
Rudolf Hilfer
Mathematical and physical interpretations of
fractional derivatives and integrals
Abstract: Brief descriptions of various mathematical and physical interpretations of
fractional derivatives and integrals have been collected into this chapter as points of
reference and departure for deeper studies. “Mathematical interpretation” in the title
means a brief description of the basic mathematical idea underlying a precise defini-
tion. “Physical interpretation”means a brief description of the physical theory under-
lying an identification of the fractional order with a known physical quantity. Numer-
ous interpretations had to be left out due to page limitations. Only a crude, rough and
ready description is given for each interpretation. For precise theorems and proofs an
extensive list of references can serve as a starting point.
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1 Prolegomena

1.1 Amultitude of mathematical and physical interpretations for fractional deriva-
tives and integrals have been developed since Gottfried Wilhelm Leibniz [123, p. 301]
first noted and then asked “...on le peut exprimer per seriem infinitam, sed quid est
in Geometria?”1 DerivativesDα and integrals Iα of fractional (non-integer) order arise
from viewing the symbolic relations

I In = In+1, n ∈ ℕ, (1a)

DDn = Dn+1, n ∈ ℕ, (1b)

D In = In−1, n ∈ ℕ, (1c)

1 “... one can express that” difference (or sum) whose exponent is a fraction∗ “by an infinite series, but
what is it in geometry?” ∗inserted from context [123, p. 300–301].
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for iterated integrals I andderivativesD as almost representing the additive semigroup
(ℕ, +) of natural numbers, and extending (1) to the semigroup (ℝ+0 , +) of non-negative
reals2 ℝ+0 := [0,∞) ⊂ ℝ or to the full field (ℝ, +, ⋅ ).
1.2 Many ideas for interpreting and extending the formal relations (1) from n ∈ ℕ
to n ∈ ℚ,ℝ orℂ have been proposed over the centuries. All attempts are met squarely
by some basic facts of calculus. Indeed, the geometric property D2 = 0 of (exterior)
derivatives [53, p. 20] would restrict equation (1b) to n ≤ 2. Or the non-commutativity
I D ̸= D I seems to prevent extension of equation (1c) to n = 0. Recall that the power
functions

Pn(x) :=
xn

n!
, x ≥ 0, n ∈ ℕ (2)

obey the rules I Pn = Pn+1 and DPn = Pn−1 similar to In in (1a) and (1c). Extension to
n = 0 (or n < 0), however, is fraught with a singularity at x = 0. Many mathematical
impediments arise from these basic facts.
1.3 Derivatives and integrals of fractional (non-integer) order originate from the op-
erational analogy (“analogie merveilleuse”) observed by Leibniz [122],

Dn(fg) =
n
∑
k=0
(
n
k
)(Dk f )(Dn−k g), (3)

Pn(f + g) =
n
∑
k=0
(
n
k
)(Pk f )(Pn−k g), (4)

between the nth derivative of a product (3) of two real-valued functions f , g, and the
nth power of their sum (4), if powers Pn(f ) = f n = Pn f with f 0 = 1 are written using an
operational symbol P. Extension of equations (2)–(4) from n ∈ ℕ to α ∈ ℂ, Re α > 0
(or α ∈ ℂ [162, Sec. 2.3]) requires interpolation formulae

from (n
k
) =

n!
k!(n − k)!

to Γ(α + 1)
Γ(k + 1)Γ(α − k + 1)

, k ∈ ℕ, and (5a)

from n! =
n
∏
k=1

k to Γ(α + 1) =
1

∫
0

(− log x)α dx =
∞

∫
0

xαe−xdx, (5b)

for factorials and binomial coefficients. It was for this purpose that Euler solved the
‘interpolation problem’ and introduced the Γ-function in [50, § 27–29].
1.4 Given the operational analogy between (3) and (4), Lagrange obtained the cel-
ebrated symbolic formula [61, p. 194–195]

Δαhf = (e
h df
dx − 1)

α
(6)

2 The notationsℝ+ := (0,∞),ℝ+0 := [0,∞), andℝ
− := (−∞,0) will be used.
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for general α, where (Δhf )(x) = f (x + h) − f (x) is the finite difference with shift h ≥ 0.
Lagrange’s formula results from treating the symbol of differentiation systematically
as an algebraic quantity with the provision of replacing its nth powers

(
df
dx
)
n
󳨀󳨀󳨀→

dnf
dxn

(7)

with the nth derivative at the end. Other authors have subsequently tried to build dif-
ferential calculus on an algebraic or algorithmic basis [63, 7, 180, 31]. Recall that Leib-
niz’ product rule

D(fg) = g(D f ) + f (Dg) (8)

is the algebraic basis of Dn and equation (3) reduces to equation (8) for n = 1. In-
deed equation (8) is the axiomatic basis for differentiation (resp. derivation) on man-
ifolds [33] and algebras [26, 119]. A full account of Leibniz’ influential idea to general-
ize equation (1) is not possible in these pages. Many books and specialized treatises
[125, 157, 168, 82, 193] contain a section on history (see also [134]).
1.5 The objective of this chapter is to collect a list of mathematical and physical in-
terpretations in the sense of Definitions 1 and 2 given below. The scope is necessarily
rather restricted due to the long history of fractional calculus. Only a selection of es-
tablished and widely known mathematical interpretations is aimed at here. As to the
physical interpretations, there will be even fewer examples, because, in the opinion
of this author, most physical interpretations are still tentative.

2 Integrals and derivatives

2.1 Integrals. Integrals are (weighted) sums with infinitely many terms, or linear
functionals on function spaces. More concretely, let (Ω,M , μ) be ameasure spacewith
σ-algebra M and measure (or weight) μ, and let f : Ω → ℝ be a real-valued function
on Ω. Then

Iμ,Ω(f ) = ∫
Ω

fμ = ∫
Ω

f (x)dμ(x) = μΩ(f ) ∈ ℝ (9a)

denotes the integral of f with respect to μ. When μ = λ is the Lebesgue measure and
Ω ⊂ ℝ is an interval, notations such as

IΩ(f ) = ∫
Ω

f = ∫
Ω

f (x)dx = λΩ(f ) (9b)

often suppress the dependence on the measure or weight μ.
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2.2 Let 𝕁 = (a, b) be an interval with −∞ ≤ a < b ≤ ∞ and Ω = (a, x) an interval
with a < x < b. For a locally integrable function f : 𝕁 → ℝ the notation

(Ia+ f )(x) := IΩ(f ) =
x

∫
a

f =
x

∫
a

f (y)dy (10a)

(Ib− f )(x) := I𝕁\Ω(f ) =
b

∫
x

f =
b

∫
x

f (y)dy (10b)

is used to emphasize the dependence on the variable upper or lower limit x.
2.3 Derivatives. Let Ω ⊂ ℝ be open and let F(Ω) be the algebra of real-valued func-
tions f : Ω→ ℝwith pointwise addition and pointwise multiplication.3 Algebraically,
the derivative (or derivation) D f is defined as a linear operator D : F → F on F such
that the product rule (8) holds true for all f , g ∈ F. On commutative Banach algebras
every such D has a range contained in the Jacobson radical of F, i. e. in the kernel of
the Gelfand isomorphism [183, 194].
2.4 Difference quotients. Analytically, the derivative of f at x ∈ Ω is defined as the
limit of finite difference quotients (h ≥ 0)

(D f )(x) := lim
h→0

f (x ± h) − f (x)
h

= lim
h→0
(
Th± − 1
h
)f (x) (11a)

= lim
h→0
(
Δ±h
h
)f (x) (11b)

if both limits exist, are well defined, and are equal. Here 1 is the identity (see equa-
tion (100) in the appendix),

Δ±h = T
h
± − 1 (12)

are the right/left-sided difference operators appearing in equation (6), and

(Th± f )(x) = f (x ± h) (13)

stands for translations of f to the left (+) or right (−) by h.
2.5 Iteration. The algebra of integer powers ofD and I in equation (1) is the starting
point of fractional calculus. Let A : X→ X be a linear operator on a linear space Xwith
domain D(A) ⊂ X. For n ∈ ℕ the nth power of an operator

An := A ∘ ⋅ ⋅ ⋅ ∘ A⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n-times

(14)

3 Sets of functions such as F(Ω), or the Lebesgue spaces Lp(Ω) are denoted by a sans serif font.
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is interpreted as its n-fold composition or iteration and defined recursively as

A0 := 1, D(A0) = X (15a)

An+1 f := An ∘(A f ), D(An+1) = {f ∈ D(A) | A f ∈ D(An)} (15b)

where 1 is the identity operator on X (see appendix). Then the law of exponents
An Am = An+m holds for n,m ∈ ℕ. This shows that An+1 = AAn and thus the domains
are shrinking D(An+1) ⊂ D(An). Moreover, An(D(Am)) ⊂ D(Am−n) form ≥ n.
2.6 Iterated integrals. Let 𝕁 = (a, b) ⊆ ℝ with −∞ ≤ a < b ≤ ∞ as in Paragraph
2.2, and let f ∈ L1loc(𝕁) := {f : 𝕁 → ℝ | f is integrable on all compact subsets K ⊂ Ω} be
locally integrable. Iterating Ia+ : D(Ia+) → L1loc(𝕁) from equation (10) gives

[(Ia+)
nf ](x) =

x

∫
a

y1

∫
a

. . .

yn−1
∫
a

f (yn) dyn . . .dy2dy1 (16a)

