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We construct deterministic fractal lattices using generators with tetrahedral symmetry. From the
corresponding master equation we determine the spectral dimension d and prove that d<2. Further-
more we extend our set of fractals (with d dense in [1,2]) by direct multiplication, thus obtain-
ing fractals whose d are dense in [1,°[ .

It was suggested that many disordered media

are fractal structures! This motivates us to

study deterministic fractal lattices by investi-

gating random walks on them. We concentrate on

lattices with finite order of ramification! °¢

These are characterized by the property that

the elimination of a preassigned finite number

of lattice bonds is sufficient to isolate an ar-

bitrarily large compact subset of the infinite

structure.

We start from the class of finitely ramified

fractals having tetrahedral symmetry whose best

known representative is the Sierpinski-gasket.

We briefly describe their construction and give

their fractal (Hausdorff-) dimensions. Analysing

the master equation we then turn to their spec-

tral (fracton) dimension. Finally we consider

also a class of infinitely ramified fractals ob-

tained by direct multiplication.

Deterministic fractal lattices are completely

described through a geometrical generator and an
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FIGURE 1
Three generators for finitely ramified fractals

iteration prescription. Figure 1 shows a variety

of two-dimensional (d=2) generators whose side-

length is called b. The Sierpinski-gasket corre-

sponds to the special case b=2. In Figure 2 we

exemplify one step of the iterative construction

for the generator with b=5 of Figure 1. Infinite

repetition yields the full fractal lattice. A

finite number of iterations will be called a

stage-n-structure, where n=1 corresponds to the

generator.

 

FIGURE 2
One step in the iterative construction of the
fractal

We now turn to the Hausdorff-dimension d of

the fractal! which may be expressed as

= Lin N(n+1)/N(n) where N(n) is the number

of lattice points in a stage-n-structure. From

the relation N(n+1) = N(1) + N[IN(n)-d-1] we have
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d = In N/Inb (1)

where N denotes the number of upward pointing

triangles (resp. hypertetrahedrons) inside a gen-

erator. Note that the number E(n) of edges ina

stage-n-structure obeys the recursion relation

E(n+1) = N E(n) (2)

which allows to determine d through E(n).

To obtain the spectral dimension d, we use

the master equation describing a nearest neigh-

bour random walk on the lattice. Suppose the

walker starts at site ¥y at time t=0. The proba-

bility P(r, .t) to find the walker at site r, at

time t obeys the master equation

d _ > . >
ae P(r. »t) 5, [w, ;P(r,.t) w. «P(r, st)] (3a)

where the sum runs over all ¥; that are nearest

neighbours to vr. We specify the transition
> >

rates wi; from r to r; through

>

z(r5) Wig SW const (3b)

where w is a constant rate and z(r.) is the num-

ber of nearest neighbours of re. Laplace-trans-

forming Eq.(3) with initial condition P(¥, 50) =

= oe ; gives
Piero

(1a) PCF; ou) F P(r;.u)/z(r;) = 6x = /w (4)
ji) i7'0

where we have set a=-u/w. Due to the self-simi-

larity of our lattices Eqs.(4) may be solved via

a decimation procedure which inverts the itera-

tive construction. Only fractals with connected

generators will be considered here. For these

every point of the generator can be reached from

any other point through a succession of bonds in

which two consecutive bonds have one point in

common.

To be specific we write Eqs.(4) restricted to

a single generator whose corners SpeSqoree dq

survive the decimation step. The deleted interi-

or sites are labelled d,,....dy (M-N(1)-d-1) be-
ginning with the d nearest neighbours of Sq such

that Syd, and S, are collinear (1si<d). Intro-

ducing the vectors G,=(Q(d, su)... 50(

Gy=(Q(Sq ou) s--+ Q(Sysu)) with Q(
we get for the single generator

-A,IQ, = AQ, (5)
Here D is the diagonal MxM-matrix given by

dou) and

r, su) =P (r.5u)/An)

[(1-a)D

(D).5= z(d,). The matrices A, and A, are subma-

trices of the adjacency matrix A of the genera-

tor. The MxM-matrix A, is obtained from A by

eliminating the rows and columns corresponding

to the corners, while the Mx(d+1)-matrix A, re-

sults from elimination of d+1 rows corresponding

to the corners and M columns corresponding to

interior sites.

