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Summary

This paper deals with the analysis of spatial images taken

from microscopically heterogeneous but macroscopically

homogeneous microstructures. A new method is presented,

which is strictly based on integral-geometric formulae such

as Crofton's intersection formulae and Hadwiger's recursive

definition of the Euler number. By means of this approach

the quermassdensities can be expressed as the inner

products of two vectors where the first vector carries the

`integrated local knowledge' about the microstructure

and the second vector depends on the lateral resolution

of the image as well as the quadrature rules used in

the discretization of the integral-geometric formulae. As

an example of application we consider the analysis of

spatial microtomographic images obtained from natural

sandstones.

1. Introduction

Components (or phases) of microstructures are usually

considered as sets which may have `smooth surfaces' almost

everywhere. (In the simplest case a component is described

by a locally finite union of compact convex sets, see, e.g.

Schneider, 1993.) We assume that the structure is

microscopically heterogeneous but macroscopically homo-

geneous, i.e. a component a is modelled as a macroscopi-

cally homogeneous random set. The homogeneity of a

allows us to introduce the following geometric character-

istics: the volume density, the surface density, the specific

integral of mean curvature, and the specific integral of total

curvature.

These quantities play a central role in the quantitative

characterization of microstructure components. Up to

multiplicative constants, these geometric characteristics

are the densities of the (random) quermassintegrals defined

for a homogeneous random set, and the list of the four

geometric characteristics is complete in some sense (cf.

Hadwiger's characterization theorem, see, e.g. Schneider,

1993; pp. 210f). Procedures for estimating the quermass-

densities are based on Crofton's intersection formulae, see

Schneider (1993), p. 235, as well as a modification of

Hadwiger's recursive definition of the Euler number, see

Ohser & Nagel (1996) and Nagel et al. (2000).

In recent years, a generalized geometric characterization

based on the volume density, the surface density, and the

densities of the two curvature integrals was suggested for

the geometric treatment of porous and heterogeneous media

in physics (see Hilfer, 1992a, b; 1996). These geometric

characteristics can be readily incorporated into the mean

field approximation for the microscopic boundary value

problems describing transport phenomena in these media. It

seems that the resulting parameter-free predictions are in

good agreement with experiment, see Widjajakususina et al.

(1999).

The component a is observed in a cuboidal lattice of

points, i.e. we consider spatial digital images of the micro-

structure. The discrete version of a (random) set forms a

(random) binary digital image. Depending on whether a

lattice point is in a or in its complementary set, this point is

assigned the Boolean values 1 or 0, respectively. The

selection can be performed, e.g. by thresholding brightness

values to separate the a-phase from the background.

For the purpose of application in image analysis, the

integrals that occur in the Crofton's intersection formulae

and Hadwiger's recursive definition are discretized in such a
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way that `measurement' of the geometric characteristics

can be performed by simple `counting' of elements in a

digital image where the elements are voxels or neighbour-

hood configurations of voxels. The observation of the

structure in a point lattice implies a corresponding

discretization of the integral-geometric formulae.

A very powerful technique of image processing is filtering

of digital images, but filtering can also be applied as a tool of

image analysis. The statistical estimation of the quermass-

densities suggested in the following includes linear filtering

of the binary image as a basic tool. The algorithm presented

in this paper consists of three steps:

1 Filtering of the binary image (the `labelling of neighbour-

hood configurations' in the binary image),

2 generating the vector of absolute frequencies of neigh-

bourhood configurations (the `integration step'), and

3 estimating the geometric characteristics from the abso-

lute frequencies of configurations (the `analysis step').

By means of filtering, each neighbourhood configuration

in a binary image is assigned an integer. Thus, the result of

the filtering is an image of integer valued voxels. The

generation of the absolute frequencies of configurations can

be understood as a discretized version of the computation of

the translative integrals occurring in Crofton's intersection

formulae, and the vector of absolute frequencies carries the

`complete information' of the image about the quermass-

densities; it can be used as the data base of statistical

estimation. As the neighbourhood configurations are

represented by `grey-tones', the vector of absolute frequen-

cies of the neighbourhood configuration in the binary

image is nothing other than the vector of the absolute

frequencies of grey-tones in the filtered image.

2. The continuous case: integral-geometric formulae

Firstly, we review some integral-geometric formulae widely

used in image analysis. We consider a set X of the

3-dimensional space that belongs to the convex ring, i.e.

X is a finite union of compact convex sets. Set X can be

understood as a particle of a microstructure: functionals of

X are commonly referred to as particle parameters. We are

interested in the quermassintegrals of X, which are up to

multiplicative constants the volume V(X), the surface area

S(X), the integral of the mean curvature M(X), and the

Euler number x3(X). We remark that K(X) � 4px3(X) is the

integral of the total curvature of X. (The upper index

indicates the dimension of space on which the functionals

are defined.)

Let Ex denote a plane in space depending on the

parameter x [ R3. We introduce spherical polar coordi-

nates x � (r, v ) where v represents the normal direction of

the plane and r is the distance of the plane from the origin.

It is convenient to identify the direction v � (q , w ) to be a

point on the positive half sphere where r [ R represents the

intersection point of the plane E with a straight line

orthogonal to E and passing through the origin; define

Er,v :� E2r,2v for r , 0. The intersection X > Er,v , of a

spatial object X and the plane Er,v is said to be a

2-dimensional section or a planar section of the object X.

