is again mainly of
theoretical interest, and usually unavailable for practical computations.

Expectation values with respect to p have generalizations to averages with
respect to µ. Averaging with respect to µ will be denoted by an overline. In the
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special case m = 1, f1 = φ and Ki = Vi = K(ri, a) with n < N one finds [30]

φ(r1, a) · · ·φ(rn, a)

=

1∫
0

. . .

1∫
0

φ1 · · ·φnµn;φ(φ1, . . . , φn;V1, . . . ,Vn)dφ1 · · ·dφn

=

1∫
0

. . .

1∫
0

φ1 · · ·φnµN ;φ(φ1, . . . , φN ;V1, . . . ,VN )dφ1 · · ·dφN

=

1∫
0

. . .

1∫
0

φ1 · · ·φn 〈δ(φ1 − φ(r1, a)) · · · δ(φN − φ(rN , a))〉dφ1 · · ·dφN

= 〈φ(r1, a) · · ·φ(rn, a)〉
=
〈
χ

P
(r1) . . . χ

P
(rn)

〉
= Sn(r1, . . . , rn) (37)

thereby identifying the moment functions of order n as averages with respect to
an n-cell distribution.

For practical applications the 1-cell local porosity distributions µ(r, L) and
their analogues for other quermassintegrals are of greatest interest. For a homo-
geneous medium the local porosity distribution obeys

µ(φ; r, L) = µ(φ;0, L) = µ(φ;L) (38)

for all lattice vectors r, i.e. it is independent of the placement of the measurement
cell. A disordered medium with substitutional disorder [71] may be viewed as a
stochastic geometry obtained by placing random elements at the cells or sites
of a fixed regular substitution lattice. For a substitutionally disordered medium
the local porosity distribution µ(r, L) is a periodic function of r whose period
is the lattice constant of the substitution lattice. For stereological issues in the
measurement of µ from thin sections see [64].

Averages with respect to µ are denoted by an overline. For a homogeneous
medium the average local porosity is found as

φ(r, L) =

1∫
0

µ(φ; r, L)dφ = 〈φ〉 = φ (39)



Local Porosity Theory and Stochastic Reconstruction for Porous Media 215

independent of r and L. The variance of local porosities for a homogeneous
medium defined in the first equality

σ2(L) = (φ(L)− φ)2 =

1∫
0

(φ(L)− φ)2µ(φ;L)dφ

=
1
L3 〈φ〉 (1− 〈φ〉)

1 +
2
L3

∑
ri,rj∈K(r0,L)

i�=j

G(ri − rj)


(40)

is related to the correlation function as given in the second equality [30]. The
skewness of the local porosity distribution is defined as the average

κ3(L) =
(φ(L)− φ)3
σ(L)3

(41)

The limits L → 0 and L → ∞ of small resp. large measurement cells are of
special interest. In the first case one reaches the limiting resolution at L = a and
finds for a homogeneous medium [27,30]

µ(φ; a) = φδ(φ− 1)− (1− φ)δ(φ). (42)

The limit L → ∞ is more intricate because it requires also the limit S → R
3.

For a homogeneous medium (40) shows σ(L) → 0 for L→ 0 and this suggests

µ(φ,L→ ∞) = δ(φ− φ). (43)

For macroscopically heterogeneous media, however, the limiting distribution may
deviate from this result [30]. If (43) holds then in both limits the geometrical
information contained in µ reduces to the single number φ = 〈φ〉. If (42) and
(43) hold there exists a special length scale L∗ defined as

L∗ = min{L : µ(0;L) = µ(1;L) = 0} (44)

at which the δ-components at φ = 0 and φ = 1 vanish. In the examples below
the length L∗ is a measure for the size of pores.

The ensemble picture underlying the definition of a stochastic medium is
an idealization. In practice one is given only a single realization and has to
resort to an ergodic hypothesis for obtaining an estimate of the local porosity
distributions. In the examples below the local porosity distribution is estimated
by

µ̃(φ;L) =
1
m

∑
r

δ(φ− φ(r, L)) (45)

where m is the number of placements of the measurement cell K(r, L). Ideally
the measurement cells should be far apart or at least nonoverlapping, but in
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practice this restriction cannot be observed because the samples are not large
enough. In the results presented below K(r, L) is placed on all lattice sites which
are at least a distance L/2 from the boundary of S. This allows for

m =
3∏

i=1

(Mi − L+ 1) (46)

placements of K(r, L) in a sample with side lengths M1,M2,M3. The use of µ̃
instead of µ can lead to deviations due to violations of the ergodic hypothesis
or simply due to oversampling the central regions of S [10,11].

