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ABSTRACT

A recently introduced classification theory for phase transitions characterizes
each phase transition by its generalized noninteger order and a slowly varying
function. Thermodynamically this characterization arises from generalizing
the classification scheme of Ehrenfest. The same characterization emerges in
statistical mechanics from generalizing the finite size scaling limit. The clas-
sification theory predicts an unusual class of phase transitions characterized
by fractional orders less than unity. Examples are found in unstable models
of statistical mechanics. Finally it is shown how the statistical classifica-
tion theory gives rise to a classification of macroscopic dynamical behaviour
based on a generalization of the stationarity concept.

. Introduction

A new class of phase transitions called anequilibrium transitions has recently been
introduced [18, 19, 20] on the basis of a general classification theory of phase transi-
tions [16, 17]. This work discusses a related classification theory for the infinitesimal
generators of the time evolution of macroscopic ensemble averaged observables.
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Modern discussions of critical phenomena focus on the renormalization group
picture. Scaling and universality are derived from renormalization group flows in
infinite dimensional spaces [25, 13].

Derivations of scaling within the renormalization group picture rely on many im-
plicit assumptions. Violations of hyperscaling or finite size scaling represent a break-
down of one of these assumptions [13]. It is therefore of interest to find alternative
derivations of scaling.

Generalizing the classification scheme of Ehrenfest [9] provides an alternative
derivation of scaling within classical thermodynamics [16, 17]. The generalized clas-

sification theory leads naturally to predict the existence of a new class of phase
transitions [18, 19, 20].

Let me conclude the introduction by remarking that the new class of anequilibrium
transitions exhibits unusual static and dynamic properties similar to those found for
spinglass transitions in random magnets. However, much more work than what can

be reported here is required to elucidate this point, and thus I will refrain from
discussing it.

2. Thermodynamic Classification Scheme

The thermodynamic classification of phase transitions is dicussed in terms of the
pressure p(T, p) as a function of temperature T and chemical potential u. p(T, ) is
the conjugate convex function to the energy density u(s, p) = U(S/V,1,N/V)/V as a
function of entropy density s = §/V and particle number density p = N/V. Here V

denotes the volume, N the particle number, S the entropy and U the internal energy.
The pressure is given as

P(T, 1) = sup(Ts + pp = u(s, p))- 1)

Consider a thermodynamical process C : R — R%,¢ — (T(c), u(c)) parametrized
by o such that ¢ = 0 corresponds to a critical point (T¢, pc). The thermodynamic
classification scheme [16, 17] is based on the fractional derivatives [15, 26]

F(C.qi0) = Lol kD)

do?
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where p,n, denotes the singular part of the pressure p = pre; + Psng. Ehrenfest [9]
defines the phase transition at o = 0 to be of order n if and only if

”lirixof(c,n;a) = A%¥(C) (3)

where n € N is an integer. Equation (3) expresses a finite jump discontinuity in the
n-th derivative of the pressure at o = 0.

Recently [16, 17, 19] the classification of Ehrenfest has been generalized to non-

integer orders ¢ € R.. In the refined classification scheme [19] the transition at o =0
is defined to be of order A* if and only if

F(C, ¥ b0)
A FC o) )

for all b> 0. Equation (4) is obeyed for Ehrenfests integer order transitions, i.e. for
F obeying (3). For the specific path y = . the generalized order is related to the
specific heat critical exponent o as A = 2—e. Similarly A = 1+(1/6) for an approach
along T = T. where § denotes the equation of state exponent. More generally

Ax =2—ox (5)

where X is a local operator and ay the associated fluctuation exponent [12]. Equation
(4) requires the fractional derivative of order A to be a slowly varying function [23]. A
real valued positive and measurable function A(z) is called slowly varying at infinity
if limg oo (A(bz)/A(z)) = 1 for all b > 0. In the refined classification scheme each
transition is characterized by generalized left and right orders A* and corresponding
slowly varying functions A%.

