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Abstract. Macroscopic capillarity. or macrocapillarity for short, refers to capillary phenomena oc-
curring during twophase and multiphase flow in porous media. Wetting phenomena and hysteresis
in porous media are at present poorly understood in the sense that neither in physics nor in engi-
neering a fully predictive theory seems to exist, that can describe or predict all observations. This
paper extends the consitutive assumptions of a recent approach based on the concept of hydraulic
percolation of fluid phases. The theory proposed here allows prediction of residual saturations. It
can describe displacement processes in which imbibition and drainage occur simultaneously. This
contrasts with the established traditional theory where capillary forces are lumped into capillary
pressure function and relative permeabilities, and these functions need to be specified for each dis-
placement process as input. Contrary to the traditional theory the approach advanced here allows to
predict capillary pressure saturation relations as output.
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INTRODUCTION

A predictive macroscopic theory of two phase fluid flow inside a rigid porous medium is
a longstanding and unsolved problem in statistical and computational physics of fluids,
soft matter, and disordered systems [1, 2, 3, 4, 5, 6]. Describing and predicting the flow
of two immiscible and incompressible fluids through a complex disordered geometry is
not only of interest for statistical physics, but also of significant practical importance
for many applied sciences such as hydrology, petroleum engineering and other applied
fields [7, 8, 9, 10].

Many authors have proposed microscopic models (e.g. network models) to predict
macroscopic immiscible displacement in porous media. An important motivation for
these investigations are the longstanding unsolved problems with the traditional macro-
scopic equations that are based on the concepts of capillary pressure and relative perme-
abilities (see e.g. [7, 9]). In particular, one fundamental problem is the nonuniqueness
of the capillary pressure as function of saturation. Other problems with the capillary
pressure are its hysteresis, process dependence and dynamic effects such as dependence
on velocities or rates of saturation change. Residual saturations are not constant param-
eters as it is assumed in the traditional macroscopic theory. Experimental observations
show instead that residual saturations vary as functions of position and time. Most prac-
titioners ignore these problems and continue to use the traditional set of equations, and
many physicists are following their lead by calculating effective relative permeabilities
pertaining to the traditional theory.

Droplets or ganglia of one fluid phase hinder the flow of the other fluid phase.
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Experimental observations of this basic phenomenon abound [11, 12, 13, 14, 15, 16, 17,
18]. It is therefore surprising that the importance of hydraulic percolation for theoretical
modeling of two phase flow seems to have remained unnoticed until recently [19, 20,
21,22,23, 24, 25].

Given that a basic constitutive approach to hydraulic percolation for macroscopic
capillarity has been presented in [22, 23, 24] my objective in this paper is to extend that
basic approach towards a more realistic description. Let me begin the discussion with
the mathematical ingredients of the hydraulic percolation approach. One ingredient is
the introduction of four phases instead of two, a second are balance laws for volume
mass and momentum, and the third are the constitutive assumptions. It is the third
ingredient where extensions and modifications of the assumptions in [22, 23, 24] will
be made. An extensive discussion of the modified constitutive assumptions as well as
their consequences and comparison to previous theories cannot be presented due to the
page limit. More details will be given elsewhere.

DEFINITION OF PHASES

A porous sample S = (PUM) C R? consists of a subset P (called pore space) and a
subset M (called matrix). The pore space P contains two immiscible fluids, namely a
wetting fluid, called water and denoted as W, plus a nonwetting fluid, called oil and
denoted as O.

Each of the two fluids W, O consists of disjoint and pathconnected subsets (regions)
W;,0;. More precisely one has

Nyy

wo= JW; (1a)
i=1
No

0 = |Jo; (1b)
i=1

where the subsets W; @; are mutually disjoint, and each of them is pathconnected. A
set is called pathconnected if any two of its points can be connected by a path contained
inside the set. The sets are called mutually disjoint if @; NO; = @ and W;NW; = 0
holds for all i # j. The integers Ny, Np give the total number of pathconnected subsets
for water resp. oil. These numbers vary with time, as do the regions W;, O;.