A straight line e in the 3-dimensional space can be

characterized by the Euler angles (f , q , w ) and its distance

r from the origin or, alternatively, by the direction v �
(q , w ) describing the direction of the straight line in space

and the point y � (r, f) [ R2 that represents the

intersection point of e with a plane E0,v orthogonal to e.

Thus, we write e � er,f ,q ,w or, equivalently e � ey,v for a

parametric representation of a straight line in 3-dimen-

sional space; er,f ,q ,w :� e2r,2f ,q ,w for r , 0. The intersec-

tion X > ey,v is said to be a 1-dimensional section or a

linear section of X. Because X is not necessarily a convex set

a linear section of X can consist of a family of chords.

A `0-dimensional section' is obtained when intersecting

the set X with a set {x} that consists only of the point

x [ R3. If the point x is covered by the set X then

X > {x} � {x} and, otherwise, this intersection is empty,

X > {x} � À.

By means of Crofton's formulae, the functionals of a

3-dimensional set X are expressed in terms of the func-

tionals defined for lower-dimensional sections. For a

2-dimensional section, let A, L2, and x2 denote the area,

the boundary length, and the planar Euler-number,

respectively. Notice that C � 2px2 is the integral of curva-

ture. A linear section of the set X can consist of a family of

chords; L and x1 are their total length and the chord

number, respectively. Finally, we introduce the Euler

number x0 of a 0-dimensional section. A survey of the

Crofton formulae is given in Table 1.

Consider now a pair of parallel section planes Er,v and

Er1D,v having the distance D. We give formulae that link

the Euler number of a spatial set to functionals of section

profiles observed in pairs of parallel sections. Denote

Yr � (X > Er,v )±(r,v ) the section profiles shifted (or pro-

jected) onto the plane E0,v , where X±(D,v) means the

translation of X by ± (D,v) [ R3. The sets Yr and Yr 1 D are

assigned to the section profiles of X obtained by the

intersection with the planes Er,v and Er1D,v ; both sets are

subsets of the same plane E0,v and operations like union or

intersection of them are well-defined. Consider a d-dimen-

sional set X belonging to the convex ring. If the set X is

morphologically open and closed with respect to the

segment sD ,v � [o,(D,v)], Hadwiger's recursive definition

of the Euler number can be rewritten as

x d�X� � 1

D

�
�x d21�Yr < Yr1D�2 x d21�Yr�� dr �1�

and, equivalently,

x d�X� � 1

D

�
�x d21�Yr�2 x d21�Yr > Yr1D�� dr �2�
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with the initial setting x0({0}) � 0 and x0(À) � 1, see

Ohser & Nagel (1996) and Nagel et al. (2000). The integrals

are over the orthogonal space of the d 2 1-dimensional

hyperplane Er,v. By means of these recursive formulae, the

Euler number xd defined on d-dimensional space can be

expressed in terms of the Euler number defined on lower-

dimensional spaces.

3. Neighbourhood configurations in binary images

Turn now to homogeneous structures. Instead of a bounded

deterministic set X we will consider a sample of an

unbounded random set a observed in a bounded spatial

window W. It is assumed that a is homogeneous (i.e. its

distribution is invariant with respect to translations).

Furthermore, we assume that realizations of a are 2 with

probability one 2 locally finite unions of compact convex

sets.

To guarantee the unbiasedness of estimators introduced

in the following, we will often suppose that a is almost

surely morphologically open as well as morphologically

closed with respect to all segments of the set S containing all

(closed) edges, faces' diagonals, and space diagonals of the

unit cell of the lattice used in the discretication of a. The

zonotope obtained as the Minkowski sum of all segments

s [ S is the smallest set having this property. We remark

that some surface rendering algorithms applied in computer

graphics generate polygonal surfaces (e.g. triangulation by

the wrapper algorithm, see Lohmann, 1998) such that the

corresponding sets are morphologically open and morpho-

logically closed with respect to all segments in S. As a

consequence, the random set a has a polygonal surface

where the edges of the polygons are of the form rs 1 x for

r $ 1, s [ S and x [ R3. Hence, a as well as the closure of

the complementary set ac are locally finite unions of

compact convex sets having nonempty interior.

It is convenient to estimate the densities of the quermass-

integrals introduced in the previous section. Our choice for

the notation is the same as suggested by the early school of

stereology: VV denotes the volume density of a, SV is the

surface density, and MV and KV are the densities of the

integral of mean curvature and the integral of total curva-

ture, respectively. Let W be a compact convex set of non-

empty interior. Then the densities mentioned above can

formally be introduced as the limits VV� limr!1 EV(a > rW)/

V(rW), SV � limr!1 ES�a > rW�=V�rW�, MV � limr!1
EM(a > rW)/V(rW) and KV � limr!1EK�a > rW�=V�rW�,
see Mecke et al. (1990; p. 59f).

Clearly, the volume fraction of the component a and the

pore space ac complement one another, VV(a) 1 VV(ac) � 1.

