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A recently introduced geometric characterization of porous media based on local-porosity distribu-
tions and local-percolation probabilities is used to calculate dc permeabilities for porous media. The dis-
order in porous media is found to be intimately related to the percolation concept. The geometric char-
acterization is shown to open a possibility for understanding experimentally observed scaling relations
between permeability, formation factor, specific internal surface, and porosity. In particular, Kozeny’s
equation k = @ between effective permeability and bulk porosity and the relation k < F~* between per-
meability and formation factor are analyzed. A simple and general consolidation model is introduced.
It is based on the reduction of local porosities and emphasizes the general applicability and flexibility of
the local-porosity concept. The theoretical predictions are compared with the experimentally observed
range for b and h, and are found to be in excellent agreement.

I. INTRODUCTION

A better theoretical understanding of flow through
porous media continues to be a subject of great in-
terest,! ~2* both scientifically and technologically. A par-
ticular problem of widespread practical importance is the
calculation of rock permeabilities from their microstruc-
ture. Experimentally>>? it is found that the permeability
k of a given geological formation correlates strongly with
certain parameters characterizing its microgeometry. In
particular the variation with porosity ¢ obeys a power-
law relationship,

k@b, (1.1)
The porosity is defined as the ratio between the volume of
the pore space and the sample volume, i.e., the volume
fraction of pores. The exponent b scatters widely.>> It
ranges typically from b =3 to b =6. Equation (1.1) will
be referred to as Kozeny’s equation. A similar scaling re-
lation is found between the so-called formation factor F

and porosity:!~%3

Foeg™™. (1.2)
The formation factor is the inverse dimensionless conduc-
tivity of an insulating specimen filled with a conductor.
The exponent m is called the cementation index, and Eq.
(1.2) is known as Archie’s law.!® The cementation index
again scatters widely between m =~1 and m =4, but most
often it is close to m =2.

My objective in this paper is to present a simple
theoretical approach that is aimed at developing a better
insight into the experimental findings above.

Despite many attempts to include microscopic statisti-
cal aspects, the theoretical understanding of fluid flow
through porous media has been limited to macroscopic
continuum theories or inadequate geometric modeling,
such as the well-known capillary model and ramifications
thereof.!~* The fundamental difficulty can be traced to
the absence of a geometric characterization for the mi-
crostructure of porous media that goes beyond the poros-
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ity concept.»>>20 Thus the approach presented here be-
gins with a geometric characterization of porous media.
The characterization is based on local-porosity distribu-
tions and local-percolation probabilities. These quanti-
ties were introduced in Refs. 21 and 22, and their
definitions are repeated below. Local-porosity distribu-
tions and local-percolation probabilities are conceptually
well defined and experimentally observable. References
21 and 22 have utilized these concepts to calculate an ap-
proximate effective frequency-dependent dielectric con-
stant. The result was found to obey Archie’s law [Eq.
(1.2)] and simultaneously allowed for strong dielectric
dispersion and enhancement. The formal similarity be-
tween dc conductivities and dc permeabilities suggests
applying the same approach to fluid flow in porous
media. This paper reports the results for the zero-
frequency permeability obtained through scaling theory
and an effective-medium treatment.

II. GEOMETRIC CHARACTERIZATION

Geometrical characterization of porous media is often
limited to a determination of the porosity ¢ and specific
surface area S. Clearly these two numbers cannot suffice
to characterize the complex pore-space geometry. On the
other hand, the complete set of coordinates for all points
of the solid-fluid interface contains too much (possibly ir-
relevant) geometrical information. It is often suggested
to use a ‘“pore-size distribution” as a possible geometric
characterization for porous media, and mercury injection
is suggested to measure it. It is well known, however,
that the pore-size distribution cannot be defined without
ambiguity. "?> Experimental determinations have to be in-
terpreted cautiously.