=
1
(n − 1)!

x

∫
a

(x − y)n−1f (y) dy =
x

∫
a

f (y)[Tx−(SK
n)](y) dy (16b)

where n ∈ ℕ and D(Ia+) = {f ∈ L1loc(𝕁) : Ia+ f ∈ L
1
loc(𝕁)}. The function Kn : ℝ → ℝ is

defined as

Kn(x) := Θ(x) Pn−1(x) = Θ(x)
xn−1

Γ(n)
(17)

where Pn was defined in equation (2), Γ is Euler’s Gamma function in equation (5b)
and Θ : ℝ → ℝ,

Θ(x) := {
0 x < 0,
1 x ≥ 0,

(18)

is the Heaviside step function.4 The reflection operator S : F(ℝ) → F(ℝ) is defined by
(S f )(x) := f (−x) for x ∈ ℝ and the translation operators Th± : F(ℝ) → F(ℝ) with h ≥ 0
are given in equation (13) on the set F(ℝ) of real-valued functions f : ℝ → ℝ. A similar
formula, [(Ib−)nf ](x) = ∫

b
x f (y)(T

x
− K

n)(y) dy, holds for Ib−.
2.7 Iterated derivatives. Let 𝕁 = (a, b) ⊆ ℝ with −∞ ≤ a < b ≤ ∞. Iterates of the
translation operators for f : 𝕁 → ℝ,

[(Th±)
nf ](x) = [(Tnh± )f ](x) = f (x ± nh), n ∈ ℕ, a < x < b, (19)

are well defined for h with |h| < min{x − a, b − x}/n. The iterated derivative

(Dn f )(x) = lim
h→0
(
Δ±h
h
)
n
f (x) = lim

h→0
(
Th± − 1
h
)
n
f (x) (20a)

4 Other conventions for Θ(0) are sometimes used.
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= lim
h→0

1
hn

n
∑
k=0
(−1)n−k(n

k
)(Thk± f )(x) (20b)

is defined, if the limits exist and are equal. A domain for D : C(𝕁) → C(𝕁) is

D(D) = {f ∈ C10(𝕁) : D f ∈ C0(𝕁)} (21)

where C(𝕁) := {f : 𝕁 → ℝ : f is continuous}, Ck0(𝕁) := {f ∈ C(𝕁) : f is k-times continu-
ously differentiable}, and C0(𝕁) := {f ∈ C(𝕁) : f vanishes at∞}.

3 Mathematical interpretations

3.1 It seems pertinent to specify what is meant by an interpretation.

Definition 1. A mathematical interpretation of fractional derivatives Dα or fractional
integrals Iα is an incomplete mathematical definition. Interpretations are abbreviated
as (A) ⋅ − (B), which is to be read as “(A) is interpreted as (B)”.

3.2 Many mathematical interpretations of fractional derivatives and integrals are
basedonequation (16) or (20) (see Sections 4 and 5). Formore informationon standard
interpretations see [76] or the preceding chapter [111].

4 Standard interpretations for integrals

4.1 Riemann–Liouville Interpretation. A standard interpretation of fractional in-
tegration is

Iαa+ ⋅ − (Ia+)n from equation (16b) (22)

with α ⋅ − n ∉ ℕ interpreted as a non-integer power of integration.
4.2 Riemann–Liouville integrals. Let 𝕁 = (a, b) and −∞ < a < x < b < ∞.
Riemann–Liouville fractional integrals of order α > 0 are defined as

(Iαa+ f )(x) =
1

Γ(α)

x

∫
a

(x − y)α−1f (y) dy (23a)

(Iαb− f )(x) =
1

Γ(α)

b

∫
x

(y − x)α−1f (y) dy (23b)
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for f ∈ L1(𝕁) [67, 92, 96, 171, 169, 27]. For α = 0 the specification (I0a+ f )(x) = (I
0
b− f )(x) =

f (x) completes the definition.5 Some authors require piecewise continuity [145, p. 45].
For f ∈ L1(𝕁) the fractional integral (Iαa+ f )(x) exists for almost every x ∈ 𝕁. Then Iαa+ f ∈
L1((a, c)) for every a < c < b and its L1-norm is finite. If f ∈ Lp(𝕁) with 1 ≤ p ≤ ∞ and
α > 1/p then (Iαa+ f )(x) is finite for all x ∈ 𝕁. On Lebesgue spaces Lp(𝕁) for 1 ≤ p ≤ ∞
the fractional integral Iαa+ is a bounded non-negative operator. It is unbounded (and
non-negative) on Lp((a,∞)), i. e. for b = ∞. The definition of Iαa+ may be generalized
to α ∈ ℂ with Re α > 0.
4.3 Weyl Interpretation. The Riemann–Liouville integral Iαa+ f of a periodic func-
tion f (x) ∼ ∑k cke

ikx will in general not be periodic. Integration of periodic functions
amounts to division of the Fourier transform with the Fourier variable. This led Weyl
to interpret

Iα± f ⋅ − F−1{(±ik)−αF {f }} (24)

as a Fourier multiplication operator [205], where F {f }(k) is the Fourier transform of
f (x), and f (x) ∼ ∑k cke

ikx with c0 = 0 is periodic.
4.4 Weyl integrals. Let Ω = ℝ/2πℤ be the unit circle and let f ∈ Lp(Ω) for 1 ≤ p < ∞
be a 2π-periodic function such that its integral over a period vanishes. TheWeyl frac-
tional integral of order α is defined as

(Iα± f )(x) :=
1
2π

2π

∫
0

∞

∑
k=−∞
k ̸=0

eik(x−y)

(±ik)α
f (y) dy (25)

for 0 < α < 1 [171, 27]. For such 2π-periodic f with vanishing integral over a period
the relations Iα+ f = I

α
a+ f with a = −∞ and Iα− f = I

α
b− f with b = ∞ hold [212]. They

motivate an extension of Weyl integrals as improper integrals,

(Iα+ f )(x) = lim
a→−∞
(Iαa+ f )(x), f ∈ L1loc(ℝ

−), (26a)

(Iα− f )(x) = lim
b→∞
(Iαb− f )(x) f ∈ L1loc(ℝ

+), (26b)

to locally integrable functions f : ℝ± → ℝ [49, 171, 145, 27]. Then Iα− f ∈ L
1([a, b]) for

0 < a < b and Iα+ f ∈ L
1([a, b]) for a < b < 0. As operators on Lp(ℝ±)with 1 ≤ p < ∞ the

domains are (see [137])

D(Iα±) = {f ∈ L
p(ℝ∓) : ∃ x<>0 s. t. (I

α
± f )(x) exists and I

α
± f ∈ L

p(ℝ∓)}. (27)

5 The notation for fractional integrals has varied over time. Leibniz, Lagrange and Liouville used the
symbol ∫α [123, 61, 130], Grünwald wrote ∫α[dxα]x=xx=a, while Riemann used 𝜕−αx [163], Most d−αa /dx

−α

[151], Krug
x
D
a
[116] and Weyl Jα [205]. The notation in (23a) is that of [171, 169, 79, 77]. Modern authors

also use fα [67], Iα [166], aIαx [27], I
α
x [39], aD

−α
x [145, 176, 156], or d−α/d(x − a)−α [157] instead of Iαa+.
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4.5 Convolution. For f ∈ L1(ℝ±) the Weyl fractional integral may be written as a
convolution

(Iα± f )(x) = (K
α
± ∗ f )(x) (28)

where the convolution kernels are defined as Kα
+ := K

α and Kα
− := SK

α with Kα defined
by extendingKn in equation (17) from n ∈ ℕ to α > 0. For α = 0 the definition isK0

+(x) =
K0
−(x) = δ(x) with the Dirac distribution at 0. The convolution is defined pointwise as

(f ∗ g)(x) =
∞

∫
−∞

f (x − y)g(y)dy resp. (f ∗ g)(x) =
x

∫
0

f (x − y)g(y)dy (29)

for functions on ℝ resp. ℝ+ for x ∈ ℝ+.
4.6 Riesz integrals. Let f ∈ L1loc(ℝ) be locally integrable. The conjugate Riesz frac-
tional integral of order α > 0 is defined as

(Ĩαf )(x) = 1
2Γ(α) sin(απ/2)

∞

∫
−∞

sgn(x − y)f (y)
|x − y|1−α

dy (30)

where α ̸= 2k, k ∈ ℤ. For α = 0 one sets (Ĩ0f )(x) = f (x). Riesz fractional integrationmay
be written as a convolution (Ĩαf )(x) = (K̃α ∗ f )(x) with K̃α(x) = Kα+(x)−Kα−(x)

2 sin(απ/2) for α ̸= 2k,
k ∈ ℤ, and Kα

± from equation (28). For more information see [27], [82, Sec. 2.2.5], [111,
Sec. 4.9] and Section 19.