Furthermore, under weak assumptions for a (in particular

when a is almost surely morphologically open and closed

with respect to all segments of S) we have SV(a) � SV(ac),

MV(a) � ±MV(ac), and KV(a) � KV(ac). (These relationships

basically follow from the fact that the Euler number of a

closed hollow sphere in d-dimensional space is equal to

1 2 (21)d, d $ 1. For a random set a with polygonal

surface the validity of the equations can be shown by means

of the inclusion-exclusion formula, see Appendix.) In other

words, it is sufficient to determine the quermassdensities of

only one component of the microstructure. This is of

practical importance because usually for binary micro-

structures (especially for the sandstones considered in this

paper) the roles of a and ac are exchangeable in some sense.

Spatial images of microstructures can be produced by

computer assisted tomography (CT scans) and similar

techniques using for example X-ray scattering, magnetic

resonance, or isotope emission, see Russ (1992), Chapter 7,

and Pan et al. (1998). Another technique of formation of

Table 1. Survey of the functionals defined for three-dimensional sets. The measure m is the rotation invariant measure on the unit sphere V

with m (V) � 4p. By means of Crofton's formulae, these functionals are represented by their counterparts defined on lower dimensional

spaces. Notice that K(X) � 4px(X). The innermost integrals are over the orthogonal spaces of E0,v and e0,v, respectively, and the outer

integrals are over the unit sphere V in v. The innermost integral `v(X) :� R
x (X > ey, v) dy is the specific total projection of a.

d � 3 d � 2 d � 1 d � 0

V(X) �
�

A�X > Er;v� dr �
�

L�X > ey;v� dy �
�
x�X > {x}� dx

S(X) � 4

p

� �
L�X > Er;v� drm�dv� � 4

� �
x�X > ey;v� dym�dv�

M(X) � 2p

� �
x�X > Er;v� drm�dv�

K(X)
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3-dimensional images is by means of an interference

confocal scanning microscope under ultrashort pulsed

beam illumination, see Gu (1998). Examples of 3-dimen-

sional images obtained by X-ray tomography are shown in

Fig. 1.

One can choose between various types of discretization of

3-dimensional structures depending on the choice of the

spatial lattice where we observe the structure. Examples are

the cuboidal lattice, the face centred cubic lattice, and the

body centred cubic lattice. Further ideas for spatial lattices

that might be useful in image analysis could be taken from

crystallography. However, depending on the preferred

scanning technique, it is common to use cuboidal lattices,

where the unit cell forms a cuboid of edge-lengths D1, D2

and D3. The edge lengths of the unit cell are the lattice

distances in the x-, y- and z-directions, respectively, and

their inverses 1/D1, 1/D2 and 1/D3 are said to be the lateral

resolutions. The lattice distances may be small with respect

to the elongation of the objects or features occurring in the

a-phase.

Let a spatial lattice L be given by a sequence {xijk, i � 0, ¼,

n1, j � 0, ¼, n2, k � 0, ¼, n3} of points xijk � (iD1, jD2, kD3).

The spatial window W forms the cuboid [0, n1D1] �
[0,n2D2] � [0,n3D3] consisting of n :� n1n2n3 cuboidal

cells of volume VD � D1D2D3. As components of the spatial

lattice we will consider vertices, edges, and faces of the

cells, and the cells of the lattice itself. The (half-open) cell

[0, D1) � [0, D2) � [0, D3) is said to be the unit cell of the

lattice. (For the cuboidal lattice the set S consists of 13

segments: 3 edges, 6 faces' diagonals, and the 4 spatial

diagonals of the cuboid.)

The binary image a> L can be understood as a matrix

B � (bijk) of the components bijk � 1a(xijk) where 1a(x) is

the characteristic function of a. (A component bijk of a

spatial image is a voxel.) Surroundings of voxels form

image components of higher order, and as the most simple

surrounding we consider the 2 � 2 � 2-neighbourhood

configurations. The 2 � 2 � 2-neighbourhood configura-

tion of the voxel bijk corresponds to the cell assigned to the

lattice point xijk. It consists of the eight voxels bijk, bi1jk,

bi,j11,k, bi11,j11,k, bij,k11, bi11,j,k11, bi;j11;k11, and

bi11;j 11;k11.

3.1. Labelling of neighbourhood configurations

The neighbourhood configuration in a binary image can be

detected by linear filtering, which can be understood as the

convolution of the binary image B with a given filter mask

F, the result is the grey-tone image G � B * F. Because we

are interested in the 2 � 2 � 2-neighbourhood configura-

tions, we take a filter mask F1, consisting of eight

coefficients fijk, and if the coefficients are chosen as powers

Fig. 1. Visualizations of three-dimensional images of natural sandstones (a) Berea sandstone (b) a weakly consolidated sandstone. The rock

matrix is shown transparent, whereas the pore space is opaque. The three-dimensional data were obtained by computerized

microtomography. The lateral resolution was uniform over all directions; D � 10 mm for (a) and D � 30 mm for (b). The determination

of the geometric characteristics of these porous media is a prerequisite for studying transport properties such as fluid flow or sound

propagation in oil reservoirs, aquifers or other materials, see Biswal et al. (1998).
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of 2, the components gijk of the grey-tone image G are given

by gijk �
P1

i;j;k�02i12j14kbijk for i � 0, ¼, n1 2 l, j � 0, ¼,

n2 ±1, and k � 0, ¼, n3 ±1. The integer gijk can be under-

stood as the coding of the 2 � 2 � 2-neighbourhood

configuration of the voxel bijk. Note that the mapping

B!B * F1, is a one-to-one mapping.