Let me present a different statistical characterization of
the pore-space geometry that was introduced recently.?!
It is based on the concept of local (mesoscopic)
geometries as the fundamental random variables. To
define “local geometries” consider a porous medium with
a homogeneously and isotropically disordered pore space.
The points of a simple cubic lattice (or any other Bravais
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lattice) are superimposed on the porous medium and an
arbitrary (in practice cubic) primitive cell is selected. Let
Gumc(R) denote the set of all points inside the measure-
ment cell around the lattice point R, Gpg the set of
points in the pore space, and dGpg its boundary. Then
0Gps NGpc(R) defines what will be called the local
geometry. The volume of the primitive (or measurement)
cells is Vyc=1/p, where p is the density of Bravais-
lattice points. This defines the length scale of resolution
L as L=p '3=(Vyc)'?. For the simple cubic lattice
with cubic primitive cell, L is the lattice constant. The
preceding definition of local geometries is valid for topo-
logically and continuously disordered pore spaces. For a
porous medium with substitutional disorder the measure-
ment lattice is given by the underlying lattice.

The local geometry inside the measurement cell will
become increasingly complex as the length scale of reso-
lution L is increased. A full geometric characterization
at arbitrary L is difficult. However, at every L the local
geometry may be partially characterized by a number of
geometrical observables. In this paper these observables
will be taken to be the cell porosity ¢, the specific surface
area S inside the cell, and a 0-1 variable that indicates
whether the pore space inside the cell percolates or not.

Consider first the local (or cell) porosity and the local
specific surface area. The local porosity ¢(R,L) at the
lattice position R and length scale L is defined as

__1 3
R.L)= Jo, @ @.1)
where Gpg(R)=GpsNGyc(R). Similarly, the local
specific surface area is defined as
__1 2
S(R,L)= facpsm)d r (2.2)

VMC

While ¢(R,L) is dimensionless, S(R,L) has dimensions
of an inverse length. The integrals in (2.1) and (2.2) are
assumed to exist. This constraint excludes porous media
with fractal pore spaces or fractal surfaces. Local-
geometry distributions can now be defined in analogy
with atomic distribution functions. Thus, u(¢,S;R;L)
measures the joint probability density to find a local
porosity ¢ in the range from ¢ to ¢+d¢ and a local
specific surface area S in the range from S to S +dS in-
side a cell of linear dimension L at the point R. The as-
sumption of homogeneity implies that u(¢,S;R;L)
=u(¢,S;L) must be independent of R. In agreement
with the nomenclature of Ref. 21, the function u(¢,S;L)
will be called the local-porosity distribution at scale L, al-
though it might be referred to more generally as a local-
geometry distribution. The bulk porosity ¢ is obtained
by integrating over a large volume or by averaging over a
statistical ensemble of measurement cells, and thus
F=¢(R,L—0)=[" ['6u(¢,S;L)d¢dS , (2.3)
o Yo
independent of R and L. On the other hand, the aver-
aged specific internal surface area

Swi=[" [ 'su(g,s;L)dgds (2.4)
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is a local quantity that depends on the length scale of
resolution. Higher-order local-porosity distribution func-
tions can be defined similarly.

The local-porosity distribution u(¢,S;L) depends
strongly on L. At small L, the local geometries are sim-
ple, but they are highly correlated with each other. The
one-cell function u(¢,S;L) at small L does not contain
these complex geometric correlations. At large L, the lo-
cal geometries are statistically uncorrelated, but each one
of them is nearly as complex as the geometry of the full
pore space. There must then exist an intermediate length
scale L* at which, on the one hand, the local geometries
are relatively simple, and on the other hand, the single-
cell distribution function has sufficient nontrivial
geometric content to be a good first approximation.
Several possibilities for this length scale present them-
selves, and a systematic discussion is given elsewhere.?
Here L* will be taken as a length of the order of the
characteristic pore or grain size of the porous medium.
In the following, the local-porosity distribution is always
taken at scale L*, e, it is defined as
w(¢,S)=u(¢,S;L*). Similarly, the average local specific
surface area is then S=S(L*). Its inverse is an impor-
tant length scale characterizing porous media. For sys-
tems with an underlying lattice symmetry the length L*
is simply the lattice constant.