First order and second order phase transitions play a special role. Transitions of
order ), in u(s) are Legendre-conjugate to transitions of order A, where

S (6)

Second order phase transitions are selfconjugate in the sense that A, = A, = 2. First

order transitions on the other hand correspond to a special limiting case of infinite
conjugate order.
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3. Anequilibrium Phase Transitions

The classification scheme raises the question whether transitions of order A < 1 are
thermodynamically allowed. Consider u(s,p) at consant density p. If there is a
critical point of order A = A* = A~ at s, then u(s) = u(s, p = const) has the form

u(s) = trey(s) + uF(s)]s — s (7)

where u,e,(s) denotes the regular part and u®(s) is a slowly varying function for
s — s. This shows that for s, < co the condition A < 1 would imply a violation
of the basic convexity requirement. Thermodynamic stability seems to restrict the
order of phase transitions to the range A > 1. However the laws of thermodynamics
do not require s. < co and this gives rise to the possibility of A < 1 transitions.

To prove the possibility of fractional phase transitions with A < 1 in thermody-
namics it suffices to give an explicit example for u(s) which obeys the mathematical
requirements for a fundamental equation [6, 27]. Such an example is given by

u(s) = as + b(s? + &)1/? ’ : (8)

with a,b,¢ > 0 and @ > b. Equation (8) defines a single-valued, continuous and
differentiable energy function which is monotonically increasing, T'(s) = du/8s >
0, and convex, 3%u/0u® > 0. The energy function defined in eq. (8) fulfills all
requirements of classical thermodynamics and exhibits transitions of order ¥ = 1
at s. = doo. Classically, entropy S and energy U are allowed to vary over the full
range —oo < U, § < oo of real numbers. The Legendre transform of u(s) reads

p(T) = (¢t ~ (T — a)))*/? ©)
and is only defined in the restricted temperature range
a_b=Tmin<T<Tmax=a+b- (10)

Thus the pressure p(T') exhibits transitions of order )\;" =1/2 at Trin and A, =1/2
at Trmqe. In general an infinite entropy transition of order 0 < A, < oo in u(s) is
related to a transition of order

A

'\”=,\u+1

<1 , (11)
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less than unity in p(T).

The simple example (8) demonstrates the coexistence of equilibrium transitions
of integer or continuous orders A > 1 and a new class of anequilibrium transitions
of fractional orders A < 1 within classical thermodynamics. Fractional anequilib-
sium transitions are characterized by diverging entropies and the fact that the set of
equilibrium temperatures is restricted to a subset of the positive real axis, The lim-
iting temperatures can only be approached infinitesimally but cannot be reached in
a quasistatic thermodynamic process. However if in addition to classical thermody-
namics the third law is assumed to hold then there exists a temperature Ty > Tpin at
which the entropy density vanishes, s(To) = 0, and Tnin can no longer be approached
arbitrarily closely.

Next it will be shown that the division into continuous equilibrium and fractional
anequilibrium transitions can be found also in classical statistical mechanics.

4. The Ensemble Limit

Classical statistical mechanics is based on the law of large numbers and the central
limit theorem from probability theory [22]. The statistical fluctuations near critical
points and the formal similarities of the renormalization approach with semigroups
studied in probability theory has long suggested a connection between the theory of
stable laws and critical phenomena [8, 24]. The same idea will be followed here. The
difference to previous approaches lies in the way in which the thermodynamic limit,
the scaling (or continuum) limit and the approach to criticality are combined.

Consider a statistical mechanical system on a d-dimensional simple cubic lattice
with lattice spacing @ > 0. The system is finite with sidelength L < oo in all d
directions. A fluctuating scalar observable X is associated with each lattice point.
The fluctuations in X can be characterized by a correlation length ¢x(II) depending
on the parameters IT = (II;, II3,...) of the system. Let a,L and II be such that the

system decomposes into a large number of uncorrelated blocks of linear extension £x,
ie.

