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A mathematical scaling approach to macroscopic heterogeneity of composite and
porous media is introduced. It is based on weak limits of uniformly bounded mea-
surable functions. The limiting local porosity distributions that were introduced in
the work [Adv. Chem. Phys. XCII, 299–424 (1996)] are found to be related to Young
measures of a weakly convergent sequence of local volume fractions. The Young mea-
sures determine frequency dependent complex dielectric functions of multiscale media
within a generalized self-consistent effective medium approximation. The approach
separates scales by scale factor functions of regular variation. It renders upscaled
results independent of the shape of averaging windows upon reaching the scaling
limit. Published by AIP Publishing. https://doi.org/10.1063/1.5063466

I. INTRODUCTION

Averaging microscopic heterogeneities over mesoscopic Representative Elementary Volumes
(REV’s) is a crucial concept in theories of composite and porous media.1,2 Despite its popularity, the
REV-concept has remained difficult to quantify precisely.

My objective in this contribution is to introduce weak limits from functional analysis as a
mathematical basis for quantifying the elusive REV-concept. Averaged quantities such as poros-
ity φ= φ(S,P,V) or permeability k = k(S,P,V) depend not only on the shape of the sample S ⊂Rd

and the material substance filling the pore spaceP ⊂ S but also on the shape of the averaging window
V ⊂ S although this dependence is usually suppressed.2–5 In Ref. 4, Eq. (18), the set V is the set on
which a window function is nonvanishing, in Ref. 3, the set V is implicit in Eqs. (3.38), (2.6), and
(2.7), and in Ref. 5, the set V is implicit in Eqs. (15) and (16). On the other hand, for sufficiently
homogeneous media, one expects

lim
V→S

φ(S,P,V)= φ(S,P,S)= φ(S,P) (1)

to become independent of V long before the limit is attained. Recent results for an almost perfectly
homogeneous benchmark sample show that the convergence is much slower than expected.6 Extra
large scale permeability calculations7 on the same benchmark sample might soon be able to test
convergence for permeability REV’s. Many publications seem to ignore the slow convergence to
homogeneity or, equivalently, the strong dependence on the size, form, and shape of the representative
elementary volume V.

Deviations from homogeneity are often present on more than one scale.8 Examples of practical
importance include carbonate rocks9 or cements.10 In such samples, it becomes difficult to identify
the plateau regions postulated in numerous studies such as Ref. 2, Fig. 5, p. 35 and Ref. 11, Fig. 3,
p. 17 or Ref. 12, Fig. 1.3.1, p. 17.

Geometrical deviations from homogeneity give rise to position and frequency dependent aver-
aged transport properties. Low frequency electromagnetic waves with large penetration depths can
detect such geometrical deviations. One of the motivations to study the low frequency dielectric
response of complex geometries arises from imaging applications.13–16 Real and complex dielectric
response functions carry rich geometrical information content. Its extraction requires solving the
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direct problem as a prerequisite.17,18 Approximate expressions for effective dielectric functions are
given below as a first step in this direction. More accurate expressions, though desirable, are lacking at
present.

II. PROBLEM AND OBJECTIVE

The physical problem is to compute the dielectric properties of multiscale heterogeneous media
consisting of two different homogeneous constituents. The geometric problem is to quantify the
microstructure mathematically. The underlying fundamental theoretical problem is to establish
rigorous quantitative links between heterogeneities on multiple scales.

Traditional volume averaging assumes implicitly that multiscale heterogeneity can be modelled
mathematically on all scales by number valued functions. Here it is found that this assumption is too
restrictive and has to be weakened to include probability measure valued functions. The latter were
predicted physically in a previous study of the author as limiting local porosity distributions.19 In
this work, measure valued functions are obtained mathematically from applying the concept of weak
convergence to a rescaling limit.

The specific objective for applications is to generalize approximate mathematical expressions for
electrical conductivity σ′ and dielectric permitivity ε r from local porosity theory17,19 to multiscale
composite media. The real valued functions σ′ :Rd × [0,∞ )→ [0,∞ ) and ε ′r :Rd × [0,∞ )→ [0,∞ )
determine their complex valued counterparts through

ε(x,ω)= ε ′(x,ω) + iε ′′(x,ω)

= ε r(x,ω) + i
σ′(x,ω)

ω
, (2a)

σ(x,ω)=σ′(x,ω) + iσ′′(x,ω)

=σ′(x,ω) + iω(1 − ε r(x,ω)), (2b)

where ω = 2πν is the circular frequency, ν is the frequency, and prime ·′, respectively, double
prime ·′′ denote the real, respectively, imaginary, part.