The most important aspect of u(¢,S) is that it is readi-
ly measurable using modern image-processing equipment.
It can be measured from photographs of two-dimensional
thin sections through the pore space, as discussed else-
where in more detail.?!=2* The local-porosity distribution
(LPD)u(¢,S) is readily calculated for ordered or substitu-
tionally disordered porous media, but is difficult to obtain
for topological or continuum disorder. For ordered or
substitutionally disordered cases the measurement lattice
is given by the underlying lattice, and L* is the lattice
constant. For the ordered case one finds immediately
that the distribution is concentrated at a single point.
For substitutional disorder the LPD follows directly from
the distribution of the individual geometrical elements
that occupy the lattice sites.

The third geometric property that is needed to charac-
terize local geometries is whether the pore space per-
colates or not. For cubic cells each cell is classified as
percolating or nonpercolating, according to whether or
not there exists at least one face of the cubic primitive
cell that can be connected to any of the other faces via a
path contained completely inside the pore space. For
noncubic cells the classification has to be modified ap-
propriately. Let A(#,S) denote the fraction of percolat-
ing cells with local porosity ¢ and local specific surface
area S. The quantity A(¢,S) has been called the “local-
percolation probability.”?"?> It is an important
geometric quantity for all physical properties of porous
media such as conduction or fluid flow because it deter-
mines whether volume elements are permeable or not.

III. EFFECTIVE PERMEABILITY

Consider low Reynolds number (creeping) flow of an
incompressible Newtonian fluid inside a rigid homogene-
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ous and isotropic porous medium. The time-independent
microscopic equations of motion are

VP=nAv+F, (3.1a)

V-v=0, (3.1b)
together with the boundary condition

v=0 on dGpg . (3.2)

Here v is the velocity field of the fluid, % is its viscosity
(often denoted as u), P is the pressure, and F represents
an additional external force field such as gravity. Let [ be
a length of the order of the typical pore size in the medi-
um. Applying standard homogenization techniques to
Eq. (3.1) on length scales L > yields Darcy’s law

3
(vV)=T-2_(F-vp) (3.3)
S

to leading order in the small parameter e=[/L.%?*%}
Here the brackets { ) represent an average over regions
of size L, T denotes the tortuosity tensor, and the fields
are expanded as v(x)=e*v%x,x/e)+e>vix,x/e)+ - -
and P(x)=P%x)+eP!(x,x/€)+ - - - . Thus the permea-
bility is given by
3
k=TS | (3.4)
SZ
reminiscent of Kozeny’s equation for capillaries.
These results are used once for the whole system and
once on the mesoscopic scale L*, leading to the self-
consistent equation

I& fl 3‘T¢3M¢,sm(¢,5)d¢ds=l
o Jo T¢*+2kS?

for the effective permeability k of the porous medium.
Equation (3.5) is entirely analogous to the effective-
medium approximation for the electrical case.?"?? Simi-
lar to that case, there exists an underlying percolation
transition whose control parameter

p= fow fol“¢’5>u(¢,s)d¢ds

is the total fraction of percolating local geometries.

The existence of an underlying percolation transition
implies that k exhibits universal behavior for a large class
of geometries. The crucial quantity is now

(3.5)

(3.6

-1

_|fe 1 S?
ko= | [ J, ggMeSs.51dgds 3.7)
If ko < o, then Eq. (3.5) is approximately solved by
k=kop—p.), (3.8)

where ¢ is the conductivity exponent from percolation
scaling theory.?® Within the effective-medium approxi-
mation tgys =1, independent of dimension. The correct
values are =1.3 in two dimensions and ¢ =2.0 in three
dimensions.?® The exact value for the percolation thresh-
old p. depends on the choice of Bravais lattice. Within
the effective-medium approximation p. =2/z, where z is
the lattice coordination. The result (3.8) is universal in
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the sense that it remains valid as long as the local-
geometry distribution and the local-percolation probabili-
ty are such that kjy<c. The universality condition
breaks down in cases where

w(,S) <~ %f(4,S) (3.9)

for $—0 with f analytic in ¢ and —2=<a <1. A break-
down of k, < o« could also be caused by the specific sur-
face area, but this case is not expected and will thus be
neglected here. If Eq. (3.9) applies, the exponent ¢ in (3.8)
becomes nonuniversal and must be replaced by

2+a
l1—a

The key result is that Eq. (3.10) is already valid for nega-
tive a in the range —2<a <0.

