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Abstract

A system of macroscopic equations for two-phase immiscible displacement in porous media is presented. The
equations are based on continuum mixture theory. The pairwise character of interfacial energies is explicitly taken into
account. The equations incorporate the spatiotemporal variation of interfacial energies and residual saturations. The
connection between these equations and relative permeabilities is established, and found to be in qualitative agreement
with experiment.
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A great deal of interest has recently been focused on
the physics of mono- and multiphase #uid #ow in porous
media [1}11]. Displacement of one #uid by another
inside a porous medium is an unsolved problem of great
importance in areas such as "ltration [12], ground-water
hydrology [13], (nuclear) waste storage [14], catalysis
[15], chromatography [16], or hydrocarbon exploration
and production [17] to name only a few areas of applica-
tion.

Multiphase #uid #ow in porous media is almost uni-
versally treated in practical calculations [18,19] by
a well-known set of nonlinear partial di!erential equa-
tions [20}23]. A number of severe problems arise within
this formulation [24], and we introduce the reader to
these problems in the "rst three introductory paragraphs.
In the traditional formulation a rigid porous medium
(such as sedimentary rock R) "lled with two immiscible
and incompressible #uids (such as water w and oil o), is
viewed as a macroscopic mixture of three phases in which
each phase is simultaneously present at each macro-
scopic space}time point (x, t). One stipulates mass con-

servation
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combined with a generalization of Darcy's law [21,22]
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for the macroscopic pressure "elds Pw(x, t) and Po(x, t),
the macroscopic (Darcy) velocities *6 w (x, t) and *6 o(x, t),
and the saturations Sw (x, t), So (x, t)"1!Sw(x, t), all of
which together represent the macroscopic state of the
system. Remaining symbols are the #uid parameters such
as densities ow , oo and viscosities kw , ko , the absolute
permeability tensor K and porosity / of the porous
medium, and the acceleration of gravity u as an external
body force. Eqs. (1) and (2) are completed by postulating
that the capillary pressure
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Table 1
Overview over the subphases and their indices for immiscible
displacement of two #uids inside a rigid porous medium

Phase Index Phase Substance

W 1 Connected (percolating) #uid Water
2 Disconnected (trapped) #uid

O 3 Connected (percolating) #uid Oil
4 Disconnected (trapped) #uid

R 5 Rigid porous solid Rock minerals

and the relative permeabilities k3w (x, t)"k3w(S
n
(x, t)),

k3o(x, t)"k3o(Sn
(x, t)) are functions of a normalized e!ec-

tive saturation
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containing the irreducible water ("wetting phase) satu-
ration Sw*

, and the residual oil ("non-wetting phase)
saturation So3

as two additional parameters. Many if not
all numerical simulations of macroscopic two-phase im-
miscible displacement in porous media are based on
these equations or on their special cases such as the
Buckley}Leverett equations [18,19,25].

Despite of their practial importance Eqs. (1)}(4) are
#awed in at least two respects. Experiments [26}29] have
shown that the parameters Sw*

and So3
are not constant

but depend on #ow conditions such as velocity. In addi-
tion, the relative permeabilities k3w (S

/
), k3o(S/

) and the
capillary pressure P

#
(S

/
) are assumed to be constitutive

functions in the mathematical equations while in reality
they are functionals re#ecting the well-known hysteresis
[20,21,25,30].

Given these problems it becomes clear that an im-
proved theory may be obtained from a macroscopic
energy balance that includes the interfacial energies.
Lately such an approach was presented in Ref. [24]. One
possible problem with the equations in Ref. [24] is that
the interfacial energy of a phase pair was assigned equally
to both phases. Redistribution of energies during #uid
movement is suppressed by this static assignment. It is
the main purpose of this paper to propose an energy
balance that is obtained from the principles of mixture
theory. A "rst presentation of the resulting equations will
be presented below. More details and a full discussion
will be given elsewhere [31].

The interfacial energy densities are pab Aab
(a, b3MW, O, RN), where pab is the surface tension be-
tween phase a and b, and Aab is the speci"c internal
surface area, i.e. the surface area between a and b per unit
volume. Although it is clear that these interfacial energy
densities govern the wetting behaviour they do not ap-
pear in Eqs. (1)}(4). Therefore, the characterization of the
macroscopic state by pressures Pa , velocities *a and satu-
rations Sa is incomplete and must be enlarged by speci"c
internal surface areas Aab [32,33].

As a second ingredient, it is important to recognize the
crucial di!erence between connected and disconnected
#uid con"gurations [24,34]. In the present approach
each #uid phase is split into a connected (percolating)
and a disconnected (nonpercolating) subphase. During
an immiscible displacement process a "nite fraction of
each #uid phase becomes trapped inside the pore space.
These droplets remain immobile and "xed through large
local capillary forces until they coalesce again with their
mobile connected parent phase. Dividing each of the two

#uid phases into a percolating (connected) and a trapped
(disconnected) subphase makes it possible to describe the
dynamics of residual phase saturations. The subdivision
results in a total of "ve phases (four #uid, one solid), that
will be indexed as is summarized in Table 1. A subphase
is called connected or percolating if each of its interior
points can be connected to the boundaries of the sample
by a path within the subphase. The disconnected sub-
phase is the complement within the chosen superphase.