Before proceeding with the decimation we

have to analyse the invertibility of the matrix

(1-a)D-A,.

is diagonally dominant i.e. that we have

{| (D-A 2 | (D-“Ay ).ig for all 1sisM. This
| )igl 2~ De

can be seen as follows: The element (Ay);

First we note that the matrix D-A,

ij
equals 1 or 0 depending on whether the pointqd,

is connected to d. or not. Thus |(D-“Ads 1= 204a.)Ma

M
and Byeq | (D-Mag = BeiAa . Moreover the

row sums One give the number of nearest

neighbours of d, which are also interior points

of the generator and hence equal at most 2(4, ).

In addition D-“A, is irreducible which means that

there is no permutation matrix B such that

B(D-A, )B

alent to the connectedness of the generator?

“1 peduces to block form. This is equiv-

Knowing that (D-A,) is an irreducibly diagonally

dominant matrix with positive diagonal elements

and nonpositive off-diagonal elements, we infer

from the theory of nonnegative matrices that its

inverse (D-A,)7! exists and is elementwise posi-

tive? Furthermore, since for u20Q we have as0, it

follows that i-a 2 1 and therefore also

[(1-0)D-A,17'

(£(1-a)0-A17"), 5 > 0 (6)
for all i,j anda < Q.

exists and fulfills

We can now solve Eq. (5) for one of the

nearest neighbours of So say 4,» to obtain
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d
Q(d,,u) = g(a)Q(Spu)+ J hy(a)Q(S; ou) (7a)

i=
with

g(a) = (£(1-a)D-Ay]17'Ay) 44 (7b)
and

hor) = (£(1-0)D-Ay1|AQ) 4 gay (7c)
Using the rotational symmetry of the tetrahedral

generator the same result obtains for all near-

est neighbours of So° The calculation is then

repeated for.the 1 generators to which *o be-

longs. We now write Eq.(4) for P(S§geu) a

1 d

~&e e /weld(1-0)Q (S,,u) = ‘ (8)
oD |" tS . J 20

where the different generators are distinguished

by upper indices k, isks1. For the a(dt su) we

insert the results from Eq.(7) and get

1 od
-6 z /twh ol +1d(1-$(0))Q(Sp su) =) } agiu) (9)(P°o k=1 #1

with o(a)=1-{[1-a-g(a)]/h(a)} and h(a)=2e, hs (a).

Eq.(9) involves only Sq and the corners of adja-

cent generators, thus completing the decimation.

We proceed to show that Eqs.(8) and (9) for

Sq in the full resp. decimated lattice are in-

deed identical in the limit a-0. Consider a

stage-n-structure for large n. The stationary

solution (t+) is then

Q(r,) = P(r,)/z(r,) = const (10a)

as can be seen from Eq.(3). The constant follows

from conservation of probability NOM pCR,P(r.,t) =1;

const = 1/s\No) 2(¥.). (10b)j

Inserting (10a) into Eq.(7) gives g(0)+h(0) = 1

which in turn means that $(0)=0 via Eq.(9). With

Nin), r.) = 2 E(n) where E(n) is the number of

edges in the stage-n-structure we insert Eq.(10)

into Eq.(8) for Fo=Sq to obtain

~1/w+ld(1-a)/2E(n) = 1d/2E(n)

valid for neo and a0. After one decimation

step this becomes Eq.(9)

-1/{wh(a)]+1d{1-¢(a)]/2E(n-1) = 1d/2E(n-1)

Eliminating w from these equations we get

h(a) = aN/o(a) and after taking the limit a0

we are left with

h(O0) = N/K , (11)

where x=¢'(0). This equality has been called

fractal Einstein relation? Consider now Eq.(9)

for a around 0 where we have o(a) = Ka. In this

region Eq.(9) for the renormalized quantities

NQ(S, su) and rates w/k is identical to Eq.(8)

for the original quantities Q and w.

