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Recently Deutscher and Lareah! discovered a new mode of phase separation

in thin films of Al/Ge alloys. They observe the growth of circular "colonies"

whose densely packed appearance has been called "dense branching morphology"™~

The colonies consist of a highly branched starlike "island" of polycrystal-

line Ge inside a "lake" of monocrystalline Al which is only slightly larger

than the Ge island. Thus the Al forms a thin but essentially uninterrupted

rim around the Ge peninsulas. The whole colony is embedded in the amorphous

phase having an overall composition of 40% Al and 60% Ge. As these colonies

grow into the metastable amorphous surrounding they preserve their more or

less circular shape.

This immediately raises the question why on the one hand the Al/Ge-in-

terface shows an instability, while on the other the Al/amorphous boundary

does not. We investigate this question first. We then present the theore-

tical description of the new growth morphology. We outline the solution of

our equations and indicate how a unique growth velocity is selected. We

finally compare our results with experiment.

We first turn to the stability problem for the Al/amorphous interface:

During ordinary solidification from a melt the excess foreign atoms have to

be cleared away from the solid/liquid interface by chemical diffusion. If

this diffusion process has to occur into the metastable phase and over large

distances it will be more effective if the interface area is increased. This

leads to the Mullins-Sekerka instability and a dendritic morphology for the

growing crystal?

The MS—-instability is more formally derived from the diffusion equation

together with two boundary conditions for the moving interface. The first

boundary condition demands energy conservation across the boundary while the

second condition is a statement of thermodynamic equilibrium including the

Gibbs-Thomson correction due to surface tension. A steady state solution is

given by a flat interface moving with velocity v¥ into the metastable phase

in front of which the diffusion field decays exponentially. One then adds a

small perturbation € to the moving front
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C(2_,t) = 0, exp (ik-Py + at)

where F, denotes the position in the plane perpendicular to ¥. The problem
becomes to determine the amplification rate @ for a perturbation with wave-
vector k. The sign of @ will decide whether the perturbation is enhanced or
suppressed. Carrying out the linear stability analysis along the lines of
Langer? one obtains

D 1 2 w 2 1 1/2@ =~ 5g. +D ( z ~ 2d)k } { 5 + ke + ae)

as the relation between @ and k. In the above relation € = D/v is the diffu-

Sion length and d, is the so called capillary length which is determined by

the surface tension. The relation is valid for the symmetric model, i.e.

when the diffusion constant D in the solid equals that in the melt. The

usual argument® proceeds with two assumptions: 1. k& >> 1 assumes that the

diffusion length is very large (usually macroscopic). 2. @ << Dk’? assumes

that the time scale for diffusing a distance on the order of the wavelength
of the perturbation is much shorter than the time scale on which growth oc-

curs (quasistationarity). With these two assumptions one finds the Ms-

instability for wavelengths above A = (24§)3/?.

What distinguishes our case from solidification in a melt is the fact

that the diffusion constant in the amorphous phase is much smaller than in

a melt. Thus € is no longer macroscopic and we have to consider the case

k§ << 1. At the same time the quasistationarity assumption breaks down be-

cause the term @/D under the root can no longer be neglected. One finds that

@=0 at k=0 while wo = -D/2E* = -v’*/2D at the wavelength governing the MS-in-

stability. Thus in this case perturbations are damped out. For very long

wavelengths the damping becomes weak. This effect can also be observed in

the experiment.’

We now proceed to develop a set of equations describing the growth.

Compelled by the experimental evidence we arrived at the following central

features of our description: 1. The dominant diffusion is that of atomic Ge

backward from the Al/amorphous interface into the crystalline Al. 2. Atomic

diffusion in the amorphous phase is very slow compared with the crystalline

phase. 3. Nucleation and growth of Ge crystallites occurs only at the in-

terface between Al and Ge. 4. Nucleation of Al crystals in the amorphous

phase is much more frequent than that of Ge but still rare; it controls the

initiation of new colonies. Of these assumptions the first one is at the

heart of our understanding. It stems from the observation that the Al/Ge

interface is separated from the amorphous phase by an Al rim and can only

grow if Ge atoms diffuse across this rim. We argue that the interplay bet-

ween the Al/amorphous boundary and the Al/Ge boundary which act respective-

ly as source and sink for Ge atoms sets the length scale of the problem.