IV. KOZENY’S EQUATION AND ARCHIE’S LAW

Kozeny’s equation (1.1) appears to establish a definite
relationship between bulk porosity and permeability.
Such a relationship cannot be expected to hold in general
because ¢ is not sufficient to characterize the pore space.
In fact, the main content of the present paper is to pro-
pose u(¢,S) and A(@,S) as partial geometric characteriza-
tion. The general relation between permeability and
geometrical properties of a porous system is thus given by
Eq. (3.8).

Nevertheless, Kozeny’s scaling law can be understood
within the present approach if it is interpreted as relating
the change in permeability that results from a change in
porosity. In other words, Eq. (1.1) must be viewed as a
statement about physiocochemical consolidation process-
es that change the pore space.?! Sedimentary and related
rocks arise from sedimentation and subsequent
compactification and cementation processes. These pro-
cesses, which will be referred to simply as consolidation,
change the local geometry of the pore space and thus the
two functions u(¢,S) and A(4,S). If the bulk porosity ¢
is used to parametrize the consolidation processes, then it
should also be used to parametrize 4 and A. Using a
mean-field approximation to simplify Eq. (3.8) yields the
approximate result

-
K(E.5)~ = e —[248,5)—p.]"

-t @.1)
5°448.5)
as long as A5($,5)> p, and with
t fora<—2
- (4.2)
L P fiz for —2<a<1.

The parametrization of the consolidation process with ¢
has been indicated explicitly.

An expression similar to Eq. (4.1) can be obtained for
the formation factor. The dielectric response of porous
media was studied in Refs. 21 and 22, and a relation
analogous to Eq. (3.8) holds in that case. Similar approx-
imations as above give the result
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F($)=¢ "2 P)Azd)—p.] (4.3)
for A$($)>pc and where now
t for a<0
L= “ (4.4)
« t——— for O<a<l1.
1—a

These equations are valid within a mean-field approxima-
tion to the effective-medium equation which becomes ex-
act for strongly peaked porosity distributions.?! The ex-
ponent a is defined through u(¢) < ¢~ ¢, analogous to Eq.
(3.9).

Equations (4.1) and (4.3) show that indeed the scaling
laws (1.1) and (1.2) may arise from Eq. (3.8) if the bulk
porosity is regarded as parametrizing a one-parameter
family of consolidation processes. This point will now be
discussed in more detail.

V. SCALING LAWS

A. General consideration

Before turning to a discussion of Kozeny’s equation
and Archie’s law it is instructive to derive a more general
scaling law relating k, F, ¢, and S. It is readily obtained
by eliminating A$ between Egs. (4.1) and (4.3) with the re-
sult

"
ko L p1 (5.1)
5

This scaling relation establishes a correlation between
permeability, conductivity, and the geometrical parame-
ters 7, 5, and S. Although similar relations are well
known for capillary models,! Eq. (5.1) is an entirely new
result because S is the average local specific surface area,
and not the bulk specific surface area. This invalidates a
well-known argument!® against hydraulic radius theories
where the quantity 1/S is a macroscopic length. In hy-
draulic radius theories the total specific surface area S in-
cludes dead ends in which little or no flow occurs. Thus
S should not correlate well with k. In the present ap-
proach dead ends are automatically included because of
the underlying percolation transition. The local
geometric quantity 7 can be assumed to be independent
of the bulk porosity as long as the consolidation processes
do not create large amounts of dead ends on the local
scale, i.e., inside the cells. The virtue of the scaling law
(5.1) is that it does not depend explicitly on either A or p.
Section V C will verify Eq. (5.1) within a simple consoli-
dation model.