The italic vector symbol x generically denotes positions at any given scale or resolution. Position
vectors at specific scales will below be identified notationally as x, x, x̃, x̂. In Eq. (2), x ∈ {x, x, x̃, x̂}
can stand for any one of them.

III. MATHEMATICAL MODELING

A. Multiscale microstructure

Consider a large heterogeneous medium extending over hectometers or kilometers at nanometer
resolution. At the nanometer scale, position vectors are denoted as x ∈Rd . It is assumed without loss of

generality that there are three intermediate scales of interest, the micrometer scale, denoted x ∈R
d
, the

millimeter scale, denoted x̃ ∈ R̃
d
, and the decimeter scale, denoted x̂ ∈ R̂

d
. Dimensionless position

vectors x ∈Rd , x ∈R
d
, x̃ ∈ R̃

d
, and x̂ ∈ R̂

d
become dimensional position vectors after multiplying

with a length, i.e., x̌= x · 1nm, x̌= x · 1µm, x̌= x̃ · 1mm, and x̌= x̂ · 1dm. Equivalently, x = x̌/nm,
x = x̌/µm, x̃ = x̌/mm, and x̂ = x̌/dm.

Imagine a copy Rd
a of Rd (nanometer resolution) attached to every point x ∈R

d
(micrometer

resolution) in such a way that the origin of the copy Rd
a is attached to the point 1000 x= a ∈Rd . The

point a= 1000 x ∈Rd is the point x written in units of nanometers. Formally, an a-shifted copy of Rd

is the set

Rd
a =Rd − a= {x − a : x ∈Rd } =Rd − ax=Rd

ax, (3)

where a= ax ∈Rd with x ∈R
d

is given and fixed and a = 1000 is the scale factor separating nanometers
from micrometers. The general idea is to study the vicinity of x by investigating sequences of points
approaching the origin in Rd

ax when a→∞ becomes large.



103511-3 R. Hilfer J. Math. Phys. 59, 103511 (2018)

Let S ⊂R
d

denote the porous sample at micrometer resolution. The attachment of Rd
ax to R

d
is

written as a Cartesian product Rd
ax × R

d
. The Cartesian product

Rd
ax × S= {(x, x) : x ∈Rd , x ∈S} (4)

represents the sample at micrometer resolution as a (fibrewise) space to which an underlying
substructure, resolved in nanometers, is attached. A sequence (i ∈N) of cross sections si defined
as

si :R
d
→Rd

aix
× S

x 7→ xi + aix (5)

with |xi | < aγi and γ < 1 will be used below to probe the nanoscale structure near x.
At the nanometer scale, the medium is taken to consist of only two subsets, denoted P and M,

and referred to as the pore and matrix. Both setsM,P ⊂Rd are assumed to be closed and measurable.
The closed sets P andM are unbounded. They fill space so that

P ∪M=Rd (6)

holds. For given and fixed x ∈R
d
, the set

(Rd
ax, x)= ((P ∪M)ax, x) (7)

represents the shifted pore structure near the macroscopic point x ∈S of the sample. For infinite scale
separation a→∞, the nanoscopic pore structure is idealized as infinitely extended. The index ax on
(P ∪M)ax in Eq. (7) indicates the shift.

On the nanoscale, the two subsetsP andM represent two homogeneous substances. For example,
the solid matrix M of the composite medium could be fused silica (amorphous SiO2), and its pore
space P could be filled with liquid water (H2O) or brine. Note that the nanoscale sets P and M are
not random. They are considered to be given and fixed. In practical applications, d = 3. For d = 3,
the setsM,P ⊂R3 have a two-dimensional interface denoted as

∂PM = ∂P= ∂M=P ∩M, (8)

where the last equality applies becauseM,P were both assumed to be closed sets.

B. Dielectric response

The propagation of electromagnetic fields in a multiscale composite is governed on all scales
larger than nanometers by the upscaled Maxwell equations.20 On the nanoscale, they read

∇ · D(x, t)=Q(x, t), x ∈P ∪M, (9a)

∇ · B(x, t)= 0, x ∈P ∪M, (9b)

∇ × E(x, t)=−
∂B(x, t)
∂t

, x ∈P ∪M, (9c)

∇ ×H(x, t)= J(x, t) +
∂D(x, t)
∂t

, x ∈P ∪M, (9d)

where D(x, t) is the electric displacement, B(x, t) is the magnetic induction, E(x, t) is the electric field,
and H(x, t) is the magnetic field. Taking the divergence of Eq. (9d) gives the equation of continuity

∂Q(x, t)
∂t

+ ∇ · J(x, t)= 0, x ∈Rd =P ∪M. (9e)