3.7 Local Percolation Probabilities

Transport and propagation in porous media are controlled by the connectivity
of the pore space. Local percolation probabilities characterize the connectivity
[27]. Their calculation requires a threedimensional pore space representation, and
early results were restricted to samples reconstructed laboriously from sequential
thin sectioning [32]

Consider the functional Λ : K × K × R → Z2 = {0, 1} defined by

Λ(K0,K∞;P ∩ S) =

{
1 : if K0 ❀ K∞ in P

0 : otherwise
(47)

where K0 ⊂ R
3,K∞ ⊂ R

3 are two compact convex sets with K0 ∩ (P ∩ S) �= ∅
and K∞ ∩ (P ∩ S) �= ∅, and “K0 ❀ K∞ in P” means that there is a path
connecting K0 and K∞ that lies completely in P. In the examples below the sets
K0 and K∞ correspond to opposite faces of the sample, but in general other
choices are allowed. Analogous to Λ defined for the whole sample one defines for
a measurement cell

Λα(r, L) = Λ(K0α,K∞α;P ∩ K(r, L)) =

{
1 : if K0α ❀ K∞α in P

0 : otherwise
(48)

where α = x, y, z and K0x,K∞x denote those two faces of K(r, L) that are normal
to the x direction. Similarly K0y,K∞y,K0zK∞z denote the faces of K(r, L)
normal to the y- and z-directions. Two additional percolation observables Λ3
and Λc are introduced by

Λ3(r, L) = Λx(r, L)Λy(r, L)Λz(r, L) (49)
Λc(r, L) = sgn(Λx(r, L) + Λy(r, L) + Λz(r, L)). (50)

Λ3 indicates that the cell is percolating in all three directions while Λc indicates
percolation in x- or y- z-direction. The local percolation probabilities are defined
as

λα(φ;L) =
∑

r Λα(r, L)δφ,φ(r,L)∑
r δφ,φ(r,L)

(51)
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where

δφ,φ(r,L) =

{
1 : if φ = φ(r, L)
0 : otherwise.

(52)

The local percolation probability λα(φ;L) gives the fraction of measurement cells
of sidelength L with local porosity φ that are percolating in the “α”-direction.
The total fraction of cells percolating along the “α”-direction is then obtained
by integration

pα(L) =

1∫
0

µ(φ;L)λα(φ;L)dφ. (53)

This geometric observable is a quantitative measure for the number of elements
that have to be percolating if the pore space geometry is approximated by a
substitutionally disordered lattice or network model. Note that neither Λ nor Λα

are additive functionals, and hence local percolation probabilities have nothing
to do with Hadwigers theorem.

It is interesting that there is a relation between the local percolation prob-
abilities and the local Euler characteristic V0(P ∩ K(r, l)). The relation arises
from the observation that the voxels Vi are closed, convex sets, and hence for
any two voxels Vi,Vj the Euler characteristic of their intersection

V0(Vi ∩ Vj) =

{
1 : if Vi ∩Vj �= ∅
0 : if Vi ∩Vj = ∅ (54)

indicates whether two voxels are nearest neighbours.A measurement cell K(r, L)
contains L3 voxels. It is then possible to construct a (L3 +2)× (L3 +2)2-matrix
B with matrix elements

(B)i (i,j) = V0(Vi ∩ Vj) (55)
(B)i (j,i) = −V0(Vi ∩ Vj) (56)

where i, j ∈ {0, 1, . . . , L3,∞} and the sets V0 = K0 and V∞ = K∞ are two
opposite faces of the measurement cell. The rows in the matrix B correspond to
voxels while the columns correspond to voxel pairs. Define the matrix A = BBT

where BT is the transpose of B. The diagonal elements (A)ii give the number of
voxels to which the voxel Vi is connected. A matrix element (A)ij differs from
zero if and only if Vi and Vj are connected. Hence the matrix A reflects the local
connectedness of the pore space around a single voxel. Sufficiently high powers
of A provide information about the global connectedness of P. One finds

Λ(K0,K∞;P ∩ K(r, L)) = sgn (|(Am)0∞|) (57)

where (Am)0∞ is the matrix element in the upper right hand corner and m is
arbitrary subject to the condition m > L3. The set P ∩ K(r, L) can always be
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decomposed uniquely into pairwise disjoint connectedness components (clusters)
Bi whose number is given by the rank of B. Hence

V0(P ∩ K(r, L)) =
rankB∑
i=1

V0(Bi) (58)

provides an indirect connection between the local Euler characteristic and the lo-
cal percolation probabilities mediated by the matrix B. (For percolation systems
it has been conjectured that the zero of the Euler characteristic as a function
of the occupation probability is an approximation to the percolation threshold
[45].)

4 Stochastic Reconstruction of Microstructures

4.1 Description of Experimental Sample

The experimental sample, denoted as SEX, is a threedimensional microtomo-
graphic image of Fontainebleau sandstone. This sandstone is a popular reference
standard because of its chemical, crystallographic and microstructural simplicity
[13,14]. Fontainebleau sandstone consists of monocrystalline quartz grains that
have been eroded for long periods before being deposited in dunes along the sea
shore during the Oligocene, roughly 30 million years ago. It is well sorted con-
taining grains of around 200µm in diameter. The sand was cemented by silica
crystallizing around the grains. Fontainebleau sandstone exhibits intergranular
porosity ranging from 0.03 to roughly 0.3 [13].