Now define percolating (IF,F3) and nonpercolating (I, , F'4) fluid regions by classify-
ing the subsets W;, O; as to whether they have empty or nonempty intersection with the
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sample boundary dS. More formally, define
Ny
F, = U w (22)
SWInIS£0
Nyy
F, = U w (2b)

i=l
IW;NIS=0

No
n - | o (20)

i—=1
90,N9S40

No
Fo = |J O 2d)
a@ilm:alS:Q)

so that IFy is the union of all regions W;, and F5 is the union of all regions O, that
have nonempty intersection with the sample boundary dS. Similarly I, is the union of
all regions W; that have empty intersection with S, and similarly for Fy. In this way
each point in P belongs to one of four regions Iy, i = 1,2,3,4. This results in a total
of four fluid phases called percolating resp. nonpercolating water, and percolating resp.
nonpercolating oil. The index i = 5 will be used for the rigid matrix M.

BALANCE LAWS

Let V = Vs denote the sample volume, Vp denote the volume of pore space, Vyy the
volume filled with water, Vg the volume filled with oil, V31 = Vs the volume occupied
by matrix, and V; = V', the volumes of the subsets IF; C S,i = 1,2,3,4. The volumes are
defined as

Vo= [ 20y G)
g
where i = Fy, ), F3,F4,S,P.M, W, O, and
1 ,yeG
1Y) = “)
0 .v¢G

is the characteristic function of a set &G. Then volume conservation implies

5
Ve = V=Vp+Vu=Vw+Vot+tVu= DV (52)
i=1
Vo = N+h (5b)
Vo = V3tV (5¢)
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where Vs = V. The volume fraction ¢ = Vp/V is called total or global porosity.
The volume fraction Vi /Vp = (Vaw/V)/¢ is the total or global water saturation, and
analogous intensive quantities can be defined for the other phases.

Often the saturations are not constant but vary on macroscopic scales. Local volume
fractions are defined by introducing a one parameter family of functions X : R3xR3 —
R by defining X! (x,x) = x (x) on the diagonal and then extending it as

XE(x,y) = X5 (x,x/¢€) (6)

to the full space. Here € > 0 is the scale separation parameter, and y = x/¢€ is the fast
variable. For an infinite sample S — R the local volume fractions may be defined as

oot —lm == [ xE(xydy ™
B(x.1/¢)

where G =F,F,,F3,F4, S,P.M, W, 0, and B(x, 1/¢) is a sphere of radius 1/¢ centered
at x with volume 47/(3¢%). In the following it is assumed that the limit exists, but may
in general depend also on time so that the local volume fractions ¢;(x,#) become position
and time dependent. Local volume conservation implies the relations

Ot+dt+dst+dst+¢s = 1 (3a)
S1+85%+85+85% = 1 (8b)
l—¢ = ¢5 (8c)

where ¢; = ¢S; (i = 1,2,3,4) are volume fractions, and §; are saturations. The water
saturation is defined as Sywy = S + 55, and the oil saturation as Sop = 1 — Sy = S5 + S4.
The general law of mass balance in differential form reads (i = 1,2,3,4)

5
20 1 v (rprvs) M - > M ©)
=
where p;(x, 1), §;(x,t),v;(x,t) denote mass density, volume fraction and velocity of phase
i =W, O as functions of position x € S C R? and time 7 € R, . Exchange of mass between
the two phases is described by mass transfer rates M; giving the amount of mass by which
phase i changes per unit time and volume. The rate M;; is the rate of mass transfer from
phase j into phase i.
The law of momentum balance is formulated as (i = 1,2,3,4)

Di
(PiPiEVi — &V -Z;— ¢:;F; = m; —v;M; (10)

where X; is the stress tensor in the ith phase, F; is the body force per unit volume acting
on the ith phase, m; is the momentum transfer into phase i from all the other phases, and

D' 9
Dt Jt
denotes the material derivative for phase i =W, O.