0<a<éx(l) < L<oo. (12)
The ensemble limit is defined as the simultaneous limit

a—0,L —» 00, 5T, suchthat ¢x(II) = £x(II.) < oo (13)
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The ensemble limit is called critical if 0 < £x(I.) < oo and it is called noncritical if
£x(II;) = 0. The reason for this terminology is that the correlation length diverges
in units of a for the critical ensemble limit, while in the noncritical limit it does not.
The critical ensemble limit generates an infinite ensemble of uncorrelated blocks and
this feature allows the application of standard limit theorems from probability theory.

The number of uncorrelated blocks of linear extension éx is denoted by

N= (é)d 1 (14)

while
d
M= (%‘) (15)

is the number of lattice sites within each block. The total number of lattice sites
is then NM = (L/a)®. The fluctuating scalar observable X at site j (j = 1,..., M)

inside block 7 (¢ = 1,...,N) is denoted by X;n(j). From these the block variables are
defined as

M
Xiv = Xin () (16)
J=1
and the ensemble variables as
N
Xy =Y X (17)
i=1
As usual the system will be assumed to be translationally invariant rendering the

individual block variables uncorrelated and identically distributed. The probability
distribution of the macroscopic observables Xy is denoted Py(z) = Prob{Xy < z}.

The basic limit theorem for sums of uncorrelated (or weakly correlated) random
variables [10, 14, 21] states that the weak limit

P(:I:) = 1&1_{%0 PN(.’I:DN + CN) (18)
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exists for a suitable choice of centering constants Cy and norming constants Dy. The
limiting distribution function P(z) has a characteristic function p(k) = [, exp'*= dP(z)
given by

log p(k) = iCk — D|k|™(1 — iC—IZ—Iw(k, w)) (19)

whose parameters obey

0<w<2

-1<¢<1

-0 <0< oo (20)
0<D

and where

tan(ﬂ) . for w#l
k = 2
“lb ) { Zlog|k| : for w=1 (21)

For D > 0 the norming constants Dy have the form
Dy = NY®A(N) (22)
with A(N) slowly varying at infinity.

From translation invariance and the definition of the block ensemble limit in (13)
it follows that the block variables X;y approach a common distribution belonging
to the domain of attraction of a certain stable distribution. If that limiting sta-
ble law has a characteristic function whose logarithm is -Dlk|"(1 - i¢ I—ﬁ—lw(k, w))
with @, {, D,w(k,w) as above then the distribution function for the block variables
converges towards a distribution function Q(z) whose characteristic function reads

log (k) = iC% — DIK=A(K)( - i¢ u(h, ) (23)

in the limit & — 0[21]. Here C is a constant and A(k) a slowly varying function at
zero. It has been shown [19] that the slowly varying function A(N ) in (22) and A(k)
in (23) are related to each other through

=

A(N) = (DE* ('JIV))_ (24)
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where £*(z) is the conjugate slowly varying function to the slowly varying function

L(z) defined by the relation
R(k) = £(=). (25)

Using this result together with eq.(18) implies that the distribution function Pw(z)
for the macroscopic variables Xy has the scaling form

*1/w( A7—-1
Py(z)=P <%l @,¢,0, 1) (26)

in the limit of large N where P(z;w,(,0,1) denotes the standard (C = 0,D = 1)
stable law with index @ and parameter . Equation (26) will be referred to as finite
ensemble scaling for the ensemble sums Xy. A similar finite ensemble scaling form
holds for the macroscopic ensemble averages Xy = Xn/(NM), namely

-~

_ ——Lvul/w N-1
PN(E) =P (m_l\ﬂi%)/,;—l;w,gov 1) . (27)

It is now apparent that the block ensemble limit in statistical mechanics generates
a scaling property for the distribution function of macroscopic ensemble averages.
The derivation is general and does not involve renormalization group arguments.
It will now be shown that there exists a statistical classification scheme of phase

transitions which is precisely analogous to the thermodynamic classification scheme
described in the previous section.