Because of the size of the filter mask F1, the grey-

tone image G has 8 bits per voxel. The linear filtering is

restricted to the reduced window W1 � [0, (n1 2 1)D1] �
[0, (n2 2 1)D2] � [0, (n3 2 1)D3].

We remark that the coding of neighbourhood configura-

tions in binary images described above is not original. Its

use in image processing was first suggested by the Centre

de Morphologie MatheÂmatique of the EÂcole Nationale

SupeÂrieure des Mines de Paris, see Serra (1969).

3.2. The absolute frequencies of configurations

The absolute frequencies of 2 � 2 � 2-neighbourhood

configuration hk in the binary image B can be obtained by

simply counting the voxels in G which have the grey-tone

value g. Let d be Kronecker's delta, i.e. d`(g) � 1 for g � `,

and d`(g) � 0 otherwise. Then

h` �
Xn121

i�0

Xn221

j�0

Xn321

j�0

d`�gijk�; ` � 0;¼;25

Clearly, the vector h can be obtained directly from the

binary image B where an explicit computation and saving of

the filtered image G is avoided (see Ohser & MuÈ cklich,

2000). For example, the component h255 can be expressed

as the number of those cells for which all vertices are in a.

This can be written as

where #() denotes the cardinal number of configurations in

the binary image and the full disc X indicates that a cell's

vertex hits the a-phase. The estimation of h represents the

`integration step' in the algorithm, and it is easy to see that

the number of operations of a proper algorithm for the

computation of h is of order O(n), i.e. linear in the image

size.

Notice that the vector hc of the frequencies of neigh-

bourhood configurations of the complementary set ac

can be obtained directly from h. One gets hc
` � h2552`,

` � 0;¼;255.

4. Estimation of the quermassdensities

The vector h � (h`) comprises the data for a basic statistical

analysis of the microstructure; h can be understood as the

`integrated local knowledge' about the binary image B. For

example, the total sum of the h` is simply the cell number n

of the lattice, m � P
h` and thus the volume of the reduced

window is simply obtained from V�W1� � VD

P255
`�0 h`.

Furthermore, from the condensed information about the

binary image represented by the vector h, one can estimate

the geometric characteristics VV, SV, MV and KV as described

below. Because the filtering is restricted to the reduced

window W1, estimates of these geometric characteristics

will be `free of edge effects'. More precisely, bias in estimates

of SV, MV and KV is not due to the intersection of a with the

edge of the window W.

4.1. Volume and volume density

The volume of a restricted to the window W, can be

estimated using the Crofton formula

V̂�a > W1� � VD

Xn121

i�0

Xn221

j�0

Xn321

j�0

1a�xijk�

where 1a(x) � x (a > {x}) is the characteristic function of

a. This can be expressed as the sum of the volumes of those

cells for which the (000)-vertices of the lattice cells hit a

and the other ones are arbitrary (covered by a or its

complement ac). The codes of these configurations are odd,

and hence, the sum of the h` is taken over odd index `,

where 1a(x) � x (a > {x}) is the characteristic function of

a. Here, the full disc X indicates that the (000)-vertex hits a,

whereas a vacant vertex means that this vertex is covered

either by a or by its complement ac.

It is immediately clear that V̂�a > W1� converges to the

true value V(a > W1) as the volume of the unit cell

converges to 0, VD ! 0 (and n ! 1). Furthermore,

because a is assumed to be homogeneous (i.e. the

distribution of a is invariant with respect to Euclidean

motion), the estimator VV � 1=n
P127

`�0 h2`11 is unbiased for

the volume density VV´ of a.

By means of the usual binary bitwise Boolean operators

this estimator can be rewritten as

VV � 1

n

X255

`�0

h`d`�` _ 1� � 1

n

X255

`�0

h`�1 2 d`�`^ : 1�

� 1

n

X255

`�0

h`�1 2 d0�` ^ 1��

It is easy to see that VV can be expressed as an inner

product of h and a vector v, Vv � kh, vl, with v` � 1/n for

components of v with odd index ` and v` � 0 otherwise.

O N T HE ANALYSIS O F SPATIAL BINA RY IMAGES 307

q 2001 The Royal Microscopical Society, Journal of Microscopy, 203, 303±313



4.2. The surface density

The estimation of the surface density is based on the Crofton

formula for 1-dimensional sections. For the purpose of

application, now the segments in S are interpreted as `test

segments'. We introduce polar coordinates (rv, wv): rv and

wv � (qv, wv) are the length and direction of the vth seg-

ment, respectively, and Dij :�
��������������������������
�Di�2 1 �Dj�2

q
and D123 :����������������������������������������������

�D1�2 1 �D2�2 1 �D3�2
p

are the lengths of the diagonals of

the ij-face and the lengths of the spatial diagonals,

respectively.