Note that the length scale is strongly temperature dependent .!?

To approach the problem mathematically we concentrate on the smooth

Al/amorphous boundary and describe the highly irregular Al/Ge interface in

an averaged fashion. We replace the local concentration of atomic Ge by its

radial average c(r) and that of crystalline Ge by its radial average p(r).

Then we have

dc _y vy, 9PoC . _ 1at Pe YS Oe (ta)
on the "left" inside the Al and

dc v7ge . 1yt Dp c (1b)

in the amorphous phase on the "right" of the interface. D, resp. D, is the

diffusion constant on the left resp. right. At the interface on has c = ¢,
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on the Al side (r=R_) and c = cg, on the amorphous side (r=R,). Taking ex-

cluded volume effects into consideration in these equations somewhat com-

plicates the analysis but does not change its essential features. We de-

scribe the growth process in its simplest form as

op = B 2at cp (2)

The phenomenological rate constant B describes the growth of the branched

Ge structure and thus incorporates nucleation and growth of Ge crystallites.

At the Al/amorphous interface, r = R(t), the diffusion field must obey mass

conservation:

dSe R(t) ( dc + p(B) }) =D, > + Da a (3)

Here p(R) is a small seed concentration of crystalline Ge at the boundary

which is seen in the experiment. Ac = cg - c, denotes the discontinuity in

the concentration across the interface (miscibility gap).

The ramified Al/Ge boundary close to the Al/amorphous boundary acts as a

sink for the diffusing Ge and from Eq. (3) this implies a finite concentra-

tion gradient and thus a finite velocity for the moving front. Searching

for constant velocity profiles we write

c(r,t) = Cy £ (z) resp. p(r,t) = C, g (Zz) (4)

where R = vt , z = (xr-R)/€ , on is the concentration of the in the amorphous

phase and § = D,/v is the basic length scale in the problem. For suffi-

ciently long times (v?t/D,>>1) the curvature of the interface can be neg-

lected and one obtains a closed nonlinear equation for f >

fi +4" = Bf (1 - f - f') (5)

with the boundary conditions

£(-cc) = £'(-cc) = 0 (6a)

£(0) = c,/c, (6b)

£'(0) = 1-c,/c, - € (6c)

where B = c_BD,/v’ is a dimensionless control parameter and € = g(0) is the

small seed concentration at the interface introduced in Eq. (3). We display

the solutions to Eq. (5) in f-f'-space in Fig. 1 . Trajectories fulfilling

the boundary conditions at z=-e emerge from the origin with a slope f'/f =

1/€ = [-1 + (1+4B)}/21/2 . The straight line 1-f-f'=0 is a separatrix. The

boundary condition Eq. (6c) determines a straight line parallel to the sepa-

ratrix. If we choose a value for B we must follow the associated flow line

starting from (0,0) until it intercepts this straight line and read off the

corresponding value £(0) = cy/C, - This determines B and thus v as a func-

tion of c, (see inset of Fig. 1).

After demonstrating how the boundary conditions effect a velocity selec-

tion we compare the results with experiment .* The growth velocity is found

to be constant as predicted. For slow velocities, i.e. B>>1, one derives the

relation v = (cy /c,)D,/§S. It has been checked experimentally by comparing

the temperature dependence of D/ECG with that of v and seems to be in quanti-

tative agreement. If the temperature dependence of v were given by that of

D, one would expect a temperature independent length scale. Instead we have

Vo (BD, )?/? which shows that both B and D, contribute. Ina first check
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Fig. 1 : Trajectories fulfilling the boundary conditions at z=-e for selec-

ted values of B (B = .2,1,5,25,100,500).
Inset: Dependence of £(0)=c,/c, on B for trajectories fulfilling

all boundary conditions with € = .001

this relation has been found consistent with the values of the activation

energies of the quantities involved.’ In addition the values of c; and c,

have been checked against the Al/Ge phase diagram.” In conclusion we have

shown that our simple analysis agrees qualitatively with all known experi-

mental facts. Further theoretical work has to concentrate on a microscopic

model for the nucleation and growth process. More detailed experimental

data are needed to explore the limits of quantitative agreement.
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