It relates the macroscopic charge density Q(x, t) and the macroscopic current density J(x, t).
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Causality and locality in space restrict the constitutive equations to convolutions in time given
as

Jc(x, t)=

t∫
−∞

σ′(x, t − t ′)E(x, t ′) dt ′, (10a)

D(x, t)= ε0

t∫
−∞

ε r(x, t − t ′)E(x, t ′) dt ′, (10b)

H(x, t)=
1
µ0

t∫
−∞

B(x, t ′)
µr(x, t − t ′)

dt ′, (10c)

for x ∈P ∪ M, where σ′ is the electrical conductivity. The symbols ε0, ε r denote the dielectric
permittivities of the vacuum, respectively, the medium, and µ0, µr are the magnetic permeabil-
ities of the vacuum, respectively, the medium with µ0 = 4π × 10�7 N/A2 and ε0 = 1/(µ0c2)
≈ 8.8542 × 10�12 F/m. The conduction current due to free charges Jc appearing in Ohm’s law,
Eq. (10a), is related to the total current via the current of bound charges defined as Jb(x, t)
= J(x, t) � Jc(x, t). Fourier transformation gives

Jc(x,ω)=σ′(x,ω) E(x,ω), x ∈P ∪M, (11a)

D(x,ω)= ε0 ε r(x,ω) E(x,ω), x ∈P ∪M, (11b)

B(x,ω)= µ0 µr(x,ω) H(x,ω), x ∈P ∪M, (11c)

where ω = 2πν is the angular frequency and ν denotes the frequency.
Water and glass are homogeneous and isotropic materials at the length scales of interest. In the

low frequency limit, the material parameter functions

σ′(x,ω)=σ′H2O χ
P

(x) + σ′SiO2
χ
M

(x), (12a)

ε r(x,ω)= εH2O χ
P

(x) + εSiO2 χM(x), (12b)

µr(x,ω)= 1 (12c)

are assumed to be frequency independent with

σ′H2O = 4.8 S/m, (13a)

σ′SiO2
= 0≈ 10−18 S/m, (13b)

εH2O = 79, (13c)

εSiO2 = 3.75 (13d)

for the material constants. The function χ
X

:Rd→{0, 1} defined as

χ
X

(y)=



1, y ∈X,

0, y <X
(14)

is the characteristic (or indicator) function of a subsetX ⊂Rd . Equation (12c) assumes that magnetic
effects are negligible at the frequencies of interest. Because glass is a good insulator, its electrical
conductivity is set to zero in Eq. (13b). The electrical conductivity of water in Eq. (13a) corresponds
to that of sea water at 20 ◦C. For drinking water, a value around 5 × 10�3 S/m could be used. Defining
the relaxation frequency of water as

ωH2O =
σ′H2O

ε0 εH2O
≈ 6.9 GHz (15)

makes ω a pure number multiplying ωH2O.
Equation (12) implies that the material parameters are discontinuous at the interface. Physi-

cally this requires specifying boundary conditions at ∂P= ∂M. Mathematically the equations are
interpreted in a weak sense as equations for distributions. Depending on the boundary conditions, a
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suitable domain could be a Sobolev space for the potentials, respectively, a space of potential fields
for the electromagnetic fields.21,22 The boundary conditions at the interface are

n(x) · (B∂P(x,ω) − B∂M(x,ω))= 0, (16a)

n(x) · (D∂P(x,ω) − D∂M(x,ω))=Q∂(x,ω), (16b)

n(x) × (E∂P(x,ω) − E∂M(x,ω))= 0, (16c)

n(x) × (H∂P(x,ω) −H∂M(x,ω))= J∂(x,ω), (16d)

for x ∈ ∂P= ∂M, where Q∂(x, ω) (respectively, J∂(x, ω)) are the Fourier transforms of (possibly
time dependent) surface charge (respectively, surface current) densities with support in ∂P= ∂M.
The notation B∂P(x,ω) (respectively, B∂M(x,ω)) is the limiting value of the vector field as the point
x ∈ ∂P= ∂M is approached from within P (respectively, from withinM).

It is assumed that there is neither volume nor surface charges or currents inside the medium so
that Q = 0, Q∂ = 0, J = 0, and J∂ = 0.

The nanoscopic details of an exact solution are of little interest at hectometer scales. The problem
is to compute an effective dielectric function at larger scales. Its definition is given in Eq. (21). The
effective frequency dependent dielectric functions at the micrometer scale, εe(x,ω), at the millimeter
scale, ε̃e (̃x,ω), and at the decimeter scale, ε̂e (̂x,ω), are expected to be again position and frequency
dependent due to the heterogeneity assumed in (12).