5 Standard interpretations for derivatives
5.1 Riemann–Liouville Interpretation. Riemann [163, p. 341] and Liouville [130]
suggested to interpret fractional derivatives of order n + α −m with α > 0, n ≥ m

Dα−m+n ⋅ − Dn Im−α (31)

as derivatives of integer order n ≥ m of a fractional integral of orderm − α > 0.
5.2 Fractional derivatives. The Riemann–Liouville interpretation applies to all
fractional integrals in Section 4. It can be generalized to all α ∈ ℂ with Re α > 0 as

(Dα
a± f )(x) := (±1)

n dn

dxn
(In−αa± f )(x), (32a)

(Dα
± f )(x) := (±1)

n dn

dxn
(In−α± f )(x), (32b)

(Dα f )(x) := dn

dxn
(Ĩn−αf )(x) (32c)
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where n = ⌈Re α⌉ := min{k ∈ ℤ : k ≥ Re α} is the smallest integer larger than Re α.
These fractional derivatives are named after Riemann–Liouville, Weyl and Riesz, re-
spectively.6 Their domains D(Dα) = {f ∈ D(In−α) : ∃g ∈ D(Dn) s. t. g = In−α f }, where Dn

stands for dn/dxn, depend on those of Dn and In−α.
5.3 Grünwald–Letnikov. Interpretation. Already Liouville [129, p. 107] suggested to
interpret fractional derivatives

Dα ⋅ − Equation (20) (33)

as a limit of nth order finite difference quotientswith α ⋅ − n ∉ ℕ. The suggestionwas
later taken up in [62, 124, 125]. The Grünwald–Letnikov fractional derivative of order
α > 0 is defined as the limit

(GLDα
± f )(x) := lim

h→0+ 1
hα
(Δα±hf )(x) (34)

of fractional difference quotients whenever the limit exists. The Grünwald–Letnikov
fractional derivative is called pointwise or strong depending on whether the limit is
taken pointwise or in the norm. For periodic functions in C(ℝ/2πℤ) or Lp(ℝ/2πℤ)with
1 ≤ p < ∞ see [27], for non-periodic f see [171].
5.4 Marchaud–Hadamard. Interpretation. Marchaud’s idea is to interpret the frac-
tional derivative of order α > 0 directly

Dα ⋅ − I−α (35)

as a fractional integral of negative order −α by subtracting divergent parts [136, 65].
For f : ℝ → ℝ this leads to

(MHDα
± f )(x) =

α
Γ(1 − α)

∞

∫
0

f (x) − f (x ∓ y)
yα+1

dy (36)

and MHD0
± f = f . Marchaud–Hadamard derivatives have a larger domain of definition

than Riemann–Liouville derivatives. For the case of functions on bounded intervals
and for more details, see [171, 76, 111].

6 Generalized Riemann–Liouville interpretation
6.1 Interpretation. For n = m = 1 and 0 < α < 1 the interpretation (31) has been
generalized to fractional derivatives of order α

Dα,β ⋅ − Iβ(1−α) D I(1−β)(1−α) (37)

6 The notation is not standardized. Leibniz and Euler used dα [123, 122, 50] Riemann wrote 𝜕αx [163],
Liouville preferred dα/dxα [130], Grünwald used {dαf /dxα}x=xx=a or D

α[f ]x=xx=a [62], Marchaud wrote D(α)a ,
and Hardy–Littlewood used an index f α [67]. The notation in (32a) follows [171, 169, 79, 77]. Modern
authors also use I−α [166], I−αx [39], aDα

x [27, 145, 176], d
α/dxα [210, 176], dα/d(x−a)α [157] instead of Dα

a+.
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and type 0 ≤ β ≤ 1 in [77, p. 433]. Using equation (32) yields generalized Riemann–
Liouville, generalized Weyl, and generalized Riesz derivatives.
6.2 The type β of a fractional derivative allows to interpolate continuously from
Dα
a± = D

α,0
a± to D̃

α
a± = D

α,1
a±. The fractional derivative D̃

α
a± was introduced in [130, p. 10].

A relation between fractional derivatives of the same order but different types is found
in [77, p. 434]. An operational calculus for generalized Riemann–Liouville derivatives
was developed in [90].
6.3 Generalized Riemann–Liouville derivatives have been further generalized in
[207, 57, 102] and reformulated in [103]. They have found applications to telegraph-
type equations [173], ultra-hyperbolic equations [38], nonlinear analysis in weighted
spaces [55, 199], Ulam stability [198], functional differential inclusions [2], implicit dif-
ferential equations [1], thermodynamics [77] and dielectric spectroscopy [86].

7 Localized Riemann–Liouville interpretation

7.1 Interpretation. TheRiemann–Liouville derivatives Dα,β
a+ are nonlocal operators.

Localization interprets

(Dα,β f )(a) ⋅ − (Dα,β
a+ f )(a) or (Dα,β f )(x) ⋅ − (Dα,β

x− f )(x) (38)

as a limiting value at the boundary points of the interval (a, x).
7.2 For −∞ < x < ∞ the localized Riemann–Liouville fractional derivative of order
0 < α < 1 and type β is

dα,βf
dxα,β
(x) := lim

a→x
(Dα,β

a+ f )(x) = limb→x
(Dα,β

b− f )(x) (39)

whenever the two limits exist andare equal. Localized fractional differentiability at x is
related to regular variation at x [77]. Let f : ℝ+0 → ℝ

+
0 bemonotonously increasingwith

f (0) = 0 and such that (Dα,β
a+ f )(x) with 0 < α < 1 and 0 ≤ β ≤ 1 is also monotonously

increasing in [a, a + δ] for some a ≥ 0, δ > 0. Let Λ be slowly varying near a in the
sense of [179], let 0 ≤ λ < β(1−α) +α and C ≥ 0. Then regular variation of f near awith
index λ is equivalent to regular variation of Dα,β

a+ f near a with index λ − α [77, p. 438].
7.3 Localized fractional derivatives were introduced in [68, 69, 77] and immedi-
ately applied to the classification of phase transitions in [68–70, 72, 71, 77] (see also
Section 20). Later the localized interpretation was appropriated by [112], who claimed
inappropriately the absence of the lower limit.
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8 Convolution quotient interpretation

8.1 The restriction of Heaviside’s step function Θ with convention Θ(0) = 1 as de-
fined in equation (18) to ℝ+0 is the constant function Θ(x) = 1. Inserting f = g = Θ into
equation (29) shows (Θ ∗ Θ)(x) = x. Iterating yields

(Θ ∗ ⋅ ⋅ ⋅ ∗ Θ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n-times

)(x) = xn−1

(n − 1)!
= Kn−1(x), n ∈ ℕ, x ∈ ℝ+0 , (40)

with Kn from equation (17) for the nth convolution power of Θ. The convolution of Θ
with f ∈ C(ℝ+0)

(Θ ∗ f )(x) =
x

∫
0

f (y)dy (41)

is the operator of integration. It is treated as if it were a multiplication.
8.2 Interpretation. The operational calculus of convolution quotients is based on
interpreting fractional integration,

Iα f ⋅ − (Θ ∗ ⋅ ⋅ ⋅ ∗ Θ)f = Θnf , (42)

as an n-fold convolution product with Θ where α ⋅ − n ∉ ℕ.
8.3 Let (C(ℝ+0), +, ∗) denote the commutative ring (over ℂ) of complex-valued con-
tinuous functions f : ℝ+0 → ℂ with pointwise addition, pointwise multiplication with
numbers and convolution as in (29). Then Θ ∈ C(ℝ+0), and Euler’s first integral implies
the law of exponents Θα ∗ Θβ = Θα+β for Re α > 0, Re β > 0.
8.4 The commutative convolution ring C(ℝ+0) does not contain any divisors of zero,
because f ∗ g = 0 implies that either f = 0 or g = 0. The ring C(ℝ+0) can therefore be
extended to a field (Q(ℝ+0), +, ×) of convolution quotients in the same way as the ring
of integersℤ is extended to the field of rationalsℚ. The elements ofQ(ℝ+0) are ordered
pairs (f :g) of a convolution numerator f and a convolution denominator g ̸= 0 defined
such that

g ∗ (f :g) = f , g ̸= 0, (43)

holds. Addition, multiplication and multiplication of elements from the field Q(ℝ+0)
with numbers are defined as

(f :g) + (h :k) = (f ∗ k + g ∗ h :g ∗ k), (44a)
(f :g) × (h :k) = (f ∗ h :g ∗ k), (44b)

a(f :g) = (af :g), (44c)
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for f , g, h, k ∈ C(ℝ+0), g ̸= 0, k ̸= 0, a ∈ ℂ. Note that a(f : g) ̸= a × (f : g) where
a × (f :g) = aΘ × (f :g) = a(Θ ∗ f :g), i. e. multiplication with a number is not the same
as multiplication with a constant function in Q(ℝ+0).
8.5 The neutral element for multiplication δ = (Θ :Θ) acts like a Dirac δ-function.
This suggests an interpretation of convolution quotients as generalized functions. The
mappings

a 󳨃→ (aΘ :Θ), a ∈ ℂ, (45a)
f 󳨃→ (Θ ∗ f :Θ), f ∈ C(ℝ+0), (45b)

f 󳨃→ (Θ ∗ f :Θ), f ∈ L1loc(ℝ
+
0), (45c)

are embeddings of ℂ, C(ℝ+0) resp. L
1
loc(ℝ
+
0) into the field Q(ℝ

+
0).

8.6 The definition of fractional integration as convolution with Θα for Re α > 0 can
be extended also to all α ∈ ℂ with Re α < 0 as

Θα = (Θα+n :Θn) (46)

where n = −(⌊Re α⌋−1) is the smallest positive integer such that Re α+n > 1. For α = −1
one finds

D = Θ−1 = (Θ :Θ2) (47)

and this is interpreted as the differentiation operator D. The fractional derivative op-
erators are Dα = Θ−α with Θ0 = δ = D0, and they obey Dα Dβ = Dα+β.
8.7 The operational calculus in Q(ℝ+0) is called Mikusinski calculus [144, 208]. For
applications see [144, 48, 208, 60] and [133] in this handbook. An operational calculus
for generalized Riemann–Liouville derivatives was given in [90].