+v;-V (11)
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CONSTITUTIVE ASSUMPTIONS
The porous medium is assumed to be macroscopically homogeneous

o (x) = ¢ = const (12)

although this assumption rarely holds in practice [26]. Let us further assume that the
fluids are incompressible so that

pi(x.1) = pw (132)
pa(x,1) = pw (13b)
p3(x.1) = po (13¢)
pa(x,1) PO (13d)

where the constants pw, po are independent of x and ¢.
Flows through porous media often have low Reynolds numbers. Thus accelerations
and the inertial term D
DV = 0 (14)
can be neglected in the momentum balance equation (10).
The momentum transfer into phase i from all the other phases is assumed to arise from
viscous drag,

mfz@ —vi) (15)

with resistance coefficients R;; quantlfylng the loss due to viscous friction between phase
i and j. The matrix is assumed to be rigid so that vs = 0. Hence —R;s5v; is the momentum
transfer from the wall into phase i. Then

m; = Ri3(v3—vi)+Ria(va—vi)—Ris5vi (16a)
my; = Ro3(v3—v2)+Rou(va—v2) —Rosvy (16b)
m3 = R3;(vi—v3)+R3(v2—v3) —R3sv3 (16¢)
my = Ru(vi—Va)+Rap(vy —v4) — Rasvy (léd)

where Ry, = 0 and R34 = 0 was used because there is no common interface and hence no
direct viscous interaction between these phase pairs. The viscous resistance coefficients
R;; may be rewritten in term of dimensionless coefficients #;; as

i=1,2
i—3,4

(172)
(17b)

-1
Rij = uwk™ 1y,
-1
Rij = uok " ry,
where Ly, o are the viscosities of water and oil, & is the absolute permeability tensor
of the medium, and r;; are dimensionless viscous drag coefficients. Each R;; is a 3 x 3-

matrix. In practice viscous coupling terms between the two fluid phases are often
neglected.
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The stress tensor is written as a pressure term plus a capillary correction term. The
reference pressure for the nonpercolating phases is the pressure of the surrounding
percolating phase [24]. Thus

% = —PRyl+Zy (18a)
% = —lol+Za (18b)
S, — —Pylo e (18¢)
Sy = —Pyl4Sa, (18d)

where X.; are capillary stresses resulting from the presence of fluid-fluid and fluid-matrix
interfaces.
Similarly, the body forces are augmented with capillary body forces as

F; =pig+F (19)

with i = 1,2,3,4. The capillary body forces F.; are responsible for keeping the trapped
fluids inside the medium. They are assumed to be potential forces

Fe; = —VII; (20)

where I1.; are the capillary potentials.

One has considerable freedom to specify the capillary stresses X.; and potentials IT;.
General thermodynamic considerations suggest ideas to restrict this freedom. Let F
denote the total Helmholtz free energy of the system with and oil-water interface, and
let Fyy and Fg denote the individual Helmholtz free energies of bulk water and bulk oil.
Then [27, 28]

dF = — Py dVaw — Po dVo + owo ddwo + ownrddwg 1+ Gonrddon (21)

where Py, P are the oil and water pressure, Vyy, Vi are the volumes of oil and water, and

Awo,Awn,Aom are the total interfacial areas between oil and water, water and matrix,
resp. oil and matrix. The oil-water surface tension oy and the fluid-matrix interfacial
tensions oy, Oon are related by Youngs equation

Com = Owm + Owo cos(D) (22)

where 9 is the contact angle of water. The interfacial areas obey

ZW@ = 231 +232+Z41+Z42 (23)
A = Awm+Aom (24)
Awm = Ais+4os (25)
Aom = Ass+Ass (26)

where 4; ; is the total interfacial area between phase i and j, and the volumes are related
by egs. (5b) and (5¢).
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In equilibrium d#" = 0 holds. Also, sample volume and internal surface are constant
because the porous medium is rigid. This implies dV = 0 and d4ppr = 0. Using eq. (5¢)

one arrives at B B
04 04
OP@—PWJrGW@( O cos WM)

27
IV IV @7
where Youngs equation (22) was also used.

These considerations suggest one particular way to specify the capillary stresses and
potentials. Following earlier ideas [24] the capillary stresses are specified as

S = 0 (28a)
owo 94wo

Yo = ——— 28b

2 PRI (28b)

S = 0 (28¢)

St = —Zp (28d)

where local equilibrium was assumed and intensive quantities (per unit volume of porous
medium) were introduced. The capillary potentials may be associated with the last term
ineq. (27). They are specified as

My = 0 (29a)
c 04

I, ‘(’;@ cos ¥ 8§§VM (29b)

My = 0 (29¢)

My = -, (29d)

in analogy with [23, 24].