Equation (5.1) bears an interesting relation with a con-
jecture by Johnson, Koplik, and Schwartz.!” These au-
thors propose the scaling relation

A?
LI (5.2)
k o« N

where the length A is defined in terms of the microscopic
electric field E, of the dielectric problem as
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faGPS
prs|Eo|2d3r

The “electrical” length A is generally referred to as a
measure for the so-called “dynamically connected pore
size.”'®  If the conjecture of Johnson, Koplik, and
Schwartz holds true, then the present approach suggests
that A scales as

1/2 3
Aocj?q‘i . (5.4)

]Eofzdzr

2_:
A (5.3)

B. p.-approaching consolidation processes

In this section it will be shown that certain classes of
formally defined consolidation processes give rise to the
empirical scaling laws (1.1) and (1.2). Assume that the
consolidation processes are such that they approach p,
for $—0 and such that A5(¢,S) can be expanded into a
Taylor series for ¢—0 as A3(¢,S)=p, +a,(5)$+. ...
Such a consolidation process will be called “p. approach-
ing.” Consolidation processes that are p, approaching
give rise to the scaling law (1.1) with exponent

3+t fora<—2

b=134, 4 2ta

(5.5)

for —2<a<l1.

This implies b ~4 if a=~ —2 or less, b=3 if a= —1, and
b=6 if a=0, in remarkable agreement with the experi-
mental range for b. It should be emphasized, however,
that not only p -approaching consolidation processes lead
to the scaling law (1.1). For example, processes for which
A= const exhibit the exponent b=3. A whole class of
consolidation processes with continuously variable ex-
ponents will be obtained from a general local-porosity
reduction model in Sec. V C.

For the dielectric response the class of p -approaching
consolidation processes yields Archie’s law, Eq. (1.2),
with

)1+t for a <0

m= ll+z+——a for 0<a<1
1—a

for the cementation index. Again, the numerical values
for m found from these relations are in striking agree-
ment with experiment. The universal result m =1+t im-
plies m =2 as a mean-field result. Note that the universal
result holds over a much wider range of local-porosity
distributions than the corresponding result b =3+t for
the flow problem. This reflects the intuitive expectation
that permeabilities are more sensitive to low-porosity
areas than conductivities.

For p_-approaching consolidation processes, Egs. (5.5)
and (5.6) give rise to the exponent relation
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m+2 fora<—2
2+a

m +2+L for 0<a<1
l—a

m+2+ for —2<a<0 (5.7)

S
|

between b and m. This is a special case of the general re-
sult (5.1).

A more interesting scaling law appears if Egs. (1.1) and
(1.2) are combined into a relation between permeability
and formation factor

k<F~h, (5.8)

where h =b/m. Indeed, experiments on fused glass
beads'® have confirmed Eq. (5.8). The experimental sup-
port for this power law extends over two to three decades
in F and roughly four decades in k. This is a wider range
than that for Kozeny’s equation or Archie’s law. In (1.1)
and (1.2) the porosity variation is usually limited to less
than one decade. The data of Ref. 15 are replotted in
Fig. 1. The authors of Ref. 15 state that their data are
best fitted with 4 =2 in support of their theoretical mod-
el. Least-squares fits of their data, however, yield the
values h~1.85 for samples containing 177-210-um
beads (symbol Y), A =1.93 for 88—106-um beads (symbol
X), and h =2.23 for 44-53-um-sized beads (symbol O).
These fits are indicated as dashed lines in Fig. 1.

How do these findings compare to the present ap-
proach? From Egs. (5.5) and (5.6) the exponent h is
readily calculated for p.-approaching consolidation pro-
cesses as

i—i; for a<—2

h= {3ty T for —2<a<0 (5.9)
%t:atﬁ for O<a<1.