9 Distributional interpretation

9.1 Let f (x) ∈ Lp(𝕁), g ∈ Lq(𝕁) with 1/p + 1/q ≤ 1 + α, p, q ≥ 1 and p ̸= 1, q ̸= 1 for
1/p + 1/q = 1 + α. Fractional integration by parts

b

∫
a

f (x)(Iαa+ g)(x)dx =
b

∫
a

g(x)(Iαb− f )(x)dx (48)

can be used to extend fractional integrals to distributions, if g is viewed as a test func-
tion from a spacemapped to itself by Iαb−. Let C

∞
c (ℝ) denote the space of test functions,

i. e. smooth functions f : ℝ → ℝ with compact support. Its topological dual space
consisting of continuous linear forms u : C∞c (ℝ) → ℝ is the space of distributions,
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denoted𝒟󸀠(ℝ). Let𝒟󸀠+(ℝ) denote the set of distributions u such that there is an a ∈ ℝ
with supp u ⊂ [a,∞).
9.2 Interpretation. The distributional interpretation views differentiation

Dα u ⋅ − δ(n) ∗ u (49)

as convolution with the nth derivative δ(n) of the Dirac-δ when α ⋅ − n ∉ ℕ.
9.3 The distributional interpretation is based on the relations Dn Kn = δ and
DKn+1 = Kn for all n ∈ ℕ in the sense of distributions, and the fact that

Kα ∈ 𝒟󸀠(ℝ) and suppKα ⊂ ℝ+0 , (50a)

K−n = δ(n), (50b)

Kα ∗ Kβ = Kα+β, (50c)

hold true for all α, β ∈ ℂ and n ∈ ℕ ∪ {0}. As a result Iα0+ : 𝒟
󸀠
+(ℝ) → 𝒟󸀠+(ℝ) with

Iα0+ u = K
α ∗ u is a bounded linear operator on 𝒟󸀠+(ℝ) for all α ∈ ℂ. It fulfills additivity

Iα0+ I
β
0+ = I

α+β
0+ and I−α0+ = D

α
0+ [178, 58, 40].

10 Functional calculus interpretation
10.1 Interpretation. Let A : X → X be a closed operator (see Definition A.4) on a
Banach space X and A (σ(A)) an algebra of functions F : σ(A) → ℂ on the spectrum
of A. A functional calculus for A is interpreted as a mapping

A ∋ F 󳨃→ B ⋅ − F(A) ∈ 𝒞(X) (51)

that assigns to each F ∈ A a closed operator B : X → X interpreted as F(A) in such a
way that for B ⋅ − F(A) and C ⋅ − G(A) also B ∘ C ⋅ − (F ∘ G)(A).
10.2 The natural powers An from Paragraph 2.5 suffice to define polynomial or ra-
tional functions of A as examples. Let F(z) = ∑deg(F)k=0 akzk be a polynomial of degree
deg(F) with complex coefficients ak ∈ ℂ. Then the operator

F(A) :=
deg(F)
∑
k=0

ak A
k , D(F(A)) = D(Adeg(F)) (52)

is well defined. If ρ(A) ̸= 0, then F(A) is a closed operator for each polynomial F in
the polynomial ringℂ[z]. The spectral mapping theorem σ(F(A)) = F(σ(A)) holds. If a
bounded operator commutes with A, then it commutes also with F(A). The mapping
ℂ[z] ∋ F 󳨃→ F(A) is a functional calculus for polynomials.
10.3 Let F,G ∈ ℂ[z] be two polynomials and let G be such that its set of zeros
{λ ∈ ℂ : G(λ) = 0} ⊂ ρ(A) is contained in the resolvent set of A (see Definition A.5). The
rational function

h(A) := F(A)G(A)−1 (53)
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of A is well defined with domain

D(h(A)) = {
D(Adeg(F)−deg(G)), if deg(F) ≥ deg(G),
X otherwise.

(54)

Again h(A) is a closed operator. Its spectrum obeys h(σ(A)) ⊂ σ(h(A)) where

σ(A) = {
σ(A), if A is bounded,
σ(A) ∪ {∞} otherwise,

(55)

is the extended spectrum of A. The mapping h 󳨃→ h(A) is a rational calculus for linear
operators on X.

11 Spectral projection interpretation

11.1 In finite dimensional spaces X an operator A : X → X is a matrix. If it can be
transformed into diagonal form A = diag(λ1, . . . , λn), the eigenvalues λi appear on the
diagonal. The fractional power Aα is then defined as Aα = diag(λα1 , . . . , λ

α
n). This A

α has
the same eigenvectors as A, and, if λ is an eigenvalue of A, then λα is an eigenvalue
of Aα. The finite dimensional calculus is extended to Hilbert spaces using the spectral
theorem.
11.2 Let A : H → H denote a selfadjoint operator on a Hilbert space H with scalar
product (⋅, ⋅). Its domain is denoted D(A), its spectrum σ(A) and its spectral family Eλ.
Then

(Au, v) = ∫
σ(A)

λ d(Eλu, v) (56)

holds for all u, v ∈ D(A). The fractional power Aα is defined by

(Aα u, u) := ∫
σ(A)

λα d(Eλu, v) (57)

on the domain D(Aα) = {u ∈ H : (Aα u, u) < ∞}. Generally, for any Borel measurable
function g : σ(A) → ℂ the operator g(A) is defined by replacing the integrand in
equation (57) with g(λ). The mapping g 󳨃→ g(A) is sometimes referred to as spectral
calculus.
11.3 Fractional spectral calculus was studied in [127]. It was shown that the do-
mains D(Aα) form-accretive operators coincide with certain real interpolation spaces
constructed by the trace method.
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12 Cauchy integral interpretation

12.1 Interpretation. Let F : Ω → ℂ be a holomorphic function in an open domain
Ω ⊂ ℂ and let C : [0, 1] → Ω be a closed path inside Ω so that C (0) = C (1). Let a ∈ Ω
be a point in the interior of the region encircled by C . Then Cauchy’s integral formula

F(a) = 1
2πi
∫
C

F(z)
z − a

dz (58)

holds,where thepath is traversed counter clockwise. The interpretationF(a) ⋅ − F(A)
of the number F(a) as the operator F(A) is based on the interpretation

(z − a)−1 ⋅ − R(z,A) (59)

of the function (z − a)−1 as the resolvent operator of A at z defined in Definition A.5.
12.2 LetA ∈ ℬ(X)be aboundedoperator on aBanach spaceX such that its spectrum
σ(A) ⊂ Ω ⊂ ℂ is contained within an open set Ω. Let Hol(Ω) denote the algebra of
holomorphic functions F : Ω→ ℂ and define the mapping Φ : Hol(Ω) → ℬ(X) with

Φ(F) = F(A) := 1
2πi
∫
C

F(λ)R(λ,A)dλ (60)

by Cauchy’s integral. Here C is a path encircling the spectrum σ(A) of A in a positive
sense. Then Φ is characterized as the unique map satisfying:
(a) Φ is an algebraic homomorphism.
(b) If Pα are the functions Pα(z) = zα for α ∈ ℂ, then Φ(P0) = 1X and Φ(P1) = A.
(c) If a sequence Fn ∈ Hol(Ω) converges uniformly on compact sets to F ∈ Hol(Ω), then

Φ(Fn) → Φ(F) in ℬ(X).

The mapping Φ is called Riesz–Dunford calculus for bounded operators.
12.3 If the domain Ω of F is such that ℂ \ Ω ∩ σ(A) ̸= 0, then the contour integral
is singular. The problem can be overcome by finding a function g : Ωg → ℂ such that
ℂ\Ωg ∩σ(A) = 0 andℂ\Ωh∩σ(A) = 0where h = Fg−1, and such that equation (60) can
be used to define g(A) and h(A). Then F(A) is defined as F(A) := g(A)h(A). Examples
where g(z) = (1 + z)n is a polynomial can be found in [9, 138].
12.4 This Riesz–Dunford calculus for ℬ(X) can be generalized to sectorial opera-
tors [138]. Because sectorial operators (defined in Definition A.6) can have unbounded
spectra, the pathC , as a curve on the Riemann sphere, passes through the point at∞.
The function F therefore must decrease sufficiently rapidly at∞ for the Cauchy inte-
gral to make sense. Suitable functions F : 𝕊ϕ → ℂ on a sector 𝕊ϕ (see equation (103))
are those for which there exist C ≥ 0 and γ > 0 such that |F(z)| ≤ Cmin{|z|γ , |z|−γ} for
all z ∈ 𝕊ϕ. For such functions an operator F(A) ∈ 𝒞(X) can be defined by the Cauchy
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algorithm for a suitably restricted class of functions [5]. The complex powers defined
in this way coincide with the complex powers studied in [113].
12.5 The benefits of Cauchy integrals for fractional calculus were highlighted in
[116] and an incipient functional calculus for compact operators emerged from [54,
164, 206]. Later developments [192, 131, 41] were summarized in [42] (see also [170,
Chapter 10]). The application of Cauchy integrals to fractional powers of sectorial op-
erators was studied in [137].