Table 2. Overview of geometric properties of the four microstructures displayed in
Figs. 1 through 4

Properties SEX SDM SGF SSA

M1 300 255 256 256
M2 300 255 256 256
M3 299 255 256 256
φ(P ∩ S) 0.1355 0.1356 0.1421 0.1354
φ2(P ∩ S) 10.4mm−1 10.9mm−1 16.7mm−1 11.06mm−1

L∗ 35 25 23 27
1 − λc(0.1355, L∗) 0.0045 0.0239 0.3368 0.3527

The computer assisted microtomography was carried out on a micro-plug
drilled from a larger original core. The original core from which the micro-plug
was taken had a measured porosity of 0.1484, permability of 1.3D and forma-
tion factor 22.1. The porosity φ(SEX) of the microtomographic data set is only
0.1355(see Table 2). The difference between the porosity of the original core and
that of the final data set is due to the heterogeneity of the sandstone and to the
difference in sample size. The experimental sample is referred to as EX in the
following. The pore space of the experimental sample is visualized in Fig. 1.
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Fig. 1. Sample EX: Threedimensional pore space PEX of Fontainebleau sandstone. The
resolution of the image is a = 7.5µm, the sample dimensions are M1 = 300, M2 = 300,
M3 = 299. The pore space is indicated opaque, the matrix space is transparent. The
lower image shows the front plane of the sample as a twodimensional thin section (pore
space black, matrix grey).
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4.2 Sedimentation, Compaction and Diagenesis Model

Fontainebleau sandstone is the result of complex physical, chemical and geolog-
ical processes known as sedimentation, compaction and diagenesis. It is there-
fore natural to model these processes directly rather than trying to match gen-
eral geometrical characteristics. This conclusion was also obtained from local
porosity theory for the cementation index in Archie’s law [27]. The diagenesis
model abbreviated as DM in the following, attempts model the main geological
sandstone-forming processes [4,48].

In a first step porosity, grain size distribution, a visual estimate of the de-
gree of compaction, the amount of quartz cement and clay contents and texture
are obtained by image analysis of backscattered electron/cathodo-luminescence
images made from thin sections. The sandstone modeling is then carried out in
three main steps: grain sedimentation, compaction and diagenesis described in
detail in [4,48].

Sedimentation begins by measuring the grain size distribution using an ero-
sion-dilation algorithm. Then spheres with random diameters are picked ran-
domly according to the grain size distribution. They are dropped onto the grain
bed and relaxed into a local potential energy minimum or, alternatively, into the
global minimum.

Compaction occurs because the sand becomes buried into the subsurface.
Compaction reduces the bulk volume (and porosity). It is modelled as a lin-
ear process in which the vertical coordinate of every sandgrain is shifted ver-
tically downwards by an amount proportional to the original vertical position.
The proportionality constant is called the compaction factor. Its value for the
Fontainebleau sample is estimated to be 0.1 from thin section analysis.

In the diagenesis part only a subset of known diagenetical processes are
simulated, namely quartz cement overgrowth and precipitation of authigenic clay
on the free surface. Quartz cement overgrowth is modeled by radially enlarging
each grain. If R0 denotes the radius of the originally deposited spherical grain,
its new radius along the direction r from grain center is taken to be [48,59]

R(r) = R0 + min(b[(r)γ , [(r)) (59)

where [(r) is the distance between the surface of the original spherical grain
and the surface of its Voronoi polyhedron along the direction r. The constant
b controls the amount of cement, and the growth exponent γ controls the type
of cement overgrowth. For γ > 0 the cement grows preferentially into the pore
bodies, for γ = 0 it grows concentrically, and for γ < 0 quartz cement grows
towards the pore throats [48]. Authigenic clay growth is simulated by precipitat-
ing clay voxels on the free mineral surface. The clay texture may be pore-lining
or pore-filling or a combination of the two.

The parameters for modeling the Fontainebleau sandstone were 0.1 for the
compaction factor, and γ = −0.6 and b = 2.9157 for the cementation parameters.
The resulting model configuration of the sample DM is displayed in Fig. 2.
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Fig. 2. Sample DM: Threedimensional pore space PDM of the sedimentation and diage-
nesis model described in the text. The resolution is a = 7.5µm, the sample dimensions
are M1 = 255, M2 = 255, M3 = 255. The pore space is indicated opaque, the ma-
trix space is transparent. The lower image shows the front plane of the sample as a
twodimensional thin section (pore space black, matrix grey)
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4.3 Gaussian Field Reconstruction Model

A stochastic reconstruction model attempts to approximate a given experimen-
tal sample by a randomly generated model structure that matches prescribed
stochastic properties of the experimental sample. In this and the next section
the stochastic property of interest is the correlation function GEX(r) of the
Fontainebleau sandstone.

The Gaussian field (GF) reconstruction model tries to match a reference
correlation function by filtering Gaussian random variables [1,2,49,69]. Given the
reference correlation function GEX(r) and porosity φ(SEX) of the experimental
sample the Gaussian field method proceeds in three main steps:

1. Initially a Gaussian field X(r) is generated consisting of statistically inde-
pendent Gaussian random variables X ∈ R at each lattice point r.