We now determine the spectral (fracton) di-

mension d which for random walks follows from

the probability to be at the origin P(¥p st).

For longer times one has”

P(st) Crwe 9/2

which after decimation reads

N P(Fy st) ~ (K/wt)/?

and thus

d= 2 In N/In x = 2(t-In h(0)/In NY”) (12)

where Eq.(11) was used for the second equality.

In previous works we have evaluated d explicitly
6,7

for many structures and we have also shown

how to construct fractals for prescribed d-val-

es! 1<ds2, densely filling the interval [1,2].

Here we note that for the above fractals d<2.

From inequality (6) plus the fact that A, is

nonnegative we have, using Eq.(7), g(a) > 0 and

h(a) >-0 for all a. Since g(0)+h(O)=1 it fol-

lows that g(0),h(0)<1. Thus -» < In h(0) < 0,

while In N > 0 because of N>1. This implies

(t-1n h(0)/In Ny 1 and from Eq.(12) there-

fore d < 2.

Finally we extend the types of fractals by

direct multiplication and thereby provide a

dense set of d-values in [1,°[. As an example

we show in Figure 3 the stage 2 result of mul-

tiplying a Sierpinski-gasket with a one-dimen-

sional lattice. We call this the "Toblerone"-

lattice? Its spectral dimension is obtained

from the low-frequency behaviour of its eigen-

modes. In this model one envisages the lattice
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FIGURE 3
The Toblerone lattice: direct product of a Sier-
pinski-gasket with a linear chain

sites as occupied by masses mz(*, ) connected

along the bonds through springs of strength f.

For low frequencies w the density of states

obeys??? o(w) ~ wt |. The equations of motion

for the Fourier-transformed displacements Ar..w)

are just Eqs.(4) without the inhomogeneity. Fur-

thermore, a corresponds to o = mu/f. Writing

explicitly Pe=(X55Y e024) we have

-OP (X»Yis Zn) “t POGyp Zo) -P( Xia Yio Zw)] ( 1 3)

where we note that there are six nearest neigh-

bours, z(;)=6, on the Toblerone lattice. We can

split the summation over nearest neighbours in

Eq.(13) into a linear and a. Sierpinski part as

OP (Xs ¥is Z) = 2P(x, is Z; ) -P( XsYo Z +1) -P(XisYisZ.-1) +

J

where we assumed the lattice spacing to be one

and have suppressed the w-dependence for nota-

tional ease. Fourier-Transformation with respect

to z, P{x,y,k) = ze 1K? P(x,y,z), yields

(a-2+2cos k) P(Xsy.sk) =fPOM)POgap hl (15)

For fixed k Eqs.(15) are exactly the equations

for the Sierpinski-gasket if we take as spectral

parameter a, = a-2(1-cosk). Since we are inter-

ested in the long wavelength limit k+0 we expand

a, = ack. Thus from a=mot/f, oemug/f and k*=
= mug/F we have we = we + wh where subscripts

+ b [P( XisYinZ, ) “P(%p¥eI (14):

T,C or S refer to the Toblerone lattice, the

chain or the Sierpinski gasket. To compute pr (w)

we now count the number of modes with frequen-

cies less than w, N7(w) = Lye(w" dw! . Since

Eqs.(15) uncouple with respect to k we obtain

N-() by summing Pg (w! )dw' o, (w" ) duo" subject to

the condition w'2 + w"*<w2. Using Po(w) vw s7|

and Pp (w) ~ const we get

N7(w)= ff

wl +0" Sw a
Differentiation yields pz (w) ~w > and therefore

d
lerone lattice. Evidently one obtains higher di-

Pg(w' )ep(w")dw' dw" ~ wis!

T= do+1 for the spectral dimension of the Tob-

mensions d by multiplying our fractals with

higher dimensional regular lattices. The obtain-

able values are dense in [1,~[.

Summarizing we have concentrated here on

general properties of finitely ramified fractals.

For a general class we have shown that d < 2.

In addition we have indicated how to build infi-

nitely ramified fractals whose d-values are lar-

ger than 2 and form a dense set. -amdg] ~
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