13 Laplace transform interpretation

13.1 Interpretation. Let ℳ(ℝ+0) be the set of all complex Borel measures on ℝ+0.
The Laplace transform F := L {μ} of a measure μ ∈ℳ(ℝ+0) is

F(u) =
∞

∫
0

e−utdμ(t) (61)

for all u ∈ ℂwith Re u > 0. The interpretation F(a) ⋅ − F(−A) of the number F(a) ∈ ℂ
as an operator F(−A) is now based on the interpretation

e−at ⋅ − eAt ⋅ − T(t) (62)

of the function e−at as a semigroup T(t) = eAt with infinitesimal generator A.
13.2 Let X be a Banach space with norm ‖ ⋅ ‖. A one-parameter family of operators
{T(t)}t≥0 ⊂ ℬ(X) is called a bounded strongly continuous semigroup if
(a) T(t) ∈ ℬ(X) for all t ≥ 0 and sup{‖T(t)‖ : t ≥ 0} < ∞;
(b) T(0) = 1X and T(t)T(s) = T(t + s) for all t, s ≥ 0;
(c) limt→0+ ‖T(t)f − f ‖ = 0 for all f ∈ X.
The operator

A := lim
t→0+ T(t)f − ft

(63)

with D(A) = {f ∈ X: the limit (63) exists}, is called an infinitesimal generator of the
semigroup. Generators of strongly continuous semigroups are closed and densely de-
fined operators that uniquely determine T(t). Their spectrum lies in the left half plane
ℂ \ 𝕊π/2 [92, 28, 46].
13.3 Denote the set of Laplace transformations of measures fromℳ(ℝ+0) by

L {ℳ(ℝ+0)} := {F : 𝕊π/2 → ℂ | F = L {μ} for some μ ∈ℳ(ℝ+0)} (64)
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and let A be the infinitesimal generator of a bounded strongly continuous semi-
group on X. If the function F ∈ Hol(σ(−A)) ∩ L {ℳ(ℝ+0)} corresponds to the measure
μ ∈ℳ(ℝ+0), then the bounded linear operator

f 󳨃→
∞

∫
0

T(t)f dμ(t), f ∈ X (65)

defined for all f ∈ X equals the operator F(−A) obtained from the extended Riesz–
Dunford calculus in Paragraph 12.4. It is written as F(−A) or Φ(μ) ∈ ℬ(X).
13.4 The triple (ℳ(ℝ+0), +, ∗) is an algebra with convolution of measures as multi-
plication. The triple (L {ℳ(ℝ+0)}, +, ⋅ ) is the corresponding function algebra by virtue
of the convolution theorem. The mapping

Φ : L {ℳ(ℝ+0)} → ℬ(X)
F 󳨃→ Φ(μ) = F(−A) (66)

with F(−A) from equation (65) is the unique map satisfying:
(a) Φ is an algebraic homomorphism;
(b) if Gz(λ) = (z − λ)−1 with Re z < 0, then Φ(Gz) = (z − A)−1 = R(z,A);
(c) if the sequence Fn corresponding to the sequence of measure μn converges weakly

to the limit F in L {ℳ(ℝ+0)}, then limn→∞ ‖Φ(Fn)f −Φ(F)f ‖ = 0 for all f ∈ X.

The mapping Φ is called generalized Hille–Phillips calculus. The Laplace transform
interpretation was developed originally for functions in [159, 92] and then extended
to distributions in [154, 203].
13.5 Rescaling themeasure μ as μ(⋅/s) or the semigroup T as T( ⋅ s)with a parameter
s > 0 gives a one-parameter family of bounded linear operators

Φs(μ) =
∞

∫
0

T(ts)dμ(t) =
∞

∫
0

T(t)dμ(t/s) (67a)

on X, which can be used to obtain several known interpretations of fractional powers
via integral representations. Let δx denote the Dirac measure at x ≥ 0 and D δx its
distributional derivative. Then

μ = δ0 󳨀→ Φs(μ) = 1X, (67b)
μ = Dn δ0 󳨀→ Φs(μ) = (−A)

n (67c)

for all s > 0 and n ∈ ℕ [204, Thm 2.5], while

μ = δ1 󳨀→ Φs(μ) = T(s) (67d)



64 | R. Hilfer

reproduces the semigroup for the rescaling parameter, and

μ = Θ(t)e−t arg sdt 󳨀→ Φ|s|(μ) = (s − A)
−1 = R(s,A) (67e)

yields its resolvent family for s ∈ ℂ and Re s > 0. The examples

μ = Dn(δ0 − δ1) 󳨀→ Φs(μ) = [1X −T(s)]
n
, (67f)

μ = Dn(δ0 − e
−tdt) 󳨀→ Φs(μ) = [1X −(1X −sA)

−1]
n
, (67g)

with n ∈ ℕ were studied in [188].
13.6 For a large set of so-called n-measures the fractional powers, when interpreted
as the limit

(−A)α := lim
ε→0

Cα,n

∞

∫
ε

s−α−1Φs(μ)ds, 0 < α < n, n ∈ ℕ, (68)

all define the same operator for a suitable constant Cα,n and a domain consisting of
all f ∈ X such that the limit exists [188]. Indeed equation (67f) for n = 1 and Cα,1 =
Γ(α)/Γ(1 − α) was used in [159] and for general n in [128] to define fractional powers.
Example (67g) was used in [114] for that purpose. Balakrishnan’s interpretation [10]

−(−A)α = sin(απ)
π

∞

∫
0

AR(s,A) sα−1ds (69a)

is obtained from equation (67f) using the integral representation

xα =
∞

∫
0

(1 − e−xy)μ(y)dy =
∞

∫
0

x
x + y

dν(y) (69b)

with μ(x) = αx−1−α/(Γ(1 − α)), ν(x) = sin(απ)xα−1/π and 0 < α < 1.

14 Integral transform interpretations
14.1 An interpretation based on the double Laplace (or Stieltjes) transforms applies
to functions f representable as f (λ) = ∫∞0 ∫

∞
0 eλze−ztdμ(t)dz for μ ∈ℳ(ℝ+0). It has been

studied in [93, 94] and is reviewed in [137, Ch. 4].
14.2 An interpretation using Fourier transforms instead of Laplace transforms has
been given in [118]. It goes beyond generators of strongly continuous semigroups and
considers also weak topologies. In this way it extends and unifies earlier approaches.
14.3 An interpretation in terms of Mellin transforms was developed in [161, 197]. It
is well suited for studying purely imaginary powers.
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15 Stochastic interpretation of α
15.1 A stochastic process (Xt)t ≥ 0 with state space ℝd is called a Lévy process if it
has stationary and independent increments, and if its sample paths are right continu-
ous and have left limits [18]. The process is completely determined by its characteristic
exponent ζ : ℝd → ℂ defined via the relation

E(eiXt ⋅k) = e−tζ (k), (70)

where E denotes the operation of taking expectation values and Xt ⋅ k the scalar
product. The characteristic exponent ζ is continuous and negative definite (see equa-
tion (104)). The characteristic exponent ζ contains all information about the process.
For example, the stochastic process is conservative if and only if ζ (0) = 0.
15.2 Interpretation. The stochastic interpretation identifies α from the behavior of
the function ζ near the origin as

α ⋅ − log gλ
log λ
, (71)

i. e. as the index of regular variation [104, 179]. Here

gλ := lim
|k|→∞

|ζ (λ|k|−1)|
|ζ (|k|−1)|

, (72)

provided the limit exists on a set of λ > 0 with positive measure.
15.3 The stochastic interpretation is the basis for many physical interpretations at
some mesoscopic scale. It is also the basis of stochastic differential (Langevin) equa-
tions and the continuous time random walk interpretation in Section 22. Its mathe-
matical origin is potential theory (see also Section 19). The positive hyperharmonic
functions for the Laplace equation are the excessive functions of the Brownian semi-
group, or, equivalently, the harmonic measures in potential theory are the hitting dis-
tributions for Brownian motion.
15.4 For diffusion with fractional Laplaceans the stochastic interpretation was pi-
oneered in [126, 23, 24, 51], for time fractional diffusion in [89]. The interpretation has
been generalized to Feller processes and pseudodifferential equations [100].

16 Geometric interpretation
16.1 Leibniz’ question “... sed quid est in Geometria?”7 from September 30th,
1695 seems unanswered to this day. Leibniz’ rule (8) has over centuries evolved into

7 “... but what is it in geometry?”.
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the basis for themodern geometric interpretation of derivatives as vectors and tensors
[33]. Themodern interpretation of D applies also in cases where the classical interpre-
tation of (D f )(x), as the slope of the tangent to the graph of f at x, fails [26, 119].
16.2 Iteration of Leibniz’ rule (8) yields Leibniz’ formula (3) forDn. Extending equa-
tion (3) from n ∈ ℕ to α ∈ ℂ leads to a binomial series [92]

Dα(fg) =
∞

∑
k=0
(
α
k
)(Dk f )(Dα−k g) (73)

where the generalized binomial coefficient is given in equation (5a). This formula ap-
pears already in [129, p. 117] and has been discussed in [158]. Because equation (73)
differs from equation (3) for α ̸= n, n ∈ ℕ, a geometrical interpretation of fractional
derivatives appears remote and difficult.
16.3 Notwithstanding the failure of Leibniz’ rule some authors proposed a “frac-
tional curl operator” [47] or “fractional vector calculus” [139]. Inspecting thedefinition
of curlα in [47, eq. (9)] reveals, however, that curl0 = 1 ̸= limα→0+ curlα rendering the
definition discontinuous at α = 0. More disturbingly there is no indication that the
curl of a vector field is a 2-form, i. e. a tensor of rank 2. Inspecting in turn the defini-
tions of fractional curl, divergence and gradient operators in [139, Sec. 3] reveals that
the “mixing measure” survives the limit α → 1, so that the definitions do not reduce
to their vector calculus counterpart in that limit.
16.4 There exist also publications [12, 37] that speak of “fractional differential
forms”. The proposed interpretation based on eq. (11) in [37] fails, because eq. (11)
in [37] is not defined for functions on ℝn if n ̸= 1. As a consequence, eq. (19) in [37,
p. 2006] lacks meaning.
16.5 Note that the localized Riemann–Liouville derivative dα,βf (x)/dxα,β has a cer-
tain geometrical interpretation. For 0 < α < 1 it approximates f at x by a cusp instead
of a straight line. The slope of the tangent at x corresponds to the “opening coeffi-
cient” of the cusp at x. The geometric interpretation was exploited for the generalized
Ehrenfest classification [68–70, 72, 71, 77] (see Section 20).