5. Statistical Classification Scheme

Consider first the case where D = 0 in (19). The distribution of macroscopic variables
is then degenerate, i.e. concentrated at a single point. This case corresponds to the
noncritical ensemble limit, i.e. {x = 0, where the fluctuations between different
blocks vanish in the limit. In modern quantum field theory terminology this case
corresponds the “boring limit” [11].

A second immediate observation is the existence of a “Gaussian limit” correspond-
ing to @ = 2 suggesting that the thermodynamic order X is directly related to the
stable index w. This relationship follows indeed from a comparison with finite size
scaling. [1, 3, 7]

g
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As stated above the distribution function of the blockvariables X;y approaches a
distribution within the domain of attraction of the stable law with index @ and is
thus characterized by eq.(23). From the theory of domains of attraction of stable laws
[10, 21] follows that two cases must be distinguished. If @ < 2 then the distribution
of block variables has a power law tail and satisfies a scaling relationship similar to
(26) with N replaced by M. If @ = 2 then the distribution may have a power law
tail ¢ =% with o > 2 or not. In either case the distribution which is approached has
a finite variance. The scaling relationship for individual block variables analogous to
finite ensemble scaling (26),(27) is finite size scaling which holds in the limit M — oo
with a finite number of blocks, N < oco. Inserting N = (L/£)? into eq.(27) and
comparing with the finite size scaling hypothesis for the order parameter distribution

X=y [3> 4]
PL(T) =P (WL-%) (28)

yields the identification

v+28
v+8

= \g. (29)

| =

oy = =1+

Similarly for the energy X = E

wg=2—a=M\g (30)
is obtained suggesting that

wx = Ax (31)

holds generally except in those cases with wyx = 2 where the distribution of block
variables approaches a distribution within the domain of attraction of the Gaussian
which does not exhibit power law tails. The main conclusion from these considera-
tions is that violations of finite size scaling (and thus hyperscaling) [5] are related to
the general inequality @ < 2 in (20). These conclusions are new insofar as they are
obtained without using renormalization group arguments, and because they predict

that hyperscaling violations should never be observed for transitions of order less
than 2.



94

Tt remains to identify statistical mechanical model systems which exhibit anequi-
librium transitions. Such a class of models is most easily identified from the scaling
relation obeyed by the ensemble average of the block energies

y

i

=]

N
YExn L NHURE (32)
=1 ’

where £ indicates equality in distribution. For @ < 1 the energy of a composite
system is not extensive, and this indicates to search for anequilibrium transitions
among unstable systems.

An explicit example is the one dimensional Gaussian model [2]. Its exact free
energy density reads

_fk%=%10g1r—%10g(%(0+\/02—1{2)) (33)

where K = J/(kgT), kg is the Boltzmann constant, J the coupling, T the tempera-
ture and 1/c the standard deviation of the Gaussian single spin measure. The free
energy density shows an anequilibrium transition of order Ae = 1/2 at the critical
temperature Tmin = J/ (ko).

6. Dynamics near Anequilibrium Transitions

This final section discusses some aspects of the dynamics of macroscopic observables
Xn near anequilibrium transitions. The divergence of energy expectation values at
anequilibrium transitions indicates unusual dynamic behaviour because the energy is
the infinitesimal generator of time translations.

Any sequence of block configurations or block variables X;y may be embedded
into time as a sequence of snapshots

XN(t,') = XN (34)

where t; € R is the time sequence of observation instants. As N — oo the ensemble
limit becomes the long time limit. The notation X, = X will be used for simplicity.
The stochastic process X (t) is called stationary if

(X (8 = 7)o X (b = 7)) = (X(t2)-- X (t0)) (35)
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for all k> 1, all choices of ¢; and all r € R. Here (...} denotes averaging over
the random realizations of X. Stationarity expresses invariance of the correlation
functions under under the semigroup T'(7)

T(r) ftryentn) = flt1 =Tyt — 7) (36)
of right translations. The embedding defined in (34) allows to interpret the sequence
Ti=ti1—t>0 (37)

as decorrelation or decoupling times because the X;y are uncorrelated by virtue of
the ensemble limit. These decorrelation times are themselves random variables whose
distribution is determined by the microscopic time evolution and the decorrelation

criterion. The system will be called ergodic if the random decorrelation times have a
finite average,

’ 1
(T) = 1\}1_1}30 N(Tl +..478) < oo. (38)

There are three reasons for adopting this definition: Firstly it ensures the equality
of ensemble averages and long-time averages. Secondly it allows to observe their
convergence within a finite observation time. Thirdly, and most importantly, it gives
rise to the semigroup (36) of time shifts which in turn implies that the only functions
left invariant by the time evolution are constant.