2. The field X(r) is first passed through a linear filter which produces a corre-
lated Gaussian field Y (r) with zero mean and unit variance. The reference
correlation function GEX(r) and porosity φ(SEX) enter into the mathematical
construction of this linear filter.

3. The correlated field Y (r) is then passed through a nonlinear discretization
filter which produces the reconstructed sample SGF.

Step 2 is costly because it requires the solution of a very large set of non-linear
equations. A computationally more efficient method uses Fourier Transformation
[1]. The linear filter in step 2 is defined in Fourier space through

Y (k) = α(GY (k))
1
2X(k), (60)

where M = M1 = M2 = M3 is the sidelength of a cubic sample, α = M
d
2 is a

normalisation factor, and

X(k) =
1
Md

∑
r

X(r)e2πik·r (61)

denotes the Fourier transform of X(r). Similarly Y (k) is the Fourier transform
of Y (r), and GY (k) is the Fourier transform of the correlation function GY (r).
GY (r) has to be computed by an inverse process from the correlation function
GEX(r) and porosity of the experimental reference (details in [1]).

The Gaussian field reconstruction requires a large separation ξEX ' N1/d

where ξEX is the correlation length of the experimental reference, and N =
M1M2M3 is the number of sites. ξEX is defined as the length such thatGEX(r) ≈ 0
for r > ξEX. If the condition ξEX ' N1/d is violated then step 2 of the recon-
struction fails in the sense that the correlated Gaussian field Y (r) does not have
zero mean and unit variance. In such a situation the filter GY (k) will differ from
the Fourier transform of the correlation function of the Y (r). It is also difficult
to calculate GY (r) accurately near r = 0 [1]. This leads to a discrepancy at small
r between GGF(r) and GEX(r). The problem can be overcome by choosing large
M . However, in d = 3 very largeM also demands prohibitively large memory. In
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Fig. 3. Sample GF: Threedimensional pore space PGF with GGF(r) ≈ GEX(r) con-
structed by filtering Gaussian random fields. The resolution is a = 7.5µm, the sample
dimensions are M1 = 256, M2 = 256, M3 = 256. The pore space is indicated opaque,
the matrix space is transparent. The lower image shows the front plane of the sample
as a twodimensional thin section (pore space black, matrix grey)
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earlier work [1,2] the correlation function GEX(r) was sampled down to a lower
resolution, and the reconstruction algorithm then proceeded with such a rescaled
correlation function. This leads to a reconstructed sample SGF which also has a
lower resolution. Such reconstructions have lower average connectivity compared
to the original model [9]. For a quantitative comparison with the microstructure
of SEX it is necessary to retain the original level of resolution, and to use the orig-
inal correlation function GEX(r) without subsampling. Because GEX(r) is nearly
0 for r > 30a GEX(r) was truncated at r = 30a to save computer time. The
resulting configuration SGF with M = 256 is displayed in Fig. 3.

4.4 Simulated Annealing Reconstruction Model

The simulated annealing (SA) reconstruction model is a second method to gen-
erate a threedimensional random microstructure with prescribed porosity and
correlation function. The method generates a configuration SSA by minimizing
the deviations between GSA(r) and a predefined reference function G0(r). Note
that the generated configuration SSA is not unique and hence other modeling
aspects come into play [42]. Below, G0(r) = GEX(r) is again the correlation
function of the Fontainebleau sandstone.

An advantage of the simulated annealing method over the Gaussian field
method is that it can also be used to match other quantities besides the corre-
lation function. Examples would be the linear or spherical contact distributions
[42]. On the other hand the method is computationally very demanding, and can-
not be implemented fully at present. A simplified implementation was discussed
in [70], and is used below.

The reconstruction is performed on a cubic lattice with side length M =
M1 = M2 = M3 and lattice spacing a. The lattice is initialized randomly with
0’s and 1’s such that the volume fraction of 0’s equals φ(SEX). This porosity is
preserved throughout the simulation. For the sake of numerical efficiency the
autocorrelation function is evaluated in a simplified form using [70]

G̃SA(r)
(
G̃SA(0)− G̃SA(0)2

)
+ G̃SA(0)2 =

=
1

3M3

∑
r

χ
M
(r)

(
χ

M
(r+ re1) + χ

M
(r+ re2) + χ

M
(r+ re3)

)
(62)

where ei are the unit vectors in direction of the coordinate axes, r = 0, . . . , M2 −1,
and where a tilde ˜ is used to indicate the directional restriction. The sum

∑
r

runs over all M3 lattice sites r with periodic boundary conditions, i.e. ri + r is
evaluated modulo M .