17 Type changing interpretation

17.1 Interpretation. An unusual mathematical interpretation of the fractional
derivative Dα,1

0+ of order α and type β = 1 [130, p. 10] [29, 30] has become popular in
the physics literature [184, eq. (22)] [34, eq. (34)] [32, eq. (2)]. It interprets fractional
differential equations of type β = 1

Dα,1
0+ f = g ⋅ − D f = D1−α,0

0+ g (74)
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as equations of type β = 0 with a second differential operator D entering the type-zero
equation.
17.2 To exhibit the unusual character consider Dα,1

0+ : X → Y as a linear operator
between two Banach spaces X, Y. Usually its domain D(Dα,1

0+) and its range R(D
α,1
0+) are

the spaces given in equation (95), namely

D(Dα,1
0+) := {f ∈ X : ∃ g ∈ Y s. t. (f , g) ∈ D

α,1
0+}, (75a)

R(Dα,1
0+) := {g ∈ Y : ∃ f ∈ X s. t. (f , g) ∈ D

α,1
0+}. (75b)

17.3 In [184, eq. (22)] or [34, eq. (34)], however, the authors interpret the operator
Dα,1
0+ : X → Y indirectly by the first order derivative D : X → Y and the fractional

Riemann–Liouville derivative D1−α,0
0+ : X → Y of order 1 − α and type β = 0. Indeed,

equation (74) suggests that the authors interpret Dα,1
0+ as having domain and range

given by

D(Dα,1
0+) := {f ∈ D(D) : ∃ g ∈ Y s. t. (D f , g) ∈ D

α,1
0+}, (76a)

R(Dα,1
0+) := {g ∈ D(D

1−α,0
0+ ) : ∃ f ∈ X s. t. (f ,D

1−α,0
0+ g) ∈ Dα,1

0+}, (76b)

which is puzzling. This unusual interpretation seems to restrict the domain without
any physical or mathematical motivation or justification.
17.4 In addition, as pointed out already in [82, p. 46], this interpretation gives rise
to an unusual form of the eigenvalue equation. Nevertheless this interpretation is
adopted by numerous authors in physics [14, 185, 174, 184, 143, 209, 43].

18 Physical interpretations
18.1 While mathematical interpretations of fractional derivatives and integrals
abound, physical interpretations are often questionable. Fundamental theories of
physics generally contain only integer order derivatives. This raises at least two fun-
damental questions discussed in [82]:
(a) Are mathematical models with fractional derivatives consistent with the funda-

mental laws and fundamental symmetries of nature?
(b) Can the fractional order α of differentiation be related to, or derived from, estab-

lished theories of physics?

A partially positive answer to question (a) is given in Sections 20 and 21. It suggests
the following definition.

Definition 2. A physical interpretation of a fractional derivative Dα or integral Iα is an
identification

α ⋅ − (x ←→ H) (77)
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of the fractional order α ∉ ℕ with a quantity x that can be related to (or computed
from) the energy H (Hamiltonian) of a physical system. A physical interpretation is
called tentative, if an establishedphenomenological but nonrigorous relation x ←→ H
exists that is supported by experimental or numerical evidence. Other interpretations
are called questionable.

18.2 Numerous physical interpretations have been attempted in the literature. The
reader might consult [76, 202, 108, 107, 196] for reviews and references reflecting their
evolution with time. Physical interpretations of fractional derivatives are significantly
more difficult than mathematical interpretations. Besides being well defined, a phys-
ical interpretation must not contradict established theory or experiment. Given such
fundamental constraints, surprisingly few proposed interpretationsmention, discuss
or contemplate the basic questions above.
18.3 Fractionalmodels that arise from reformulatingmodels without fractional op-
erators,will not be consideredhere. For examples, see [157, Ch. 10]. Also, questionable
physical interpretations will mostly be left out.
18.4 An example for a questionable interpretation is “fractional duality in electro-
magnetism” [47]. Equations (18) and (19) in [47]would seem tobe indirect conflictwith
electrodynamics and relativity theory, because the vectors appearing in them cannot
be vectors in the usual sense (see also Paragraph 16.3).
18.5 Consider next the “fractional time Schrödinger equation” [99, eq. (8)]. While
the Hamiltonian Ĥ in [99, eq. (8)] is a (non-dimensional) energy, the operator
(ih)α𝜕α/𝜕tα on the left hand side is a non-dimensional (energy)α instead. In other
words, the left hand side operator cannot be a physical interpretation of the right
hand side operator for α ̸= 1. The error can be traced to [153] where, curiously, also the
speed of light and the gravitational constant appear in a non-relativistic equation.
18.6 Similar problems appear in eq. (1.118) in [191, p. 39]. Using the notation of [191]
and inserting ρ = R30ρ

󸀠 and x = x󸀠/R0, y = y󸀠/R0, z = z󸀠/R0 into eq. (1.118) in [191,
p. 39], the left hand side has units of charge [C], while the right hand side has units of
[Cm3−D] where D ̸= 3. The same error appears in [191] (e. g. eq. (1.88)) and numerous
other publications.

19 Nonlocal interpretations

19.1 Fractional derivatives with respect to position are nonlocal operators. Local-
ity is a deep and well established fundamental principle of physics [190, 64, 82]. An
increasingnumber of publications “generalize” partial differential equations for phys-
ical phenomena by replacing the local Laplace operator Δ with a nonlocal fractional
power −(−Δ)α/2. The generalization is usually accompanied by postulating a “meso-
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scopic” stochastic process along the lines of Section 15. Independent experimental
evidence for this process is often absent.
19.2 Themathematical background for such generalizations is fractional potential
theory [166]. Let ϱ be a positive measure on ℝd that is absolutely continuous with re-
spect to the d-dimensional Lebesgue measure dx, and let ρ = dϱ/dx be its density
function ρ : ℝd → ℝ. Then for d ∈ ℕ, d > 2 the integral

Φϱ,d(x) = ∫
ℝd

dϱ(y)
|x − y|d−2

, x ∈ ℝd (78)

is called the potential of ϱ (or ρ) at x, because −ΦGϱ,3 is the specific potential energy
of gravitation (with units [J/kg]), if G ≈ 6.67 × 10−11 kg−1m3 s−2 is the gravitational
constant and ρ is the mass density.
19.3 Interpretation. Let Δd denote the Laplace operator in ℝd. The d-dimensional
Riesz integral Iα ρ (or Riesz derivative Dα ρ) of a density function ρ = dϱ/dx,

Iα ρ ⋅ − Γ((d − α)/2)
2απd/2Γ(α/2)

Φϱ,d+2−α ⋅ − (−Δd)−α/2 ρ − ⋅ D−α ρ, (79)

is interpreted as a Newtonian potential in d + 2 − α “fractional dimensions”, or as a
“fractional potential” in d dimensions [166]. The parameter range 0 < α < d/2 can be
analytically continued to all α ∈ ℂ with α ̸= ±(d + 2k), k ∈ ℕ ∪ {0}.
19.4 Many “generalized” partial differential equations are based on this nonlocal
interpretation and thus contain the fractional Dirichlet problem as a special case. The
fractional Dirichlet problem for a domain 𝔹(z,R) and fractional order 0 < α ≤ 2 is to
find a suitably regular function f : ℝd → ℝ obeying [84]

(−Δ)α/2f (x) = 0, x ∈ 𝔹(z,R), (80a)

f (x) = g(x), x ∈ ℝd \ 𝔹(z,R), (80b)

for suitably regular data g with

∫

ℝd\𝔹(z,R)

|g(x)|
1 + |x|d+α

< ∞. (81)

Here 𝔹(z,R) = {x ∈ ℝd : |x − z| < r} denotes a ball of radius R > 0 centered at
z ∈ ℝd. The solution of the fractional Riesz–Dirichlet problem is the fractional Poisson
integral [117]

f (x) =
Γ( d2 ) sin(

πα
2 )