Logarithmic corrections obtain at @= —2 and a=0. The

exponent ¢ crosses over from ¢ =1 for p well outside the
critical region to r~2.0 close to p,. In Fig. 2 the ex-
ponent 4 is plotted as a function of a. The upper solid
curve corresponds to ¢ =1, the lower to ¢t =2. Experi-
mental results for systems generated by p.-approaching
consolidation processes should fall between the two
curves. The experimental results of Ref. 15 are consistent
with this requirement. This finding could be interpreted
as an indication that fused glass bead systems are created
by a p.-approaching consolidation process. For such sys-
tems Fig. 2 establishes a quantitative correlation between
permeability and formation factor, on one hand, and sta-
tistical geometrical properties of the pore space expressed
by a, on the other hand. It can be read in two ways: If
the exponent # has been determined experimentally, Fig.
2 can be used to predict a possible range for a. Thus the
fused glass bead sample with the smallest bead size is ex-
pected to have a local-porosity distribution of the form
(3.9) with a somewhere between 0 and —1.2. The second

NN
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O N ™
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FIG. 1. Experimental results for permeability as a function
of formation factor for fused glass beads with three different
bead diameters, from Wong, et al. in Ref. 15. The dashed lines
are least-squares fits giving the exponent h. The numerical
values are for 177-210-um beads (symbol Y) h=1.85, for
88-106-um beads (symbol X) A =~1.93, and for 44—-54-um beads
(symbol O) h =2.23.

way to use Fig. 2 becomes possible once the geometrical
exponent a [or the function a(¢)] has been determined
for a particular porous medium. In that case Fig. 2 can
be used to predict a possible range for 4.

Whether or not fused glass bead systems are created by
a p.-approaching consolidation can only be decided by
direct observation of u(¢,S) and A(¢,S). In fact, the ex-
perimental results for 4 are also consistent with a very
different type of consolidation, which will be discussed
next.

C. Local-porosity reduction model

Consider a simple regular lattice (taken to be cubic)
that is initially without disorder. Each unit cell of the
lattice contains initially the same local geometry. The in-
itial local geometry has porosity ¢, and specific surface
area S,. The consolidation process consists of picking at
random a particular cell and reducing its porosity by a

4.0

35¢

30t

20 e

/
15t
1.0 : -
-5 -4 -3 -2 -1 0 1
a

FIG. 2. Plot of the physical exponent 4 as a function of the
geometrical exponent a for ¢t =1 (upper curve) and ¢ =2 (lower
curve). The universal regime extends below a < —2. The gray
lines indicate the least-squares fits to the experimental data
shown in Fig. 1.
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factor r and its specific surface by a factor s. These steps
are repeated until the desired average porosity ¢ is
achieved. The local-percolation probabilities are as-
sumed to be given by a function A(¢,S), which remains
unchanged during the porosity reduction. This process
creates a random pore space in which each cell is charac-
terized by a random variable n giving the number of
times it was picked for a reduction step. If a particular
cell has been chosen n times, then its porosity and specific
surface area are, respectively,

¢n:rn¢0 ’
S,=s"S, .

(5.10a)
(5.10b)

The definition of the local-porosity reduction model given
above is very general, and it encompasses many different
consolidation processes.

In general, the reduction factors » and s might be
chosen independent of each other. In many cases, how-
ever, they will be related. Four generic possibilities for
their relation may illustrate this point.

1. Crack compaction. Suppose the local geometry con-
sisted initially of crack planes separated a distance w and
the consolidation reduces this width by a factor x. Then
the surface area of the crack planes and thus the specific
internal surface area remain unchanged. The porosity,
on the other hand, is reduced proportional to x, and thus
r=xand s =1=x° Therefore,

5 =10 (5.11)

for this case.

2. Shrinkage of capillaries. In this case the local
geometry is assumed to consist of cylindrical tubes of di-
ameter w, and each consolidation step reduces the tube
diameter by a factor x. This implies » =x2 and s =x, and
thus

s=rl"2, (5.12)

Note that the bond shrinkage model of Ref. 15 is a spe-
cial case obeying (5.12).

3. Shrinkage of voids. Now the local pore space is
formed by a central void (such as a sphere) that is con-
J

T, 3 — Y1[(3=2a)nr]/(r—1) — \Inr/(r—1)

2 8% | o éo

The approximations become exact in the ¢ —0 limit.