A simulated annealing algorithm is used to minimize the ”energy” function

E =
∑
r

(
G̃SA(r)−GEX(r)

)2
, (63)

defined as the sum of the squared deviations of G̃SA from the experimental
correlation function GEX. Each update starts with the exchange of two pixels, one
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Fig. 4. Sample SA: Threedimensional pore space PSA with GSA(r) = GEX(r) con-
structed using a simulated annealing algorithm. The resolution is a = 7.5µm, the
sample dimensions are M1 = 256, M2 = 256, M3 = 256. The pore space is indicated
opaque, the matrix space is transparent. The lower image shows the front plane of the
sample as a twodimensional thin section (pore space black, matrix grey)
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from pore space, one from matrix space. Let n denote the number of the proposed
update step. Introducing an acceptance parameter Tn, which may be interpreted
as an n-dependent temperature, the proposed configuration is accepted with
probability

p = min
(
1, exp

(
−En − En−1

TnEn−1

))
. (64)

Here the energy and the correlation function of the configuration is denoted
as En and G̃SA,n, respectively. If the proposed move is rejected, then the old
configuration is restored.

A configuration with correlation GEX is found by lowering T . At low T the
system approaches a configuration that minimizes the energy function. In the
simulations Tn was lowered with n as

Tn = exp
(
− n

100000

)
. (65)

The simulation was stopped when 20000 consecutive updates were rejected. This
happened after 2.5× 108 updates (≈ 15 steps per site). The resulting configura-
tion SSA for the simulated annealing reconstruction is displayed in Fig. 4.

A complete evaluation of the correlation function as defined in (29) for a
threedimensional system requires so much computer time, that it cannot be car-
ried out at present. Therefore the algorithm was simplified to increase its speed
[70]. In the simplified algorithm the correlation function is only evaluated along
the directions of the coordinate axes as indicated in (62). The original motivation
was that for isotropic systems all directions should be equivalent [70]. However,
it was found in [41] that as a result of this simplification the reconstructed sam-
ple may become anisotropic. In the simplified algorithm the correlation function
of the reconstruction deviates from the reference correlation function in all di-
rections other than those of the axes [41]. The problem is illustrated in Figs. 5(a)
and 5(b) in two dimensions for a reference correlation function given as

G0(r) = e−r/8 cos r. (66)

In Fig. 5a the correlation function was matched only in the direction of the x- and
y-axis. In Fig. 5b the correlation function was matched also along the diagonal
directions obtained by rotating the axes 45 degrees. The differences in isotropy of
the two reconstructions are clearly visible. In the special case of the correlation
function of the Fontainebleau sandstone, however, this effect seems to be smaller.
The Fontainebleau correlation function is given in Fig. 7 below. Figure 6a and
6b show the result of twodimensional reconstructions along the axes only and
along axes plus diagonal directions. The differences in isotropy seem to be less
pronounced. Perhaps this is due to the fact that the Fontainebleau correlation
function has no maxima and minima.
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(a) (b)

Fig. 5. Twodimensional stochastic reconstruction for the correlation function of
G0(r) = e−r/8 cos r (a) for the direction of the x- and y-coordinate axes only, and
(b) for the directions of the coordinate axes plus diagonal directions.

(a) (b)

Fig. 6. A Twodimensional stochastic reconstruction for the correlation function
G0(r) = GEX(r) displayed as the solid line in Fig. 7a along the direction of the x-
and y-coordinate axes only, and Fig. 7b along the directions of the coordinate axes
plus diagonal directions.
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5 Quantitative Comparison of Microstructures

5.1 Conventional Observables and Correlation Functions

Table 2 gives an overview of several geometric properties for the four microstruc-
tures discussed in the previous section. Samples GF and SA were constructed to
have the same correlation function as sample EX. Figure 7 shows the direction-
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Fig. 7. Directionally averaged correlation functions G(r) = (G(r, 0, 0) + G(0, r, 0) +
G(0, 0, r))/3 of the samples EX,DM,GF and SA

ally averaged correlation functions G(r) = (G(r, 0, 0) +G(0, r, 0) +G(0, 0, r))/3
of all four microstructures where the notation G(r1, r2, r3) = G(r) was used.

The Gaussian field reconstruction GGF(r) is not perfect and differs from
GEX(r) for small r. The discrepancy at small r reflects the quality of the lin-
ear filter, and it is also responsible for the differences of the porosity and specific
internal surface. Also, by construction, GGF(r) is not expected to equal GEX(r)
for r larger than 30. Although the reconstruction method of sample SSA is intrin-
sically anisotropic the correlation function of sample SA agrees also in the diago-
nal directions with that of sample EX. Sample SDM while matching the porosity
and grain size distribution was not constructed to match also the correlation
function. As a consequence GDM(r) differs clearly from the rest. It reflects the
grain structure of the model by becoming negative. GDM(r) is also anisotropic.
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If two samples have the same correlation function they are expected to have
also the same specific internal surface as calculated from

S = −4 〈φ〉 (1− 〈φ〉)dG(r)
dr

∣∣∣∣
r=0

. (67)

The specific internal surface area calculated from this formula is given in Table 2
for all four microstructures.