IV. METHODS AND APPROXIMATIONS

A. Weak convergence

The method employed in this paper to obtain scaling results for multiscale heterogeneous media
is based on the following well known facts from the theory of Young measures for weakly convergent
sequences.23,24

Theorem 1 (Ref. 23). Let S ⊂Rd be Lebesgue measurable, and let fi :S→A ⊂Rm be a
sequence of Lebesgue measurable functions that is uniformly bounded in L∞(S,Rm) (but not neces-
sarily convergent) taking (at almost every x ∈S) its values inA. Then there exists a subsequence f j(x)
of f i(x) and a family of probability measures µx parameterized by x ∈S with support in the closure
cl(A) of A such that for every real continuous function F :A→R, the sequence F j(x) = F(f j(x))
converges weak∗ in L∞(S,Rm) to the limiting function

〈F〉(x)=
∫
Rm

F(a) dµx(a) (17)

at almost every x ∈S. The limiting measure µx is called the Young measure and it depends measurably
on x in the sense that the limiting function 〈F〉(x) :S→R is measurable.

The closure cl(X) of a set X ⊂Rd is defined as the intersection of all closed sets containing X.

Corollary. If the original sequence fi :S→A converges weak∗ in L∞(S,Rm) to the limiting
function f∞(x), then

f∞(x)= 〈f 〉(x)=
∫
Rm

a dµx(a) (18)

at almost every x ∈S, where 〈f 〉(x) is the barycenter of µx. The values 〈f 〉(x) are not restricted to A,
but are, in general, elements of the convex hull of the closure cl(A) of A.

If the sequence f i(x) does not converge, then 〈F〉(x),F(〈f 〉(x)) in general.

B. Quasistatic approximation

When the wavelength is large compared to the scale of heterogeneities, the time derivatives
in Faraday’s law (9) are small compared to spatial derivatives. Setting them to zero results in the
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quasistatic approximation valid for small frequencies

ω�
1

`
√
ε0µ0

=
c
`
=

299 792 458
`

Hz, (19)

where ` denotes the scale of heterogeneities and c is the speed of light. For heterogeneities with
` ≈ 10–100 µm, one finds ω � 3–30 THz approaching the infrared.

The quasistatic approximation decouples the full equations (9). Fourier transformation of Eqs. (9)
results in the equations of quasistatic electrostatics

∇ · D(x,ω)= 0, (20a)

∇ × E(x,ω)= 0, (20b)

D(x,ω)= ε0 ε(x,ω) E(x,ω), (20c)

n(x) · (D∂P(x,ω) − D∂M(x,ω))= 0, (20d)

n(x) × (E∂P(x,ω) − E∂M(x,ω))= 0, (20e)

where x ∈P ∪M in Eqs. (20a)–(20c), x ∈ ∂P= ∂M in Eqs. (20d)–(20e), and where ε(x, ω) denotes
the complex frequency dependent local dielectric function.

C. Self-consistent local porosity approximation

The effective macroscopic dielectric function εe of self-consistent effective medium approxima-
tions1 is usually defined by averaging Eq. (20c),

〈D(x,ω)〉= ε0 εe(ω;Π) 〈E(x,ω)〉, (21)

on macroscopic scales, where x ∈ {x, x̃, x̂}. ε ∈ {ε , ε̃ , ε̂ }. Depending on the specific model, the angular
brackets 〈·〉 denote (spatial or ensemble) averaging and Π are parameters of physical importance
(such as porosity or connectivity) that arise from averaging the smaller scale heterogeneities.

Local porosity theory in its simplest formulation represents the complex geometry of the pore
space P approximately by its local porosity distribution µ(φ) and its local percolation probabilities
λ(φ).25,26 The local geometric parameters in Eq. (21) are assumed to be Π = (φ, Λ), where φ is the
local porosity at x and Λ = 1 if the local geometry at x is percolating, while Λ = 0 if it is not. Let
K ⊂Rd be a convex and compact set with its centroid at the origin 0 ∈Rd . Then

K(x)= x +K= {x + z ∈Rd : z ∈K} (22)

denotes its translate by a vector x ∈Rd and

|K| =

∫
K

ddx=
∫
Rd

χ
K

(x) ddx (23)

is its volume. The local porosity in a measurement cell K(x) placed at position x is defined as

φ(K(x))=
|P ∩K(x)|
|K(x)|

. (24)

Given a sequence xi of cell centers such that all K(xi) are mutually disjoint, the local porosity
distribution can be defined as