The mass transfer rates are M; = 2§:1Mi - where M;; is the mass transfer rate from
phase j into phase i. Neglecting chemical reactions one assumes M;; = 0 for all pairs
(i,]) except the pairs (1,2),(2,1),(3,4),(4,3). These remaining transfer rates are as-
sumed to be given as

S —SH* \ 98
My =—My = opws [b1(1=82) —0285) Oy + 1 | ——2— ) 222§ (30a)
Sw* — Sw at
. Sy —Su* \ 95
My =-Mg = 0po] [bs(1—53) —baSal O+ M | oo | 5o ¢ (30b)
So*—So t
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with

S — @(ngfw>+52*—54* (31a)
Sof = 1—Sy* (31b)
Sy* = min(Sw,Swi) {1—@(“{?"“’)} (31c)
Sy = min(S@7S@r)®<TW§ZSW> (31d)

as in [22, 23, 24]. The limiting saturations for S5,S4, called irreducible water resp.
residual oil saturation,

b1(vi,v3)
Swi = Swi(vi,v3) = 32
W W (Vl V3> b](V17V3>+b2(V ) ( a)
V7
Sor = Sod(vi,vs) = b3(1,v3) (32b)

b3(v1,v3) +ba(v1,v3)

are velocity dependent, because they depend on the velocity dependent “reaction rates”
bi(v1,v3),i=1,2,3,4. The relation between residual oil saturation Sg, and flow velocity
is also known as capillary correlation or capillary desaturation curve [29, 30, 31]. The
factors O, OF, are defined as

Oy = {O(cos?) +[1 —O(cos?)|O(S, — %) } (33a)
0h = {O(cos?)O(Sy—S%,) +[1—O(cos )]} (33b)

where ¥ denotes the contact angle of water,

S%. = lim Siwi(V, V) (34a)
St = limSo.(v.v). (34b)

are the low velocity limits of Swi,Sor, and

O(x) = (35)

denotes the Heaviside unit step function. The velocity dependent “reaction rates” b; are
chosen such that they vanish for vanishing velocities. In this paper it will be assumed
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that

b1 = bi(vi,v3) = T A*VIV3 (36a)
1—59%.

by = by(vi,v3) = T 4*V] (—W> (36b)
Si

by = by(vy,v3) = 10°4*3V3 (36¢)
1—59

by = b4<vl7V3>r@3A4vi‘( @r) (36d)
Sor

consistent with eq. (34). The parameters Tw,Tp are time scales, and 1, 14,0;; are
dimensionless constants.

The first terms in the curly brackets of (30) model an equilibrium reaction between
nonpercolating and percolating fluids. The reaction, i.e. breakup and coalescence, takes
only place when both percolating phases move, i.e. have nonvanishing velocity. The
prefactors O, OF; reproduce the experimental observation that nonpercolating nonwet-
ting fluid phases show little breakup or coalescence below the low velocity limit of the
residual nonwetting saturation. The prefactors also ensure that sign and dimensions are
correct.

The specific internal surfaces Awao,Awn depend on saturation. Here it is assumed
that

Ayt = ApniSwy - (37

The dependence of Awaq(S1,52,53,54) is suggested by inverting the classic hydraulic
radius theory

S3 S3
k:ClA—l%:ch—% (38)
where 41 = A31 + A4 +As1 and A3 = 431 + 432 +435.
Finally, the system is closed selfconsistently using the condition
Riz Ry Ris Ryt Ry M1> D!
0 —t——t—t———=+—= VitV
< ) N R R S MO ] Pioy
Rz Ry Rys Ry Ry M D?
n <_ﬁ_ﬁ_ﬁ ﬁ_ﬁ+_1>V2_p2_V2
2 b G B G R Dt
<_@ @_&_@_@_%>V3 i
T S S < SN S Dt
Ry Roy Ry Ry Rys M3> D*
i E e e R ) A 7R e (39)
< O S 7 VO PO P4y

written here in its most general form. It is obtained by demanding that the closure
condition should be consistent with the capillary pressure saturation relation obtained
in the residual decoupling limit (see [22, 23, 24]).
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