The intimate relationship between ergodicity and stationarity appears if one stud-
ies the possible limit distributions for the decorrelation sums

In=n+mn+.+7mn (39)

in the ensemble limit N — oco. By the same considerations as in the static case
the decorrelation times must belong to the domain of attraction of some stable law
characterized by the parameters wx,r and (x,r. However now the possible limiting
stable distributions are restricted by the requirement of positivity. The limiting
distribution P(t) = limy_e Py(tDy + Cy) must vanish for t < 0. Here Py(t) =
Prob{Ty < t}. The positivity requirement restricts P(t) to be a stable distribution
with parameters 0 < wxr < 1 and {x7 = 1 or to be degenerate, P(t) = O(t — 1),
where ©(z) denotes the Heaviside step function. The degenerate distribution arises
from the case 0 < wx,r < 1 as the limit wxr — 1-.
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The important result is then that the only limiting distribution compatible with
ergodicity as defined in eq. (38) is the degenerate distribution @ = 1 whose con-
volution semigroup [10] coincides with the semigroup of time translations (36). The
convolution semigroup of O(t — 1) is defined by

Ty(#)f(t) = [ f(t—s)do(st™ ~1) = f(t =) < (40)

and is thus identical with eq. (36). Using T'(t) = Ti(t) the definition (35) of station-
arity may be rewritten for the one-point function as (1 — T(7)){X(t)) = 0 where 1
denotes the identity operator. Defining the infinitesimal generator A of a semigroup

T(t) by

(~A)f(z) = Jim 201 - T()f() (a1)
this becomes
(1= TE)X@) = [ T(s) (~A4) (X (1)) ds =0. (#2)

Using the well known fact that the generator A for the time translations is the
temporal derivative, A = d/dt, yields

4 x@y=0 )

the familiar formulation of stationarity for (X (t)).

The divergence of energies and entropies at anequilibrium transitions requires to
reconsider the notions of stationarity and ergodicity. The required generalization of
these concepts will be based on the convolution semigroup (40) for the equilibrium
case. In the general case the convolution semigroup is defined by replacing ©(z) in
(40) through the one sided limiting laws for T as [10]

T, (t)X(t) = /_ ‘: X(t - s)dP(st" 1) (44)

with ¢ > 0. For @ = 1 this reduces to equation (40). The generalization of equation
(42) takes the form

0= (1-Ta(r)"(X(®) =
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INw)'(~w) Jo 0<i<o/) TG +1) o\ w

with the fractional time derivatives of order w as infinitesimal generators of the
macroscopic time evolution. The usual definition of stationarity (43) now becomes

T x@) =o. (16)

The solution to this equation is not a constant but

(X(2)) = Cot=? . (47)

where Co is a constant. The temporal evolution of macroscopic variables may be
called stationary if the decay is algebraic with exponents smaller than unity.

Another interesting consequence [20] from identifying fractional derivatives as the

generators of the macroscopic time evolution follows from generalizing the equations
of motion for macroscopic observables as

=Xt
—= = BX(®) (48)

where B denotes a generalized Liouville operator. Laplace Transformation and using
Xo = X(t = 0) then yields

X(u) =u""1(u® - B)"'X,. (49)

Inverting the Laplace transform gives [20]

k=0

X(t) = (fo: f(—lct:+_1)3k) Xo (50)

as the final result. Evidently this solution represents a slow nonexponential decay
approaching algebraic decay in the long time limit.
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