µ(φ;K)= lim
M→∞

1
M

M∑
i=1

δ(φ − φ(K(xi))), (25)

where M denotes the total number of different placements of K.
The local percolation probability λ(φ;K) is loosely defined as the fraction of measurement

cells with local porosity φ that are percolating according to a suitable criterion. For details on the
percolation criteria and precise definitions, see Refs. 17 and 27.
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Given the geometrical functions µ(φ;K) and λ(φ;K), the self-consistent local porosity equation
for the effective dielectric function εe reads

1∫
0

[
ε loc(ω; φ, 0) − εe(ω)

ε loc(ω; φ, 0) + (d − 1)εe(ω)
(1 − λ(φ;K)) (26)

+
ε loc(ω; φ, 1) − εe(ω)

ε loc(ω; φ, 1) + (d − 1)εe(ω)
λ(φ;K)

]
µ(φ;K) dφ= 0,

where ε loc(ω; φ, 0) respectively ε loc(ω; φ, 1) are average local dielectric functions for blocking
(Λ = 0) resepctively conducting (Λ = 1) configurations. The local functions are generally unknown,
but are expected to obey

σ′loc(ω = 0; φ, 0)= 0 (27)

for all φ and

σ′loc(ω; 0, 1)=σ′SiO2
= 0, (28a)

σ′loc(ω; 1, 1)=σ′H2O, (28b)

ε ′loc(ω; 0, 1)= ε ′loc(ω; 0, 0)= ε ′SiO2
, (28c)

ε ′loc(ω; 1, 1)= ε ′loc(ω; 1, 0)= ε ′H2O (28d)

for all ω. A simple choice satisfying these requirements is

ε loc(ω; φ, 0)= εSiO2 (ω), (29a)

ε loc(ω; φ, 1)= εH2O(ω) (29b)

independent of φ. This amounts to identifying connectivity with porosity Λ = φ. Another choice is

ε loc(ω; φ, 0)= ε loc(ω; φ, 1)= φεH2O(ω) + (1 − φ)εSiO2 (ω) (30)

which assumes local connectivity Λ= 1= λ(φ;K) for all local configurations independent of local
porosity φ. Inserting Eq. (29) into Eq. (26) and taking the limit d →∞ gives the mean-field result

εe(ω;K)= p(K)εSiO2 (ω) + (1 − p(K))εH2O(ω), (31)

where

p(K)=

1∫
0

λ(φ;K)µ(φ;K) dφ (32)

is the total fraction of percolating cells. Choosing Eq. (30) instead of Eq. (29) gives the same result
except that p(K) is replaced with

φ(K)=

1∫
0

φµ(φ;K) dφ, (33)

the average local porosity. Equation (26) can also be solved for d = 1. With Eq. (29), this gives

εe(ω;K)=

(
p(K)

εH2O(ω)
+

1 − p(K)
εSiO2 (ω)

)−1

, (34)

while Eq. (30) gives

εe(ω;K)=
*..
,

1∫
0

1
φεH2O(ω) + (1 − φ)εSiO2 (ω)

µ(φ;K) dφ
+//
-

−1

, (35)
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a different result. The difference between Eqs. (34) and (35) highlights the importance of connectivity
in one dimension. While Eq. (34) has a percolation transition at p(K)= 1, Eq. (35) exhibits no such
transition. The total fraction of percolating cells p(K) is an important control parameter which seems
to correlate strongly with many transport quantities27–29

For d = 3, a specific choice fulfilling conditions (28) is

ε loc(ω; φ, 1)= εH2O(ω)


1 − (1 − φ)




(
1 −

εSiO2

εH2O(ω)

)−1

−
φ

3




−1
(36)

for a water coated quartz sphere and

ε loc(ω; φ, 0)= εSiO2


1 − φ




(
1 −

εH2O(ω)

εSiO2

)−1

−
(1 − φ)

3




−1
(37)

for a hollow quartz sphere filled with water. At larger length scales, an effective local dielectric
response from a smaller length scale could be used as well (see Refs. 30 and 31).

Self-consistent local porosity approximations for the dielectric response and fluid flow in porous
media have been explored and developed in several publications of the present author.28,30,32–36 The
results have subsequently found numerous applications to heterogeneous sandstones,37,38 carbonates
and chalk,39,40 ceramics,41 cements,10,42 polymer blends,16,43 polymer electrolyte membranes,44 clays
and shales.45,46

V. SCALING LIMIT

A scale factor function (magnification factor, shrinkage factor, or zoom factor) is defined to be
a positive and measurable function b: [1,∞)→ (0,∞) such that

lim
x→∞

b(λx)
b(x)

= g(λ) (38a)

or equivalently

lim
x→0

b
(

1
λx

)
b
(

1
x

) = g

(
1
λ

)
(38b)

holds for some λ > 0 and an arbitrary function g: (0,∞)→ (0,∞). Scale factor functions are oftentimes
power laws with slowly varying corrections. This follows from the following:

Theorem 2. Given a scale factor function b: [1,∞)→ (0,∞), let B ⊂R be the set of all λ > 0
such that (38) holds. If the set B has positive measure, then (38) holds for all λ > 0 and there exists
a number α ∈R with g(λ) = λα.