Based on the foregoing the macroscopic state of the
two immiscible and incompressible #uids is described by
several macroscopic "elds. Each phase has a velocity
*a (x, t) where the meaning of the index a"1, 2, 3, 4, 5 is
given in Table 1. In addition, each phase occupies a vol-
ume fraction /a (x, t)"/Sa (x, t) where / is the porosity
and Sa (x, t) is the saturation "eld of phase a. The connec-
ted #uid phases are described by the pressure "elds
P
1
(x, t) and P

3
(x, t). The macroscopic pressure "elds for

the disconnected #uid phases are expected to be discon-
tinuous when obtained by averaging or homogenization
techniques, and hence are neglected in our approach.
With these preparations the macroscopic mass, mo-
mentum and energy balances may be derived from gen-
eral mixture theory [31,35]. For mass conservation we
obtain [31]
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and for momentum conservation of the connected #uid
phases we have
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In these equations Mw is the mass transfer per unit
volume from disconnected water (phase 2) into connected
water (phase 1), and correspondingly Mo for oil. Sim-
ilarly, ma is the momentum transfer per unit volume from
all phases into phase a. We have assumed throughout
that *

2
"*

4
"*

5
"0, i.e. that the disconnected #uid

phases and the rock are immobile. In spite of this as-
sumption spatiotemporal variations of the disconnected
phases are possible by coalescence with and breakup
from the connected parent phase.

Only kinetic and interfacial energies are included into
the energy balance. The pairwise character of interfacial
energies necessitates special considerations that will be
detailed elsewhere [31]. Assuming constant wetting con-
ditions, i.e. Aa5"const. for a"1, 2, 3, 4, we obtain the
following equations for the four #uid phases
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where Ea denotes the energy transfer per unit volume
from all phases into phase a and we assumed E

2
"E

4
"

E
5
"0. These equations have to be completed with a spe-

ci"cation of the mass, energy and momentum transfer.
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as functions of the other variables. This completes the
general equations for two-phase #ow with immobile dis-
connected #uid phases. Of course, our approach can be

generalized to the case where the disconnected #uids are
mobile.

We now proceed to specify a simple model for the
mass, energy and momentum transfer. The momentum
transfer is traditionally chosen as a simple generalization
of Stokes drag [18]
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where the local resistivities Rab are in general tensorial.
Next, we assume that locally each connected #uid phase
#ows without disturbing the other #uid (see Ref. [22,
p. 335]). As usual we neglect viscous coupling terms,
R
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3
. We approximate the resistivities of each

connected #uid phase as in single-phase #ow by an ex-
pression of Carman}Kozeny (or hydraulic radius) type
[22]
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Here sa is the tortuosity (tensor) of phase a and Aa"
+bAab is its speci"c internal surface area. The energy
transfer has to be consistent with the momentum transfer
and we assume
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thereby neglecting interfacial energy transfer.
The mass transfer Ma is a new ingredient in our pres-

ent formulation whose dependence on other variables
has to be taken from experiment. Eqs. (6) and (8) suggest
to identify /

2
and /

4
with residual saturations from

a desaturation experiment. This idea results in an Ansatz
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where the functions Sw*
(D*

3
D), So3

(D*
1
D) are the capillary

desaturation curves taken from experiment [26}29].
A simple analytical model for such capillary desaturation
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curves is
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with constants Cw , Co controlling the decay from the
`plateau valuesa SHw*

, SHo3 .
Having speci"ed a concrete model for the mass and

momentum transfer Eqs. (15) and (16) it is interesting to
compare such a model to the traditional formulation
given in Eqs. (1)}(4). Inserting the model assumptions
(18}25) into Eqs. (9) and (10) yields for the macroscopic
(Darcy) velocities
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These equations are analogous to the generalized Darcy
law (2) in the traditional formulation. If the velocities
*
1
, *

3
are very small or very large, or if the velocities are

independent of time, the "rst term in the "rst bracket
vanishes. It is now possible to identify relative permeabil-
ities as
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where k denotes the absolute permeability of the me-
dium. In the second equality the Carman}Kozeny ex-
pression k"/3/(A2s) for absolute permeability has been
inserted, where A is the speci"c internal surface and s is
the tortuosity of the porous medium.

Several comments are in order here because Eqs. (30)
and (31) resemble the relative permeabilities of tradi-
tional theory. Firstly, they are Brooks}Corey power-law
form with cubic exponent as often assumed in theory and
experiment [20]. This form appears here as a conse-
quence of Eqs. (20) and (21) which are analogous to
expressions for single-phase #ow. Secondly, k3w and
k3o show the correct dependence on wettability. If the
medium changes from water wet to oil wet with all other
quantities held constant then this means in the present
formulation that A

35
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this implies that A
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will decrease while

A
3

increases. Hence k3w increases while k3o must decrease,
as observed in experiment [22]. Similarly, one expects
that during imbibition in a water wet medium the speci"c
surface A

3
will be larger than during drainage because of

trapped oil. Hence, one expects that k3o for drainage
should be larger than for imbibition if all other factors
are kept constant.

We pause here to warn the reader that Eqs. (30) and
(31) do not hold generally in our approach but only
under the special assumptions stated above. During
a displacement the speci"c surfaces themselves change,
and hence the relative permeabilities are process and
state dependent. We also emphasize that in our approach
even the generalization of Darcy's law (28) and (29) is not
always valid. If a generalized Darcy's law is valid it
contains viscous coupling terms not present in the tradi-
tional assumption (2). Unfortunately the approach in its
present form does not yield information on capillary
pressure functions in gravitational equilibrium. This indi-
cates that the constitutive modeling needs to be further
improved, and work in this direction is in progress [31].

In summary, we have presented a formulation of two-
phase #ow through porous media that replaces tradi-
tional concepts such as relative permeabilities with
dynamical equations. The approach is based on the phys-
ical principles and balance laws of macroscopic con-
tinuum mechanics. The distinction between connected
and disconnected #uid phases is its main new ingredient.
We "nd that under constitutive assumptions analogous
to those for single-phase #ow the traditional relative
permeabilities may reappear, and that in such cases their
saturation dependence is similar to experiment.
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