For example, the segment v � 9 formed by the diagonal

between the (000)-vertex and the (111)-vertex is of length

r9 � D123, and hence, in our lattice the total length of

segments corresponding to the direction v9 � (q9, w9) is

equal to nD123. Consider now the area of the total projection

`9 of a> W with respect to the direction v9. An estimator

of `9(a > W) is obtained from cells which hit the boundary

of a. Consider those cells for which the (000)-vertex hits a,

whereas the (111)-vertex hit the complementary set ac. We

get

Note that the ratio VD/D123 is the area of the unit cell of

the planar point lattice obtained by the intersection of the

segments of direction v9 and a section plane perpendicular

to these segments. The density of `9 ± the area of the total

projection per unit volume `V(v9) ± can be estimated using

`V(v9) � `9(a > W)/V(W). Applied to the Euler number

x1, Hadwiger's recursive formula yields

`V�v9) � 1

nD123

X255

`�0

h`d`�` _ 1��1 2 d`�` _ 128��

� 1

nD123

X255

`�0

h`d`�` _ 1�d0�` _ 128�

As the estimator of the volume density, `V(v9) can be

rewritten as an inner product, i.e. `V(v9) � kh, p9l with a

vector p9 of components p9
`
� 1=�nD123� for ` � 1, 3, ¼,

127, and p9
`
� 0 otherwise.

For an arbitrary lattice direction vv, the estimator of

`V(v v) is of the form

`V�vv� � 1

nrv

X255

`�0

h`d`�` _ k0;v�d0�` ^ k1;v�; v � 0;¼;25;

�3�
where k0,v and k1,v are coefficients of the filter mask F1. A

survey of the quantities used in this estimator is given in

Table 2. Clearly, for correspondingly chosen vectors pv of

length 256, the estimators `V(v v) can be rewritten as

`v(vv) � kh, pvl, v � 0, ¼, 25.

The estimator (3) is unbiased if a is (almost surely)

morphologically open as well as closed with respect to a

segment of length rv and direction wv. This follows from

Eq. (2) for d � 1. Otherwise, if a is almost surely a locally

finite union of compact convex sets of nonempty interiors

the asymptotic behaviour of the product rv E`̂V�vv�
(considered as a function of rv) is the same as that of the

covariance function of a and, hence. the estimator `̂V�vv� is

asymptotically unbiased for `V�vv� as rv ! 0.

Table 2. The directions v v � (qv, w v), the lengths rv and the coefficients k0;v; k1;v of the filter mask F1. The directions vv are points on the

positive half-sphere. Estimates of `V�vv� for the directions qv; wv with q � p 2 qv213, wv � wv213 2 p, v � 13, ¼, 25, on the negative half-

sphere are obtained from (3) when exchanging k0,v and k1,v but leaving the distances unchanged, rv � rv213, v � 13, ¼, 2.

Test segments v qv wv rv k0,v k1,v

Cube edges 0 p/2 0 D1 1 2

1 p/2 p/2 D2 1 4

2 0 0 D3 1 16

Diagonals of faces 3 p/2 arctan D2/D1 D12 1 8

4 p/2 p ± arctan D2/D1 D12 2 4

5 arccot D3/D1 0 D13 1 32

6 arccot D3/D1 p D13 2 16

7 arccot D3/D2 p/2 D23 1 64

8 arccot D3/D2 3p/2 D23 4 16

Spatial diagonals 9 arccot D3/D12 arctan D2/D1 D123 1 128

10 arccot D3/D12 p ± arctan D2/D1 D123 2 64

11 arccot D3/D12 2p ± arctan D2/D1 D132 4 32

12 arccot D3/D12 p 1 arctan D2/D1 D123 8 16
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From the estimators `V(v v), v � 0, ¼, 25, one obtains an

estimator of the surface density SV

SV � 4
X25

v�0

cv`v�vv� � 4
X25

v�0

cvkh; pvl � kh; sl �4�

with s � 4
P25

v�0 cvpv. For a C routine that computes SV from

h, see Ohser & MuÈ cklich (2000).

Equation (4) is a discrete version of Crofton's formula

S�X� � 4
�

`v�X�m�dv�, see Table 1. The coefficients cv are

positive weights satisfying
P

cv � 1, and the accuracy of

estimation is a question of the choice of the weights cv,

which depend on the underlying quadrature rule used in

the numerical computation of the rotatory integral in the

Crofton formula.

Given a direction vv, the weight cv depends on the

distances between vv and its neighbouring directions. One

can determine the weights as follows: Divide the unit

sphere V into the Voronoi cells with respect to the set of

directions {vv, v � 0, ¼, 25}. Then the obvious choice

for cv is the relative area of the corresponding Voronoi

cell, 4pcv � `the area of the vth Voronoi cell'. Clearly,

cv113 � cv. In particular, if the unit cell is a cube (i.e.

D1 � D2 � D3) then cv � 0.045 778 for v � 0, 1, 2,

cv � 0.036 981 for v � 3, ¼ , 8, and cv � 0.035 196 for

v � 9, ¼ , 12. Because the fineness of discretization of the

directions does not depend on the lattice distances, the

estimator (4) is normally biased for anisotropic a even as

D123 ! 0. However, if isotropy of a can be assumed then

it is asymptotically unbiased as D123 ! 0, cf. also the

discussion in Serra (1982), p. 220f, and Sandau & Hahn

(1993).