For the proof, see Ref. 47, p. 17. For α , 0, the function b is called regularly varying at infinity.
The function b(1/·) is called regularly varying at zero. For α = 0, the functions are called slowly
varying. The theorem implies that scale factor functions have the form

b(x)= xαs(x), (39)

where s(x) is a slowly varying function. For α > 0, this corresponds to magnification, and for α < 0
to shrinkage.

Consider a scale factor function b: [1, ∞)→ (0, ∞) with 0 < α and define a sequence of scale
factors as bi = b(i) for i ∈N. Given the sequence bi, and given the heterogeneous nanoscale setPwith

characteristic function χ
P

, consider a sequence of functions φi = q ◦ (χ
P
× id

R
d ) ◦ si :R

d
→{0, 1}

defined as

φi(x)= q
{
(χ
P
× id

R
d )

[
si(x)

]}
= χ

P
(bix + xi) (40)
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on the micrometer scale, where si is a sequence of cross sections [see Eq. (5)] probing the vicinity of

bix. Here id
R

d :R
d
→R

d
is the identity map and q is the projection map q : {0, 1} ×R

d
→{0, 1}. The

sequence xi ∈Rd is arbitrary subject only to |xi | ≤ bγi with γ < 1. The condition γ < 1 ensures that
bix + xi stays near bix. The functions φi are measurable because P was assumed to be measurable.

The sequence φi is uniformly bounded in L∞(R
d
,R) because φi assumes only the values 0 or 1.

Theorem 1 can be applied with S=R
d
, m = 1, and A= {0, 1} to obtain the Young measure

µx associated with the sequence φi in the scaling limit i → ∞. In this limit, Theorem 1 also gives
supp(µx)= cl(A)= {0, 1} so that for almost all x there exists a constant cx, 0 ≤ cx ≤ 1, with

dµx(φ)= (1 − cx)δ(φ) + cxδ(φ − 1), (41)

where δ denotes the Dirac measure. By Theorem 1, the coefficient

cx = φ(x)=
∫
R

φ dµx(φ) (42)

defines a measurable function φ :R
d
→ [0, 1] with values in the full unit interval because the unit

interval is the convex hull of {0, 1}.

VI. RESULTS

Young measures µx(φ) are closely related to local porosity distributions µ(φ;K). This basic
result can be seen formally as follows. Comparison of the density dµx(φ) at the micrometer scale
from Eq. (41) with Eq. (2.10) in Ref. 17, p. 63 for small K suggests that formally

lim
|K |→0

µ(φ;K)= µ
x=0

(φ) (43)

the local porosity distribution for small cells converges to the Young measure at the origin 0 ∈R
d
,

because the neighbourhood of the origin in R
d

approaches Rd in the scaling limit.
To establish the connection between Young measures and limiting local porosity distributions

more rigorously, consider a fixed, convex, and compact averaging window located at x ∈R
d
,

V(x)= x +V, (44)

at the micrometer scale. Let f be any real continuous function with compact support in [0, 1]. Volume
averaging of f (φi) over V(x),

1

|V|

∫
V(x)

f
(
φi(y)

)
dy=: µx,V,i(f ), (45)

defines a positive continuous linear functional µx,V,i : Cc([0, 1])→R on the space Cc([0, 1]) of con-
tinuous functions f : [0, 1]→R with compact support. According to Riesz’s representation theorem
(see Ref. 48, Sec. 29), the set of positive linear functionals on Cc([0, 1]) can be mapped bijectively to
the set M+([0, 1]) of positive Radon measures on [0, 1]. In this way, volume averages are in one-to-one
correspondence with positive measures on [0, 1].

