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Abstract

We compare the quantitative microstructural properties of Berea Sandstone with stochastic
reconstructions of the same sandstone. The comparison is based on local porosity theory. The
reconstructions employ Fourier space �ltering of Gaussian random �elds and match the average
porosity and two-point correlation function of the experimental model. Connectivity properties
of the stochastic models di�er signi�cantly from the experimental model. Reconstruction models
with di�erent levels of coarse graining also show di�erent average local connectivity. c© 1999
Elsevier Science B.V. All rights reserved.

1. Introduction

Recently, a number of stochastic models have been proposed for reconstruction of
the microstructure of porous media (see [1,2] and references therein). To assess the
quality of the reconstruction, it is neccessary to have quantitative methods of com-
parison for such microstructures. General geometric characterization methods normally
include porosities, speci�c surface areas and correlation functions [4]. Here we fol-
low a more general quantitative characterization for stochastic microstructures which is
based on local porosity theory (LPT) [3,4]. Our analysis allows to distinguish quantita-
tively between three di�erent microstructures all of which have identical porosities and
correlation functions. The three microstructures are an experimental sample of Berea
Sandstone obtained by computerized microtomography and two stochastic models of
the same sandstone obtained through the Gaussian �ltering method [1].
Consider a three-dimensional sample S=P∪M (with P∩M=∅) where P is the pore

space, M is the rock or mineral matrix. ∅ denotes is the empty set. The porosity �(S)
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of such a two component porous medium is de�ned as the ratio �(S) = V (P)=V (S)
where V (P) denotes the volume of the pore space, and V (S) is the total sample
volume. For the sample data analysed here the set S is a cube with sidelength M in
units of the lattice constant a of a simple cubic lattice. Let K(r; L) denote a cube of
sidelength L centered at the lattice vector r. The set K(r; L) de�nes a measurement cell
inside of which local geometric properties such as porosity and pore space connectivity
are measured [3–5]. The local porosity in this measurement cell K(r; L) is de�ned
as �(r; L) = [V (P ∩K(r; L))]=[V (K(r; L))]. The local porosity distribution �(�; L) is
de�ned as �(�; L)=1=m

∑
r �(�−�(r; L)), where m is the number of placements of the

measurement cell K(r; L). For better statistics the results presented here are obtained
by placing K(r; L) on all lattice sites r which are at least a distance L=2 from the
boundary of S. The local percolation probabilities characterize the connectivity of
measurement cells of a given local porosity. Let ��(r; L) equal 1 if K(r; L) percolates
in “�” direction and 0 otherwise, be an indicator for percolation. A cell K(r; L) is
called “percolating in the x-direction” if there exists a path inside the set P∩K(r; L)
connecting those two faces of S that are vertical to the x-axis. Similarly for the other
directions. �3 = 1 indicates that the cell can be traversed along all three directions,
while �c = 1 indicates that there exists at least one direction along which the block
is percolating. The local percolation probability in the “�”-direction is de�ned through
��(�; L) = [

∑
r ��(r; L)���(r; L)]=[

∑
r ���(r; L)] and gives the fraction of measurement

cells of size L having porosity � that are percolating in the “�”-direction. The total
fraction of percolating cells which percolate along the “�”-direction is given by p�(L)=∫ 1
0 �(�; L)��(�; L) d�.
The Gaussian �eld (GF) reconstruction model [1] generates a random pore space

con�guration with inputs from a given experimental sample. Given the reference cor-
relation function GEX(r) and porosity �(SEX) of the experimental sample, the three
main steps of constructing the sample SGF with correlation function GGF(r) =GEX(r)
and porosity �(SGF) = �(SEX) are as follows:
1. A standard Gaussian �eld X (r) is generated which consists of statistically inde-

pendent Gaussian random variables X ∈ R at each lattice point r.
2. The �eld X (r) is �rst passed through a linear �lter which produces a correlated