4.3. The specific integral of mean curvature

From the Crofton formula for the integral of mean

curvature, it immediately follows that the determination

of the integral of mean curvature in three-dimensional

space reduces to measurement in two-dimensional section

planes through the specimen. In the cuboidal lattice, there

are 13 planes associated with different normal directions

and hitting three or four vertices of the cells. The

corresponding planar section profiles of the unit cell form

rectangles or triangles. Examples are shown in Fig. 2, and a

survey of all section profiles is given in Table 3.

In the section planes corresponding to the normal

directions vv, v � 0, ¼, 8, the vertices and edges of the

section profiles form a (planar) graph of rectangular cells;

for v � 9, ¼, 12 the vertices and edges of the section profiles

form a triangular graph.

Let x2(vv) denote the Euler number corresponding to the

normal direction vv of a section plane that hits three or four

vertices of a cell. As a consequence of a twofold application

of Hadwiger's formula, the planar Euler number x2(vv) can

be estimated by a simple counting of neighbourhood

configurations. For example, for v � 6, Euler's relation

implies that

Ohser et al. (1998). One can easily verify that this

formula reduces to

Further simplification arises if we add the spatial diagonal

between the (100)-vertex and the (011)-vertex (a diagonal

of the section rectangle). Then the rectangular unit cell of

the planar graph under consideration is tessellated into two

triangles and the last term of the previous equation

vanishes, so the Euler number for the modified planar

graph can be estimated using

This triangulation preserves the relationship MV(a) �
2 MV(ac).

Let a6 denote the area of the rectangular cell. then the

density estimator of the Euler number is xA(v6) � x2(v6)/na6

Fig. 2. Examples of planar section profiles

of the unit cell: (a) the rectangle parallel to

the xy-plane, (b) a rectangular section

profile of the unit cell, (c) two triangular

section profiles of the unit cell having the

same normal direction. The vertices and

edges of these triangular section profiles of

all lattice cells form planar graphs of the

type 0hexagonal-1', Serra (1982), p. 174.
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and thus

xA�v6�

� 1

na6

X255

`�0

h`d`�` _ 2�d0�` ^ 8)d0�` ^ 16�d0�` ^ 64�
"

2
X255

`�0

h`d`�` _ 2�d`�` _ 8�d`�` _ 16�d0�` ^ 64�
#

In the general case we obtain for the rectangular section

profiles of the unit cell

xA�vv� � 1

nav

�
X255

`�0

h`d`�` _ k0;v�d0�` ^ k1;v)d0�` ^ k2;v�d0�` ^ k3;v�
"

2
X255

`�0

h`d`�` _ k0;v�d`�` _ k1;v�d`�` _ k2;v�d0�` ^ k3;v�
#

v � 0, ¼, 8, where k0,v, k1,v, k2,v and k3,v are the coefficients

of the filter mask F1, relating to the vertices of the

rectangular section profiles. For the triangular section

profiles

xA�vv�

� 1

nav

X255

`�0

h`d`�` _ k0;v�d0�` ^ k1;v)d0�` ^ k2;v�
"

2
X255

`�0

h`d`�` _ k0;v113�d`�` _ k1;v113�d`�` _ k2;v113�
#
;

v � 9, ¼, 12, cf. Serra (1982), p. 233. The constants

used in these formulae are given in Table 3, where

A123 denotes the area of the triangles, A123 �����������������������������������������������������������
s�s 2 D12��s 2 D13��s 2 D23�
p

with s � D12 1 D13 1 D23)/

2 (Heron formula). The constants u12 and u123 are the

azimuth angle and the zenith angle of the normal direction

of the section triangles, respectively, u12 � arctan(D2/D1)

and u123 � arctan[D3/(D1cosu12)]. The coefficients k0,v,

k1,v, k2,v and k3,v are associated with the vertices of the

section polygons and the directions vv, are points on the

positive half-sphere.

We firstly refer to the meaning of the estimates xA(vv) in

the characterization of structural anisotropy. Furthermore,

as a discrete version of Crofton's formula for MV in Table 1

one obtains from the estimators xA(vv) an estimator of the

specific integral of mean curvature,

MV � 2p
X255

v�0

cv xA�vv�

where the cv are suitable positive weights satisfying
P

cv � 1,

cf. also the discussion in the previous section, and v indexes

the discrete directions vv. For uniform lattice spacing the

weights are cv � 0.0457785, v � 0, 1, 2, cv � 0.036981,

v � 3,¼, 8, and cv � 0.035196, v �9, ¼, 13.

From Eqs (5) and (6) it follows that MV can be rewritten

as MV � kh, tl where the vector t depends on the lateral

resolution and the quadrature rule applied in the computa-

tion of the outer integral in the corresponding Crofton

formula. Thus, the algorithm of computing MV from B is

also of order O(n). For a C-routine see Ohser & MuÈ cklich

(2000).

Table 3. The directions vv � �qv; wv�, the areas av, and coefficients k0,v, k1,v, k2,v , k3,v of the filter mask F1. Notice that for v � 13, ¼, 21 the

constants can be obtained from qv � p 2 qv213, wv � wv213 2 p, k0;v � k3;v213, k1;v � k2;v213, k2,v � k1,v213, k3,v � k0,v213 and av � av213.