The positive Radon measure µx,V,i is normalized because φi(y) is well defined for all y ∈V(x). It

gives the probability distribution for the values of φi inV(x). This becomes evident when expressing
its density as
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dµx,V,i(φ)=
1

|V|

∫
V(x)

δ
(
φ − χbiP

(y)
)

dy (46)

in terms of Dirac measures at φ = 0 and φ = 1. Note the similarity with the definition of the local
porosity distribution µ in Eq. (25). The main difference to Eq. (25) is that Eq. (46) is formulated
at the micrometer scale and involves the scaling factor function, while Eq. (25) is formulated at
the nanometer scale. This observation indicates a link between the present approach to macroscopic
heterogeneity and the approach in Ref. 19, p. 341. In the scaling limit i → ∞, the measures µx,V,i
converge to a limiting measure

µx,V,i
w∗
−→ µx,V (47)

in the weak∗ (also called vague) topology on M+([0, 1]).48 Theorem 1 can now be applied again to
establish the connection between the theory of Young measures and local porosity theory. Multiplying
Eq. (46) by any given continuous function F(φ) and integrating gives

1∫
0

F(φ) dµx,V,i(φ)=

1∫
0

F(φ)

|V|

∫
V(x)

δ
(
φ − χbiP

(y)
)

dy dφ

=
1

|V|

∫
V(x)

F
(
χbiP

(y)
)

dy, (48)

where the integrand on the right-hand side converges by virtue of Theorem 1. Combined with Eq. (47),
one finds

1∫
0

F(φ) dµx,V(φ)=
1

|V|

∫
V(x)

1∫
0

F(φ) dµy(φ) dy (49)

or

µx,V =
1

|V|

∫
V(x)

µy dy (50)

in short. Given a fixed continuous F,

lim
|V |→0

1∫
0

F(φ) dµx,V(φ)=

1∫
0

F(φ) dµx,{x }(φ) (51a)

= lim
|V |→0

1

|V|

∫
V(x)

1∫
0

F(φ) dµy(φ) dy (51b)

=

1∫
0

F(φ) dµx(φ) (51c)

for almost every x by virtue of Lebesgue’s differentiation theorem. Choosing a countable dense set
of functions implies that the probability distribution µx,V of local porosities in V(x),

µx,V
w∗
−→ µx, (52)

converges asV(x)→{x} in the weak∗ topology in M+([0, 1]) to the Young measure µx. This establishes
a mathematical connection between Young measures and the large scale local porosity distributions
in Ref. 19, p. 343.

The preceding discussion can be generalized. The nonrandom local porosity function χ
P

from
the discussion above is generalized into a function called φ in the sequel. The notation int(X) denotes
the interior of a set X. The interior int(X) is the union of all open sets contained in X. The notation
bX= {bx : x ∈X} denotes magnification or shrinkage of X with b > 0.
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Theorem 3. Let bφ: [1,∞)→ (0,∞) be a regularly varying magnification factor function with
index αφ > 0 and bV : [1,∞)→ (0,∞) a shrinkage factor function (bV(∞)= 0) regularly varying with
index αV < 0. Let φ :Rd→ [0, 1] be a nanoscale nonrandom local porosity function, let xi ∈Rd be a
nanoscale sequence such that |xi| ≤ bφ(i)γ with γ < 1 for all i ∈N, and let

φi :S ⊂R
d
→ [0, 1]

x 7→ φi(x)= φ
[
bφ(i)x + xi

]
(53)

with x ∈ int
(
S
)

be a sequence of local porosity functions. If V(x) ⊂ S is a measurement cell centered
at x and A ⊂ [0, 1] is any measurable subset of the unit interval, then

µx(A)= lim
λ→∞

lim
i→∞

���
{
y ∈ bV(λ)V(x) : φi(y) ∈A

}���
���bV(λ)V(x)���

(54)

exists and gives the probability to find a local porosity value φ ∈A.

The proof follows from the application of Theorem 1 and its corollary with m = 1 and f i = φi.
In fact, the result is not restricted to rescaled local porosity functions φi. It holds for any observable
that gives a uniformly bounded sequence of functions φi.

Theorem 4. Let φ :Rd→ [0, 1] be a nonrandom local porosity function, let b: [1,∞)→ (0,∞)
be a regularly varying scale factor function of index α > 0, let xi ∈Rd be a nanoscale sequence

with |xi| ≤ bφ(i)γ with γ < 1 for all i ∈N, and let φi :S ⊂R
d
→ [0, 1] with φi(x)= φ

[
bφ(i)x + xi

]
,

i ∈N, and x ∈ int
(
S
)

be a sequence of local porosity functions. If µx is the limiting local porosity
distribution in Eq. (54) and F : [0, 1]→R is any continuous function, then

lim
i→∞

∫
S

F
[
φi(x)

]
f (x) dx=

∫
S

f (x)

1∫
0

F(φ) dµx(φ) dx (55)

holds for all integrable functions f ∈ L1(S;R).

When f is peaked at some point, the average over limiting local porosity distributions amounts to
volume averaging over infinitely extended and rescaled representative elementary volumes. Repeated
rescaling allows one to bridge scales.