Gausssian �eld Y (r) with zero mean and unit variance.
3. The correlated �eld Y (r) is then passed through a nonlinear discretization �lter

which produces the reconstructed sample SGF.
For the process described in step 2, we have followed an alternate and compu-

tationally more e�cient method proposed in Ref. [1] that uses Fourier transforms.
An e�ective reconstruction requires a large separation � EX.M where M is the side-
length(in pixels) of the sample and � EX is the correlation length of the experimental
reference, de�ned as the length such that GEX(r) ≈ 0 for r ¿� EX. Violation of this
condition leads to inaccuracy in the implementation of step 2 of the reconstruction,
which in turn leads to a discrepancy at small r between GGF(r) and GEX(r). This
problem can be overcome by choosing large M . However, in d=3 very large M also
demands prohibitively large memory. Apart from this, the reconstruction also depends
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Fig. 1. Averaged directional correlation functions of all three models.

Fig. 2. ��(�; L) (broken curves, left axis) and �(�; L)(solid curve, right axis) at L= 200�m for the model
EX. The inset shows the function p�(L), � is given in the legend.

crucially on two other parameters, a length Mc up to which the experimental correlation
is incorporated into the reconstructed sample, and n, an interval at which the GEX(r)
is sampled. For better reconstruction GEX(Mc) needs to be negligibly small. Di�erent
values of n correspond to a change of length scale. The model BR1 is constructed with
n= 1 and BR2 with n= 2. Although both have the same sidelength, the e�ective size
of BR2 is twice that of BR1 because of this coarse graining procedure.
In Fig. 1 the averaged correlation functions G(r)=(G(r; 0; 0)+G(0; r; 0)+G(0; 0; r))=3

for the three samples are plotted. The experimental sample is a Berea sandstone of
porosity �(SEX) = 0:1775 [5]. The model BR1, with M = 128; n = 1 and Mc = 32,
shows descrepancies for small values of r. However, for BR2, with M=128, n=2 and
Mc = 32, the correlation function matches more closely to that of EX. The resolution
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Fig. 3. ��(�; L) (broken curves, left axis) and �(�; L)(solid curve, right axis) at L= 200�m for the model
BR1. The inset shows the functions p�(L), � is given in the legend.

Fig. 4. ��(�; L) (broken curves, left axis) and �(�; L)(solid curve, right axis) at L= 200�m for the model
BR2. The inset shows the functions p�(L), � is given in the legend.

a of the experimental sample EX is 10�m. Hence the actual size of EX and BR1 is
1280�m, whereas that of BR2 is 2560�m. The porosities match quite well for all the
samples (�(SBR1) = 0:1783 and �(SBR2) = 0:1776).
The reconstructed models BR1 and BR2 are isotropic and globally connected, i.e.,

the pore spaces percolate in all the three directions. The local porosity analysis re-
sults are plotted in Fig. 2 for the experimental sample EX, in Fig. 3 for the stochastic
model BR1, and in Fig. 4 for BR2. Comparison of �(�; L) indicates that the stochas-
tic models have nearly the same level of homogeneity with that of the experimental
sample. The main di�erences are found in ��(�; L) of the stochastic models. They
di�er signi�cantly from that of EX, and they also vary widely among themselves. The
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Fig. 5. p3(L) for the three samples.

reconstructed models have lower average connectivity of pore spaces. We
observe [��(�; L)]EX¿ [��(�; L)]BR1¿ [��(�; L)]BR2. These di�erences appear even
more clearly in the plot of p�(L) (inset of Figs. 2–4). In the experimental model (Fig.
2) nearly all the measurement cells of dimension larger than 400�m are percolating
(globally connected pore space) in all directions. Comparison of p3(L) of the three
models (Fig. 5) shows the drastic loss of average connectivity of the reconstructed
models. Fig. 5 shows that the GF reconstruction BR1 with n= 1 has a lower connec-
tivity than EX. In BR1 nearly 60% of the measurement cells of size 400�m percolate
in all directions. Coarse graining [1] to n= 2 further reduces the connectivity of pore
space. In BR2 less than 30% of the measurement cells of size 400�m percolate in all
directions. These results indicate that Gaussian �ltering reconstruction methods retain
a similar degree of isotropy and homogeneity as the original sandstone but tend not to
reproduce connectivity properties that are important for transport.
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