Test areas v q v wv av k0,v k1,v k2,v k3,v

Faces 0 0 0 D1D2 1 2 4 8

of the cuboid 1 p/2 p/2 D1D3 1 2 16 32

2 p/2 0 D2D3 1 4 16 64

Diagonal 3 arctan D3/D2 3p/2 D3D12 1 2 64 128

rectangles 4 arctan D3/D2 p/2 D3D13 4 16 8 32

5 arctan D3/D1 p D2D13 1 32 4 128

6 arctan D3/D1 0 D2D13 2 8 16 64

7 p/2 u12 D1D23 2 4 32 64

8 p/2 p ± u12 D1D23 1 16 8 128

Diagonal 9 u123 p 1 u12 2A123 1 64 32 ±

triangles 10 u123 2p 2 u12 2A123 2 16 128 ±

11 u123 u12 2A123 8 64 32 ±

12 u123 p 2 u12 2A123 4 16 128 ±

22 p 2 u123 u12 2A123 2 4 128 ±

23 p 2 u123 p 2 u12 2A123 8 1 64 ±

24 p 2 u123 p 1 u12 2A123 2 4 16 ±

25 p 2 u123 2p 2 u12 2A123 8 1 32 ±
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4.4. The specific integral of total curvature

Finally, we remark that an estimator KV of the density of the

integral of total curvature KV can also be expressed as an

inner product of h and a vector v, i.e.

KV � kh; vl

where the vector v is independent of the observed set a > W.

The computation of v is described in Nagel et al. (2000) and

Ohser & MuÈ cklich (2000). The coefficients of v are listed in

Table 4. These coefficients have been computed by means of

Hadwiger's formula and preserving that the neighbourhood

relationships of the lattice points for the set a and the

complementary set ac are of the same complexity. (In the

present case the vector v corresponds to the so-called

`14-neighborhood' in the cuboidal lattice.)

As a consequence of the use of Eq. (2) in the computation

of v, the estimator is unbiased for KV if a is morphologically

open and morphologically closed for all s [ S.

4.5. Example of application

As an example of application we estimate the quermass-

densities of natural sandstones shown in Fig. 1. A survey of

the results is given in Table 5, where a denotes the rock

matrix and the complementary set ac is the pore space.

Clearly, the differences between the estimates of the

quermassdensities result from differences between both

microstructures. However, it should be noted that there

also the lateral resolutions are different so that the estimates

are of limited comparability only.

The estimation variances of the estimates of the volume

densities can be computed using the formula var VV <
pow(o)/V(W1) where pow(t), t [ R3, is the spectral density

of a and pow(o) is called the `range of interaction' or

`asymptotic variance', see, e.g. Serra (1982). Assuming

`exponential covariance', one obtains for an enlarged

window

var V̂V <
512pV4

V�1 2 VV�4
S3

VV�W1�
;

see Ohser & MuÈ cklich (2000, p. 146). If we replace VV

and SV on the right-hand side by their estimates, we

get
��������������
var V̂V

p
< 0:5% for the Berea sandstone and��������������

var V̂V

p
< 1:7% for the weakly consolidated sandstone.

This method of estimating the statistical error is simple but

very elegant. Unfortunately, until now there exist no

analogous methods for the other quermassdensities.

5. Concluding remarks

The boundary of a can be modelled as a smooth spatial

surface, which separates the set of lattice points covered by

a from the complementary set of lattice points. Modelling

such a surface is a real problem which can be solved by

Table 4. The vector v used in the estimator KV. The coefficients listed are proportional to that of v; the multiplicative constant is 6nVD/p.

0 3 3 0 3 0 0 23 3 0 0 23 0 23 23 0 0 15

3 0 0 23 0 23 23 26 26 29 29 26 29 210 28 23 16 31

3 0 0 23 2 6 29 29 210 0 23 23 26 29 28 26 23 32 47

0 23 23 0 2 9 26 28 23 29 28 210 23 216 29 29 0 48 63

3 0 26 29 0 23 29 26 0 23 29 28 23 26 210 23 64 79

0 23 29 210 2 3 0 28 23 29 28 216 29 26 23 29 0 80 95

0 23 29 28 2 9 28 216 29 23 0 28 23 28 23 29 0 96 111

23 26 26 23 2 10 23 29 0 28 23 29 0 29 0 26 3 112 127

3 26 0 29 0 29 23 28 0 29 23 210 23 26 26 23 128 143

0 29 23 28 2 3 28 0 23 29 216 28 29 28 29 23 0 144 159

0 29 23 26 2 9 216 28 29 23 28 0 23 210 29 23 0 160 175

23 210 26 23 2 8 29 23 0 26 29 23 0 29 26 0 3 176 191

0 29 29 216 2 3 210 28 29 23 28 26 29 0 23 23 0 192 207

23 26 28 29 2 6 23 23 0 210 29 29 26 23 0 0 3 208 223

23 28 210 29 2 6 29 29 26 26 23 23 0 23 0 0 3 224 239

0 23 23 0 2 3 0 0 3 23 0 0 3 0 3 3 0 240 255

Table 5. A survey of the quermassdensities for the rock matrix of

the specimens shown in Figs l(a) and (b).

Berea Weakly consolidated

voxels 128 � 128 � 128 128 � 128 � 73

D (mm) 10 30

V (W1) (mm3) 2.048 31.4

VV (%) 82.2 75.3

SV (mm21) 13.860 5.918

MV (mm22) 2252 225.0

KV (mm23) 218982 2674
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techniques well known from computer graphics. Given a

smooth surface, a straightforward algorithm for computing

the surface area as well as the two curvature integrals could

be based on conventional integration over this surface, see,

e.g. Cohen-Or & Kaufmann (1995).