A particularly interesting special case of this result is
obtained for uniformly conducting models discussed in
Ref. 21. A uniformly conducting model is defined
through A=const, i.e., it has a constant fraction of per-
colating geometries. This includes the case A=1 where
all local geometries are percolating. In this case one finds
Kozeny’s equation for k& with exponent

b=(3—2q) 107

—— (5.19)

for the flow problem. For the electrical problem Archie’s

)S()
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nected to neighboring cells through extremely narrow
capillaries. The capillaries are so small that their contri-
bution to ¢ and S can be neglected. Each consolidation
step reduces the sphere radius by a factor x. In this case
r=x%and s =x?, giving

s=r?"3. (5.13)

4. Filling of voids. Whenever the local pore space is
filled up or otherwise eliminated the relation

s=r (5.14)

holds.

These considerations suggest that for a large number of
consolidation processes s and r will not be independent.
If the consolidation process is combined out of the four
alternatives above, one might expect a power-law rela-
tionship

s=r (5.15)

between s and r with an exponent a ranging from O to 1.

Because the pore space created in the local-porosity
reduction models is substitutionally disordered, its local-
porosity distribution can be obtained explicitly. Noting
that the random variable n is Poisson distributed, one
finds for the local-porosity distribution

In#/Inr
X2 exp(—m)
(¢p)= bo 5.16
M) = N n(rg/dg) /nr) (316
where I'(x) denotes the gamma function and

Ind—In

L L (5.17)
r—1

The bulk porosity ¢ was defined in Eq. (2.3). The quanti-
ty 7 is the average number of times each cell is selected.
The local-porosity density (5.16) no longer depends upon
S because S is determined through ¢ by Eq. (5.15).

Writing the effective-medium equation (3.5) in terms of
n and using again a mean-field treatment gives the mean-
field result

— Yalnr/(r—1)
4 —il (5.18)
do
[
law is obtained with cementation index
m=-8r_ (5.20)
r—1

Note that m —1 for »—1. Combining Egs. (5.19) and
(5.20) yields the exponent A as

h=3—2a (5.21)

for the uniformly conducting local-porosity reduction
model. While the result for b involves both, the reduc-
tion factor r and the exponent a, their influence appears
separated in the results for m and A. Incidentally, Eq.
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(5.21) combined with the range 0=<a =<1 predicts a simi-
lar range 1<h =<3 for h as Eq. (5.9) for p -approaching
consolidation processes. Thus the experimental results
for fused glass beads'® discussed in the last section can
also be interpreted within the local-porosity reduction
model. One finds a(44-53 um)=0.38, a(88-106 um)
~0.53, and finally a(177-210 um)=0.57. This could
be interpreted as an indication that the sintering process
for large spheres deviates from simple capillary shrinkage
towards void shrinkage, while that for small beads seems
to cross over towards wall shrinkage.

Note also that the bond shrinkage model of Ref. 15
emerges as a special case of these results. In the tube
shrinkage model one has r=x? and a =1, as men-
tioned above. Thus A =2, b=2Inx2/(x*—1) and
m = Inx2/(x?—1), recovering exactly the analytical esti-
mates for higher dimensions' as a mean-field result.

VI. CONCLUSION

The local-porosity approach provides a theoretical
framework inside which the nature of empirical scaling
relations in porous media can be understood. The ap-
proach explains why scaling laws might occur at all, and

why there exists such a great variability in the observed
exponents. The importance of consolidation processes is
emphasized. Kozeny’s equation (1.1) and Archie’s law
(1.2) should be viewed as a statement about the consolida-
tion processes of the geological formation and not as a re-
lation between permeability and bulk porosity.?! The
tube shrinkage model of Wong, Koplik, and Tomanic'> is
found to be a special case of a more general local-porosity
reduction model. The theory offers a geometrical inter-
pretation of the dynamical A parameter introduced by
Johnson, Koplik, and Schwartz. 19 In summary, it is
hoped that the present approach improves the under-
standing of quantitative correlations between geometrical
properties of porous media and their bulk transport
coefficients. Because the theory is based on direct obser-
vation, it contains no adjustable parameters or distribu-
tion functions, and can thus be tested by experiment.
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