VII. DISCUSSION

A. Multiple scales

The results above can be extended to multiple scales. Given a porous medium P with het-
erogeneities at length scales ` ∈ {`, ˜̀, ̂̀}, let φ ∈ {φ, φ̃, φ̂} denote the corresponding local porosity
functions at these scales starting from φ(x)= χ

P
(x) at the nanoscale. Choosing a scale factor function

bφ: [1, ∞) → (0, ∞) then yields limiting local porosity distributions dµx(φ) from Eq. (54) with
x ∈ {x, x̃, x̂} and φ ∈ {φ, φ̃, φ̂} by iteration. The sequence φi is defined in analogy with Eq. (53), and
the local porosity function for the next length scale is obtained as

φ(x)=

1∫
0

s dµx(s) (56)

from the limiting local porosity distribution of the previous sequence for the scale below.
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B. Classification of macroscopic heterogeneity

The following classification and terminology emerges naturally from the results.

Definition. A microscopically nonrandom multiscale porous medium with limiting local porosity
distributions µx with x ∈ {x, x̃, x̂} is called macroscopically

1. homogeneous and nonrandom if

dµx(φ)= δ(φ − φP) (57a)

for all x,
2. homogeneous and random if

dµx(φ)= dµ(φ) (57b)

for all x,
3. heterogeneous and nonrandom if

dµx(φ)= δ(φ − φ(x)), (57c)

4. heterogeneous and random in all other cases.

C. Multiscale dielectric functions

Inserting the limiting local porosity distributions dµx(φ) with x ∈ {x, x̃, x̂} into the local porosity
equation Eq. (26) gives

1∫
0

[
ε loc(ω; φ, 1) − εe(x,ω)

ε loc(ω; φ, 1) + (d − 1)εe(x,ω)
λx(φ)+ (58)

ε loc(ω; φ, 0) − εe(x,ω)
ε loc(ω; φ, 0) + (d − 1)εe(x,ω)

(1 − λx(φ))

]
dµx(φ)= 0,

where ε ∈ {ε , ε̃ , ε̂ } and λx(φ) is the limiting local percolation probability corresponding to dµx(φ). The
limiting total fraction of percolating cells p(x) and the effective dielectric functions εe(x, ω) become
x-dependent. This result generalizes the local porosity equation (26) to multiscale heterogeneous
media. Note that the dependence on size, shape, and form of the measurement cell K is reduced to
its location x.

D. From deterministic to disordered systems and back

The theory developed above has noteworthy fundamental implications. Starting from the deter-
ministic nanoscale local porosity function χ

P
(x) with values in {0, 1}, the microscale distribution

µx is random consisting of two Dirac measures. Consider the quasistatic problem (20) with x= x
at the microscale. If accurate approximations for the φ-dependence of the local dielectric function
ε loc(ω; φ) are available, then Eq. (20) can be turned into a stochastic partial differential equation by
replacing

ε(x,ω)= ε loc(ω; φx) (59)

in Eq. (20), where φx is a random realization drawn from µx. In this way, a disordered system can
emerge as an approximation to a deterministic system in the scaling limit.

The reverse phenomenon is also possible when at some scale the limiting distribution
dµx̂(φ)= δ(φ − φ(̂x)) becomes a single Dirac measure.

Based on these considerations, limiting local porosity distributions can be used to define the
probability distribution of discrete random media as discussed in Ref. 19, Eq. (2.9). Consider m
points {x1, . . ., xm} forming a cube shaped cubic grid in Rd . Again xi ∈ {xi, xi, x̃i, x̂i} for 1 ≤ i ≤ m
depending on the scale of interest. Define the multipoint local porosity function

φ(x1, . . . , xm)= (φ(x1), . . . , φ(xm)), (60)
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where φ(x) with φ ∈ { χ
P

, φ, φ̃, φ̂} is a one-point local porosity function. Applying the results above
yields the limiting m-point local porosity distribution µx1,...,xm with xi ∈ {xi, x̃i, x̂i} one scale above. The
result can be deterministic or stochastic depending on whether the limiting distribution approaches a
Dirac measure or not.

VIII. CONCLUSIONS

The results of the present paper eliminate the dependence of volume averaged quantities on the
shape of the averaging volume V. This emerges from a suitable scaling limit in which |V| →∞.
Conventional models assume implicitly that number valued functions emerge in this limit. This
assumption is found to be too restrictive. Instead measure valued functions must be expected to arise
in the scaling limit. Applied to volume fractions, these limiting measures have been identified as
limiting local porosity distributions. A systematic characterization of macroscopic heterogeneity in
porosity emerges from classifying the limiting measures with respect to their position dependence
and support.
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