If one defines a decay length by the first zero of the correlation function then
the decay length is roughly 18a for samples EX, GF and SA. For sample DM it is
somewhat smaller mainly in the x- and y-direction. The correlation length, which
will be of the order of the decay length, is thus relatively large compared to the
system size. Combined with the fact that the percolation threshold for continuum
systems is typically around 0.15 this might explain why models GF and SA are
connected in spite of their low value of the porosity.

In summary, the samples SGF and SSA were constructed to be indistinguish-
able with respect to porosity and correlations from SEX. Sample SA comes close
to this goal. The imperfection of the reconstruction method for sample GF ac-
counts for the deviations of its correlation function at small r from that of sample
EX. Although the difference in porosity and specific surface is much bigger be-
tween samples SA and GF than between samples SA and EX sample SA is
in fact more similar to GF than to EX in a way that can be quantified using lo-
cal porosity analysis. Traditional characteristics such as porosity, specific surface
and correlation functions are insufficient to distinguish different microstructures.
Visual inspection of the pore space indicates that samples GF and SA have a
similar structure which, however, differs from the structure of sample EX. Al-
though sample DM resembles sample EX more closely with respect to surface
roughness it differs visibly in the shape of the grains.

5.2 Local Porosity Analysis

The differences in visual appearance of the four microstructures can be quantified
using the geometric observables µ and λ from local porosity theory. The local
porosity distributions µ(φ, 20) of the four samples at L = 20a are displayed as
the solid lines in Figs. 8a through 8d. The ordinates for these curves are plotted
on the right vertical axis.

The figures show that the original sample exhibits stronger porosity fluctu-
ations than the three model samples except for sample SA which comes close.
Sample DM has the narrowest distribution which indicates that it is most ho-
mogeneous. Figures 8a–8d show also that the δ-function component at the ori-
gin, µ(0, 20), is largest for sample EX, and smallest for sample GF. For samples
DM and SA the values of µ(0, 20) are intermediate and comparable. Plotting
µ(0, L) as a function of L shows that this remains true for all L. These results
indicate that the experimental sample EX is more strongly heterogeneous than
the models, and that large regions of matrix space occur more frequently in sam-
ple EX. A similar conclusion may be drawn from the variance of local porosity
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Fig. 8. Local percolation probabilities λα(φ, 20) (broken curves, values on left axis)
and local porosity distribution µ(φ, 20) (solid curve, values on right axis) at L = 20 for
sample EX(Fig. 8a), sample DM(Fig. 8b), sample GF(Fig. 8c), and sample SA(Fig. 8d).
The inset shows the function pα(L). The line styles corresponding to α = c, x, y, z, 3
are indicated in the legend.
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fluctuations which will be studied below. The conclusion is also consistent with
the results for L∗ shown in Table 2. L∗ gives the sidelength of the largest cube
that can be fit into matrix space, and thus L∗ may be viewed as a measure for
the size of the largest grain. Table 2 shows that the experimental sample has
a larger L∗ than all the models. It is interesting to note that plotting µ(1, L)
versus L also shows that the curve for the experimental sample lies above those
for the other samples for all L. Thus, also the size of the largest pore and the
pore space heterogeneity are largest for sample EX. If µ(φ,L∗) is plotted for all
four samples one finds two groups. The first group is formed by samples EX and
DM, the second by samples GF and SA. Within each group the curves µ(φ,L∗)
nearly overlap, but they differ strongly between them.

Figures 9 and 10 exhibit the dependence of the local porosity fluctuations
on L. Figure 9 shows the variance of the local porosity fluctuations, defined in
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L
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σ

Fig. 9. Variance of local porosities for sample EX(solid line with tick), DM(dashed
line with cross), GF(dotted line with square), and SA(dash-dotted line with circle).

(40) as function of L. The variances for all samples indicate an approach to a
δ-distribution according to (43). Again sample DM is most homogeneous in the
sense that its variance is smallest. The agreement between samples EX, GF and
SA reflects the agreement of their correlation functions, and is expected by
virtue of eq. (40). Figure 10 shows the skewness as a function of L calculated
from (41). κ3 characterizes the asymmetry of the distribution, and the difference
between the most probable local porosity and its average. Again samples GF and
SA behave similarly, but sample DM and sample EX differ from each other,
and from the rest.
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Fig. 10. Skewness of local porosities for sample EX(solid line with tick), DM(dashed
line with cross), GF(dotted line with square), and SA(dash-dotted line with circle).

At L = 4a the local porosity distributions µ(φ, 4) show small spikes at
equidistantly spaced porosities for samples EX and DM, but not for samples
GF and SA. The spikes indicate that models EX and DM have a smoother sur-
face than models GF and SA. For smooth surfaces and small measurement cell
size porosities corresponding to an interface intersecting the measurement cell
produce a finite probability for certain porosities because the discretized inter-
face allows only certain volume fractions. In general whenever a certain porosity
occurrs with finite probability this leads to spikes in µ.