π
d
2 +1

∫

ℝd\𝔹(z,R)

|R2 − |x − z|2|α/2

|R2 − |y − z|2|α/2 |x − y|d
g(y)ddy (82)

for x ∈ 𝔹(z,R). The solution reduces to the standard Poisson integral for α → 2. The
crucial difference between the cases α = 2 and α < 2 is the dimensionality of the
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domain of integration. Although it has been known for 80 years [165], the fractional
Poisson formula (82) seems to have escaped the attention of many contemporary au-
thors.
19.5 The problemwith equation (82) was pointed out in [82, 84]. While for α = 2 the
solutiondependsonly onvalues of g on theboundary, forα < 2 it dependsonall values
of g in an unbounded infinite exterior domain. For this reason the pioneers never ven-
tured into proposing physical interpretations of their generalized diffusion equations.
Indeed, Bochner cautions his readers explicitly, writing “Whether this might have a
physical interpretation, is not known to us.” [23, eq. (7)]. The nonlocality of −(−Δ)α/2

for α < 2 implies action at a distance and makes it impossible to isolate the physical
system from influences of the environment [82, 84]. The skeptical attitude of Bochner
remains adequate as long as action at a distance remains unproven in experiment.
19.6 Contrary to Bochner’s skepticism towards physical interpretations, it is
claimed in “fractional quantum mechanics” [120, eq. (3), eq. (7)] that α is a “fun-
damental [sic!] parameter in standard quantum and classical mechanics”. In other
words, page 395 in [120] claims that physical interpretation is no problem at all. The
exponent α is interpreted in [120] along the lines of Section 15 as α ⋅ − dLevyfractal, the
fractal dimension of random paths. But Feynman paths are neither basic nor needed
in “standard” quantum and classical mechanics. They have yet to be observed in ex-
periment. Similarly, in mathematics a joint spectral measure for two non-commuting
physical observables is yet to be derived.
19.7 On top of postulating a new parameter α for quantum physics, a second fun-
damental constant Dα with strange dimensions is also postulated in [120]. The ad hoc
postulate of α necessitates the introduction of Dα as a fundamental constant of na-
ture, above and beyond Planck’s constant. But it is unclear how to observe, measure
or interpret the fractional constant Dα in experiment.
19.8 Finally, there has been some debate whether the eigenvalues and eigenfunc-
tions for infinite potential wells published by numerous authors are valid or not [101,
132]. Besides such problems with technical aspects, the physical interpretation sug-
gested in [120] currently has no derivation from a Hamiltonian, no phenomenological
basis in theoretical physics, and no experimental support.

20 Thermodynamic interpretation

20.1 A genuine physical interpretation of fractional derivatives in the sense of Defi-
nition 2was established in thermodynamics [68, 69]. Fractional derivatives of thermo-
dynamic potentials permit a generalization of Ehrenfest’s classification scheme [44]
for thermodynamic phase transitions.
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20.2 Interpretation. The fractional order α is interpreted as the generalized Ehren-
fest order of a thermodynamic phase transition,

α ⋅ − 2 − φ1, (83)

where φ1 = maxi{φi} is the largest thermodynamic fluctuation exponent.
20.3 The thermodynamic fluctuation exponents characterize a thermodynamic
system in the vicinity of a phase transition [189, 66, 52]. The exponents form a par-
tially ordered set. Its maximum, denoted asφ1, characterizes fluctuations of the order
parameter [200, 160]. For a liquid–gas system the maximal fluctuation exponent is
related by

δ = 1
1 − φ1

(84)

to the equation of state exponent δ. In this way α is directly given by the equation of
state of the physical system.
20.4 Thermodynamic equations of state are measurable experimentally [8]. Theo-
retically they follow from thermodynamic potentials [59]. Thermodynamic potentials
are in turn obtained from the Hamiltonian H of the physical system via the basic for-
mula U = ⟨H⟩ for the thermodynamic internal energy U . Here the expectation value
map ⟨ ⋅ ⟩ : A → ℝ+ is a continuous, positive and normalized linear functional on
the C*-algebra of observables of the physical system [64]. For given (inverse) temper-
ature β ∈ ℝ+ it can be defined for all A,B ∈ A , t ∈ ℝ by the KMS-condition [26]
⟨(T tA)B⟩ = ⟨B(T t+iβA)⟩ where the map Tz : A → A , z ∈ ℂ is defined as TzA =
exp(iHz)A exp(−iHz) for all A ∈ A . The KMS-characterization links Hamiltonian me-
chanics, equilibrium statistical mechanics and thermodynamics with each other.
20.5 Localized fractional derivatives with respect to the field h conjugate to the or-
der parameter of the phase transition appear in the fractional Clausius–Clapeyron
equation in [77, p. 458f]. Examples are derivatives of order α = 4/3 for mean-field the-
ory, of order α = 16/15 for the two-dimensional Ising model, or α = 2d/(d + 2) for the
spherical model in 2 < d < 4 dimensions. Numerical examples are derivatives of order
α ≈ 1.208 for the three-dimensional Isingmodel or α ≈ 1.216 for the three-dimensional
Heisenberg model.
20.6 The classification of phase transitions and the thermodynamic interpretation
of α as α ⋅ − 1 + (1/δ)was introduced in [68] and further developed in [69, 70, 72, 71,
77]. It has subsequently been extended to topological pressure functionals for dynam-
ical systems in [172].

21 Classification of long time limits
21.1 This section gives a partial answer to question (a) in Section 18. The classifi-
cation of limits is a physical interpretation in the sense that it gives a general bound
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0 < α < 1 on α, and links α to a subset of measure zero of the microscopic state or
phase space of a physical system. It does not establish a direct link with the Hamilto-
nian. Instead, the classification provides amathematical framework for the concept of
local equilibrium in nonequilibrium statistical physics. This answers a fundamental
question formulated in [187, Sec. 2.4, p. 25].
21.2 Mathematically, the problem studied is that of induced automorphisms on
subsets of measure zero in ergodic theory [36]. Given the transition map T : X → X
of a dynamical system between any two time instants t0 < t1 ∈ ℝ its iterates Tkf ,
k ∈ ℕ, f ∈ X represent the state of the system on the arithmetic progression of time
instants

𝔸 = {t0 + kτ : k ∈ ℕ} ⊂ ℝ (85)

where τ = t1 − t0 > 0 and t0 is the initial instant. The classification arises from inves-
tigating the induced automorphism TY : Y → Y induced by T for k → ∞ on a subset
Y ⊂ X of small or zero measure. Its iterates TNY represent the state of the system on the
arithmetic progression of time instants

𝔸 = {Nt0 + kτ : k ∈ ℕ,N ∈ ℕ} (86)

for large k →∞. The classification emerges from the limit N →∞while rescaling the
time axis.
21.3 The result of taking the limit and rescaling the timeaxis yields aone-parameter
family of semigroups,

Tα(t) = Φt(μα), t ≥ 0, (87a)

of the form of equation (67) with parameter 0 < α ≤ 1. The probability measure dμα =
hα(t)dt has the density function

hα(x) =
{{{
{{{
{

0 for x ≤ 0,

1
x

∞

∑
j=0

(−1)jx−αj

j! Γ(−αj)
for x > 0,

(87b)

with respect to Lebesgue measure. The semigroups Tα arise from subordination [167,
24] with a stable subordinator [208, Sec. IX.11]. Concrete examples are given in Sec-
tions 22 and 23.
21.4 Originally, the classificationof long time limits emerged from the classification
of phase transitions of Section 20. The main result (87) was described in [71, Sec. V].
Equation (87) was initially obtained for classical systems in [75, 74]. It was then re-
derived by interpreting convolution as time averaging in [79].
21.5 The inequality t ≥ 0 in (87a) reflects the irreversibility of time. The result t ≥ 0
provides “a general and model-independent mechanism for the origin of macroscopic
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time irreversibility” [75] as well as additional “insight into the longstanding irreversibil-
ity paradox” [74, p. 544]. This insight was enunciated as the “reversed irreversibility
problem,” introduced and solved in [81, 83]. The “reversed irreversibility problem” is
the problem to explain the abundance of reversible equations in theortical physics
given that time evolution is always irreversible in experiment [81, p. 235], [83, 85].
21.6 Ergodicity breaking understood as “invariance breaking” or “stationarity
breaking” was introduced in [75, 74]. The phenomenon was called “fractional er-
godicity” in [75] or “fractional stationarity” in [74], and it emerges spontaneously from
the dynamics. Its relevance for aging phenomena in glasses and other systems has
long been appreciated [135, 45, 4, 6, 186, 25, 80, 141, 86].
21.7 More recently, the basic result (87) has been generalized to quantum systems
[85, 86, 88]. The invariance breaking expressed by equation (87) resolves the funda-
mental puzzle [187, Sec. 2.4, p. 25] of local equilibrium in nonequilibrium statistical
physics.