5.3 Local Percolation Analysis

Visual inspection of Figs. 1 through 4 does not reveal the degree of connectivity of
the various samples. A quantitative characterization of connectivity is provided
by local percolation probabilities [10,27], and it is here that the samples differ
most dramatically.

The samples EX, DM , GF and SA are globally connected in all three
directions. This, however, does not imply that they have similar connectivity.
The last line in Table 2 gives the fraction of blocking cells at the porosity 0.1355
and for L∗. It gives a first indication that the connectivity of samples DM and
GF is, in fact, much poorer than that of the experimental sample EX.

Figures 8a through 8d give a more complete account of the situation by
exhibiting λα(φ, 20) for α = 3, c, x, y, z for all four samples. First one notes that
sample DM is strongly anisotropic in its connectivity. It has a higher connectivity
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in the z-direction than in the x- or y-direction. This was found to be partly due
to the coarse grid used in the sedimentation algorithm [47]. λz(φ, 20) for sample
DM differs from that of sample EX although their correlation functions in the
z-direction are very similar. The λ-functions for samples EX and DM rise much
more rapidly than those for samples GF and SA. The inflection point of the
λ-curves for samples EX and DM is much closer to the most probable porosity
(peak) than in samples GF and SA. All of this indicates that connectivity in cells
with low porosity is higher for samples EX and DM than for samples GF and SA.
In samples GF and SA only cells with high porosity are percolating on average.
In sample DM the curves λx, λy and λ3 show strong fluctuations for λ ≈ 1 at
values of φ much larger than the 〈φ〉 or φ(SDM). This indicates a large number of
high porosity cells which are nevertheless blocked. The reason for this is perhaps
that the linear compaction process in the underlying model blocks horizontal
pore throats and decreases horizontal spatial continuity more effectively than in
the vertical direction, as shown in [4], Table 1, p. 142.

The absence of spikes in µ(φ, 4) for samples GF and SA combined with the
fact that cells with average porosity (≈ 0.135) are rarely percolating suggests
that these samples have a random morphology similar to percolation.

The insets in Figs. 8a through 8d show the functions pα(L) = λα(φ,L) for
α = 3, x, y, z, c for each sample calculated from (53). The curves for samples
EX and DM are similar but differ from those for samples GF and SA. Figure 11
exhibits the curves p3(L) of all four samples in a single figure. The samples fall
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Fig. 11. p3(L) for sample EX(solid line with tick) DM(dashed line with cross)
GF(dotted line with square), and SA(dash-dotted line with circle).

into two groups {EX,DM} and {GF,SA} that behave very differently. Figure 11
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suggests that reconstruction methods [1,70] based on correlation functions do
not reproduce the connectivity properties of porous media. As a consequence,
one expects that also the physical transport properties will differ from the exper-
imental sample, and it appears questionable whether a pure correlation function
reconstruction can produce reliable models for the prediction of transport.

Preliminary results [42] indicate that these conclusions remain unaltered if
the linear and/or spherical contact distribution are incorporated into the simu-
lated annealing reconstruction. It was suggested in [70] that the linear contact
distribution should improve the connectivity properties of the reconstruction,
but the reconstructions performed by [42] seem not to confirm this expectation.

6 Physical Properties

6.1 Exact Results

One of the main goals in studying the microstructure of porous media is to
identify geometric observables that correlate strongly with macroscopic physical
transport properties. To achieve this it is not only necessary to evaluate the geo-
metric observables. One also needs to calculate the effective transport properties
exactly, in order to be able to correlate them with geometrical and structural
properties. Exact solutions are now becoming available and this section reviews
exact results obtained recently in cooperation with J. Widjajakusuma [10,65,67].
For the disordered potential problem, specified above in equations (2) through
(7), the effective macroscopic transport parameter C is defined by

〈j(r)〉 = −C 〈∇u(r)〉 (68)

where the brackets denote an ensemble average over the disorder defined in (25).
The value of C can be computed numerically [33,66]. For the following results
the material parameters were chosen as

CP = 1, CM = 0. (69)

Thus in the usual language of transport problems the pore space is conducting
while the matrix space is chosen as nonconducting. Equations (2) through (7)
need to be supplemented with boundary conditions on the surface of S. A fixed
potential gradient was applied between two parallel faces of the cubic sample S,
and no-flow boundary condition were enforced on the four remaining faces of S.

The macroscopic effective transport properties are known to show strong
sample to sample fluctuations. Because calculation of C requires a disorder
average the four microsctructures were subdivided into eight octants of size
128 × 128 × 128. For each octant three values of C were obtained from the
exact solution corresponding to application of the potential gradient in the x-,
y- and z-direction. The values of C obtained from dividing the measured cur-
rent by the applied potential gradient were then averaged. Table 3 collects the
mean and the standard deviation from these exact calculations. The standard
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deviations in Table 3 show that the fluctuations in C are indeed rather strong.
If the system is ergodic then one expects that C can also be calculated from the
exact solution for the full sample. For sample EX the exact transport coeffi-
cient for the full sample is Cx = 0.02046 in the x-direction, Cy = 0.02193 in the
y-direction, and Cz = 0.01850 in the z-direction [65]. All of these are seen to fall
within one standard deviation of C. The numerical values have been confirmed
independently by [47].