22 CTRW interpretation

22.1 The continuous time random walk (CTRW) interpretation, discovered in [71,
89, 73], emerged from the classification of long time limits (Section 21) and the stochas-
tic process interpretation (Section 11). It illustrates and exemplifies equation (87) for
the case of master equations and Fokker–Planck equations [56].
22.2 Continuous time random walks are parametrized by a waiting time density
ψ : ℝ+0 → ℝ

+
0 and a transition probability λ : Ω × Ω → [0, 1] for transitions between

two states in a set of states Ω. The integral equation for CTRWs reads

p(z, t) = δzz0Φ(t) +
t

∫
0

ψ(t − s) ∑
z󸀠∈Ω λ(z, z󸀠)p(z󸀠, s)ds, (88)

where z, z0 ∈ Ω, t ≥ 0, Φ(t) = 1 − ∫
t
0 ψ(s)ds, and p(z, t) is the probability to be in state

z at time t if the walker started from state z0 at time 0.
22.3 It was shown in [89] that equation (88) is exactly equivalent to the fractional
master equation

Dα,1
0+ p(z, t) = ∑

z󸀠 w(z, z󸀠)p(z󸀠, t), p(z,0) = δzz0 , (89)

for all t ≥ 0, if and only if λ = 1 + ταw and ψ = ψα/τ holds true. Here

ψα(
t
τ
) = (

t
τ
)
α−1

Eα,α(−
tα

τα
) =

1
t

∞

∑
k=0

(−t/τ)α(k+1)

Γ(α(k + 1))
, (90)
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τ > 0 is a time constant,w : Ω×Ω→ ℝ are the transition rates between two states [56],
and Eα,α denotes the generalized Mittag-Leffler function [97, 3, 98, 181]. For α→ 1 one
has ψ1(x) = ex and the result was known since [21]. Recently, the result was extended
to composite CTRWs [87], where a binomial Mittag-Leffler function (from [90]) appears
for the waiting time density ψ.
22.4 Interpretation. The CTRW interpretation

α in equation (89) ⋅ − parameter α in equation (90) (91)

holds that the fractional order is the parameter of the waiting time density.
22.5 Continuous time random walks were introduced by Montroll and cowork-
ers into solid-state, chemical and statistical physics as an idealization on a meso-
scopic level of description [149, 148, 150, 211, 201, 95]. They were later studied also in
mathematics [140, 20, 19] and have found applications to exciton trapping [146, 152],
β󸀠󸀠-alumina superionic conductors [91], organic photoconductors [17], dielectric relax-
ation [147, 22], turbulent plasmas [13], semiconductors [121], electron transport in non-
crystalline electrodes [155], or transient photocurrents in amorphous solids [175], to
name but a few.
22.6 The fractional master equation for continuous time random walks was intro-
duced only much later in [89]. Contrary to the presentation in [184, p. 50f] there is no
mention of fractional derivatives in [11] and no mention of CTRWs in [177]. Although
the relation between continuous time random walks and generalized master equa-
tions [105, 21], as well as the asymptotic Fourier–Laplace solution [195, eq. (21), p. 402]
[182, eq. (23), p. 505] [106, eq. (29), p. 3083] were known, the connection to fractional
master equations and fractional diffusion had been overlooked.

23 Anomalous diffusion interpretation
23.1 The CTRW interpretation “plays a particularly important role in the theory of
fractal time processes by virtue of its universality [71, 75]” as emphasized in [73]. For
lattice walks with lattice constant σ > 0, where Ω = σℤd, the CTRW interpretation
leads asymptotically to the fractional diffusion equation

Dα,1
0+ p(r, t) = Cα Δp(r, t), p(r,0) = δrr0 , (92)

for anywaiting time densityψ from the class of regularly varying functions with index
0 < α ≤ 1 (see Definition A.8 for the definition). The term ‘asymptotically’ means that
position r and time t are rescaled in a suitable way. Equivalently, the limits σ → 0,
τ → 0 are taken such that

σ2

2τα
σ→0
󳨀󳨀󳨀󳨀󳨀󳨀󳨀→

τ→0
Cα (93)

is the fractional diffusion constant Cα in (92) (see [73, 80], [79, Sec. 3.4]).
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23.2 Interpretation. The anomalous diffusion interpretation holds that

α in equation (92) ⋅ − index of regular variation of ψ in equation (88) (94a)

or, equivalently,

α ⋅ − 1 + 1
log b

log( lim
t→∞

ψ(bt)
ψ(t)
) (94b)

whereb > 0 is arbitrary as long as the limit exists formore than countablymany values
of b.
23.3 Note that Proposition A “p(r, t) satisfies a fractional diffusion equation” and
Proposition B “p(r, t) is the solution of a CTRW with long time tail” are not equiva-
lent [80]. Some claims in this direction are too general [35, 184, 142, 15] and some
comments in [16] are invalid. The simultaneous limits σ → 0, τ → 0 can and must
be taken in various ways to explore the different asymptotic regions in the parame-
ter space of a given lattice CTRW-model [80]. Note that [80, eq. (22)] does not imply
p(r, t) = 0. As referenced in [80, p. 38f] it is well known [18, p. 202] that whenever a
sequenceϕn(k) of characteristic functions converges pointwise to some functionϕ(k)
for all k, then the following propositions are equivalent: (a) ϕ(k) is the characteristic
function of some random variable, (b) ϕ(k) is a continuous function of k, (c) ϕ(k) is
continuous at k = 0.
23.4 The fundamental solutions for the integral formulation of equation (92) were
studied in [177, 109, 110]. In [73, Table 1] their stretched Gaussian asymptotic behav-
ior, their cusp at the origin and their relation with CTRWs were found. Fundamental
solutions for equation (92) with arbitrary types 0 ≤ β ≤ 1 are given in [79, Sec. 3.3].
Fractional diffusions of type β ̸= 1 are not expected to arise asymptotically from a
CTRW-model, because they do not have a probabilistic interpretation (see [78] and
[79, Sec. p. 116ff]).
23.5 The continuous time random walk interpretation and the anomalous diffu-
sion interpretation of α, in equation (94) are tentative in the sense of Definition 2.
Theoretical arguments for continuous time random walks [211] fall short of a rigorous
derivation from the Hamiltonian of a physical system.While there is some experimen-
tal support (see Paragraph 22.5), the waiting time density ψ remains a hypothetical
mesoscopic quantity. It is difficult to measure ψ directly in an experiment.

Appendix A
A.1 Let X, Y, Z be Banach spaces. A linear operator A : X→ Y is a linear subspace of
the direct sum X ⊕ Y. The domain D(A), range R(A) and kernel (or null space) N(A) of a
linear operator A are

D(A) := {f ∈ X : ∃ g ∈ Y s. t. (f , g) ∈ A}, (95a)
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R(A) := {g ∈ Y : ∃ f ∈ X s. t. (f , g) ∈ A}, (95b)

N(A) := {f ∈ X : (f ,0) ∈ A}, (95c)

and A is called injective if N(A) = 0 and surjective if R(A) = Y. The set of all linear
operators from X to Y is denoted𝒜(X, Y) and𝒜(X,X) = 𝒜(X) for short.
A.2 For λ ∈ ℂ the scalar multiple λ A and the inverse A−1 of A are defined as

λ A := {(f , λg) ∈ X ⊕ Y : (f , g) ∈ A}, D(λ A) = D(A) (96)

A−1 := {(g, f ) ∈ Y ⊕ X : (f , g) ∈ A}, D(A−1) = R(A). (97)

For A,B ∈ X ⊕ Y their sum is defined as

A + B = {(f , g + h) ∈ X ⊕ Y : (f , g) ∈ A, (g, h) ∈ B} (98)

with D(A+B) = D(A) ∩ D(B). For A ∈ X ⊕ Y, B ∈ Y ⊕ Z the composition B ∘A : X → Z is
the linear operator defined as

B ∘A := {(f , h) ∈ X ⊕ Z : ∃g ∈ Y s. t. (f , g) ∈ A and (g, h) ∈ B} (99)

with D(B ∘A) = {f ∈ D(A) : ∃g ∈ D(B) s. t. (f , g) ∈ A}. The identity operator 1 : X → X is
defined as

1 := {(f , f ) : f ∈ X} (100)

and its scalar multiples will be abbreviated as λ 1 = λ.
A.3 An operator A is called continuous if there exists a constant c ≥ 0 such that
‖A f ‖ ≤ c‖f ‖ for all f ∈ D(A). An operatorA : X→ Y is calledbounded, if it is continuous
and D(A) = X. The set of all bounded linear operators from X to Y is denoted ℬ(X, Y)
and ℬ(X) := ℬ(X,X) for short.
A.4 An operator A : X → X is called closed if its graph {(f ,A f ) : f ∈ D(A)} is a
closed subspace in X ⊕ X. Equivalently, if its domain D(A) endowed with the graph
norm ‖f ‖A := ‖f ‖+‖A f ‖ is a Banach space. The set of closed operators is denoted 𝒞(X).
A.5 For a linear operator A : X→ X the set

ρ(A) := {λ ∈ ℂ : (λ − A)−1 ∈ ℬ(X)} (101)

is called the resolvent set and σ(A) := ℂ \ ρ(A) spectrum of A. The operator

R(λ,A) := (λ − A)−1 (102)

is called the resolvent operator at λ.
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A.6 An operator A is called non-negative if ℝ− is contained in its resolvent set and
‖λ(λ+A)−1‖ ≤ M for 0 < λ < ∞ [115]. An operatorA is called positive if it is non-negative
and 0 ∈ ρ(A). Let

𝕊θ := {z ∈ ℂ : z ̸= 0, |arg z| < θ} (103)

denote a sector of angle θ in the complex plane and 𝕊θ its closure. An operator A is
called sectorial of angle θ < π if σ(A) ⊂ 𝕊θ and sup{‖λR(λ,A)‖ : λ ∉ 𝕊θ󸀠 } < ∞ for all
θ < θ󸀠 < π.
A.7 A function f : ℝn → ℂ is called negative definite, if

n
∑
i,j=1
(f (xi) + f (xj) − f (xi + xj))cicj ≥ 0 (104)

for all x1, . . . , xn ∈ ℝn and c1, . . . , cn ∈ ℂ [24].
A.8 A measurable function f : ℝ+0 → ℝ

+
0 is said to vary regularly at infinity with

index α, if

lim
x→∞

f (bx)
f (x)
= bα (105)

for all b > 0 [179]. For this to hold true it suffices that the limit exists on a set of bwith
positive measure.
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