Finally it is interesting to observe that C seems to correlate strongly with
p3(L) shown in Fig. 11. This result emphasizes the importance of non-Hadwiger
functionals because by construction there is no relationship between C and
porosity, specific surface and correlation functions.

Table 3. Average and standard deviation σ for effective macroscopic transport prop-
erty C calculated from subsamples (octants) for CP = 1 and CM = 0.

SEX SDM SGF SSA

C 0.01880 0.01959 0.00234 0.00119
σ ±0.00852 ±0.00942 ±0.00230 ±0.00234

6.2 Mean Field Results

According to the general criteria discussed above in Section 3.1 a geometrical
characterization of random media should be usable in approximate calculations
of transport properties. In practice the full threedimensional microstructure is
usually not available in detail, and only approximate calculations can be made
that are based on partial geometric knowledge.

Local porosity theory [27,28] was developed as a generalized effective medium
approximation for C that utilizes the partial geometric characterization con-
tained in the quantities µ and λ. It is therefore useful to compare the predictions
from local porosity theory with those from simpler mean field approximations.
The latter will be the Clausius-Mossotti approximation with P as background
phase

Cc(φ) = CP

(
1− 1− φ

(1− CM/CP)−1 − φ/3

)

= CP

(
3CM + 2φ(CP − CM)
3CP − φ(CP − CM)

)
, (70)
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the Clausius-Mossotti approximation with M as background phase

Cb(φ) = CM

(
1− φ

(1− CP/CM)−1 − (1− φ)/3

)

= CM

(
2CM + CP + 2φ(CP − CM)
2CM + CP − φ(CP − CM)

)
, (71)

and the self-consistent effective medium approximation [35,37]

φ
CP − C
CP + 2C

+ (1− φ) CM − C
CM + 2C

= 0 (72)

which leads to a quadratic equation for C. The subscripts b and c in (71) and (70)
stand for ”blocking” and ”conducting”. In all of these mean field approximations
the porosity φ is the only geometric observable representing the influence of
the microstructure. Thus two microstructures having the same porosity φ are
predicted to have the same transport parameter C. Conversely, measurement of
C combined with the knowledge of CM, CP allows to deduce the porosity from
such formulae.

If the microstructure is known to be homogeneous and isotropic with bulk
porosity φ, and if CP > CM, then the rigorous bounds [8,24,62]

Cb(φ) ≤ C ≤ Cc(φ) (73)

hold, where the upper and the lower bound are given by the Clausius-Mossotti
formulae, eqs. (71) and (70). For CP < CM the bounds are reversed.

The proposed selfconsistent approximations for the effective transport coef-
ficient of local porosity theory reads [27]

1∫
0

Cc(φ)− C
Cc(φ) + 2C

λ3(φ,L)µ(φ,L)dφ+

1∫
0

Cb(φ)− C
Cb(φ) + 2C

(1− λ3(φ,L))µ(φ,L)dφ = 0

(74)

where Cb(φ) and Cc(φ) are given in eqs. (71) and (70). Note that (74) is still
preliminary, and a generalization is in preparation. A final form requires general-
ization to tensorial percolation probabilities and transport parameters. Equation
(74) is a generalization of the effective medium approximation. In fact, it reduces
to eq. (72) in the limit L → 0. In the limit L → ∞ it also reduces to eq. (72)
albeit with φ in eq. (72) replaced with λ3(φ). In both limits the basic assump-
tions underlying all effective medium approaches become invalid. For small L
the local geometries become strongly correlated, and this is at variance with the
basic assumption of weak or no correlations. For large L on the other hand the
assumption that the local geometry is sufficiently simple becomes invalid [27].
Hence one expects that formula (74) will yield good results only for interme-
diate L. The question which L to choose has been discussed in the literature
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[3,10,12,33,66]. For the results in Table 4 the so called percolation length Lp has
been used which is defined through the condition

d2p3
dL2

∣∣∣∣
L=Lp

= 0 (75)

assuming that it is unique. The idea behind this definition is that at the inflection
point the function p3(L) changes most rapidly from its trivial value p3(0) = φ at
small L to its equally trivial value p3(∞) = 1 at large L (assuming that the pore
space percolates). The length Lp is typically larger than the correlation length
calculated from G(r) [10,11].

The results obtained by the various mean field approximations are collected
in Table 4 [65,67]. The exact result is obtained by averaging the three values
for the full sample EX given in the previous section. The additional geometric
information contained in µ and λ seems to give an improved estimate for the
transport coefficient.

Table 4. Effective macroscopic transport property C calculated from Clausius-
Mossotti approximations (Cc ,Cb), effective medium theory CEMA and local porosity
theory CLPT compared with the exact result Cexact (for CP = 1 and CM = 0).

Cc Cb CEMA CLPT Cexact
0.094606 0.0 0.0 0.025115 0.020297
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