The technique presented in this paper is quite different

from this approach. Due to Crofton's intersection formulae

and Hadwiger's recursive definition of the Euler number, we

are able to estimate the surface area and the two curvature

integrals without having to localize the surface, and hence,

we do not need any model for the smoothness of the surface.

Our technique is closely related to the method of estimating

the surface density from the correlation function, as first

discussed by Debye et al. (1957). However, this technique

does not evaluate the full correlation function, and it

involves a filtering that is not used when calculating

correlation functions. The problem reduces to the numerical

integration of functions defined on the unit sphere. For both

approaches the accuracy of estimation depends on the

numerical accuracy of integration (i.e. it depends on the

chosen quadrature rule).

The length of the vector of absolute frequencies is equal to

the total number of different configurations occurring in the

binary image. Hence, the vector length does not depend on

the image size itself, it depends only on the size of the

applied filter mask. This is a clear advantage over other

techniques. in particular, for large spatial images or when

data have to be accumulated from a series of images of the

same specimen but of different sizes. Hence, the `analysis

step' can be performed very easily and quickly, and the

algorithm for the statistical estimation of the geometric

characteristics can be presented in a well-structured form.

As the estimators of the quermassdensities can be expressed

in terms of the vector h, algorithms that compute these

estimates for a binary image B are of order O(n) where n is

the number of voxels.

In principle, the size of the filter mask could be increased.

In particular, the mask F1 can be replaced by the 3 � 3 � 3

filter mask F2 � ( fijk) with fijk � 2i13j19k for i, j, k � 0, 1,

2. Then the corresponding unit cell consists of eight cubes

and the number of directions vv in the unit cell is 54 but the

corresponding lattice distances rv increase too. This means

that angular resolution can be improved while the lateral

resolution is reduced. In other words, one can choose

between high digital resolution or high directional resolu-

tion. The errors in the estimates corresponding to the lateral

resolution and the directional resolution behave in an

opposite way. Therefore, the optimal size of the filter mask

depends on the `regularity of the surface' of a as well as on

the `degree of anisotropy'.

Depending on the size of the corresponding filter mask,

the amounts of memory space for the obtained grey-tone

image as well as the grey-tone histogram can become very

large. (Applying F2, the filtered image G would be of size

n219 byte.) Therefore, in the implementation of the

algorithms for larger filter masks, the explicit representation

of the filtered image G and the vector h should be avoided,

cf. Ohser et al. (1998) where this problem has been

discussed in detail for the analysis of planar images.

Protecting the unbiasedness of the estimators of the

quermassdensities we often suppose that a is almost surely

morphologically open and morphologically closed. Clearly,

for practical application this requirement seems to be too

strong. However, this more technical condition is not a

necessary but a sufficient condition for the unblasedness of

the estimators, cf. the discussion in Ohser & Nagel (1996)

and Nagel et al. (2000). Nevertheless, there are a lot of open

problems concerning this condition. Is it possible to

formulate some weaker conditions for a such that the

estimators presented in this paper are unbiased? Can one

find estimators that are unbiased for more general homo-

geneous random sets? How can one compute the bias of the

estimators? We remark that for the 2d case there are also

problems that have not yet been solved in their whole

complexity, see also Ohser et al. (1998).
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Appendix

Let X be a d-dimensional simplex having the independent

vertices x0, ¼ , xd [ Rd. As X is compact and convex, the

Euler number is x(X) � 1. The simplex X is the intersection

of d 1 1 closed halfspaces H0, ¼, Hd, X � >d
i�0 Hi. Given a

compact convex set W such that the simplex X is subset of

the interior Wint of W, X , Wint. Then the closures (W\Hi)
cl

of the sets W\Hi are compact and convex, and for the set

difference W\X we obtain

W\X � <
d

i�0
W\Hi:

From the inclusion±exclusion formula it follows,

x��W\X�cl� �
Xd

i�1

�21�i11
d 1 1

i

 !
;

i.e. x ((W\X)cl) � 0 if d is even, and x ((W\X)cl) � 2 if d is

odd. Hence, x ((W/X)cl) can be rewritten as

x��W\X�cl� � x�W�1 �21�d11x�X�: �8�
Now let X be the union of two simplices X1, and X2 where the

interior of the intersection is nonempty (X1 > X2)int ± À.

Then X1 > X2 is a complex polyhedron and thus

x((W\(X1 > X2))cl) � x(W) 1 (±1)d11x(X1 > X2). This

implies

x��W\X�cl� � x��W\�X1 < X2��cl� � x���W\X1�> �W\X1��cl�
� x��W\X1�cl�1 x��W\X2�cl�

2 x���W\X1�< �W\X2��cl�
� x��W\X1�cl�1 x��W\X2�cl�

2 x��W\�X1 > X2��cl�
� x�W�1 �21�d11x�X1�

1 x�W�1 �21�d11x�X2�
2 x�W�2 �21�d11x�X1 > X2�

and hence

x��W\�X1 < X1��cl� � x�W�1 �21�d11x�X1 < X2�:
Since any convex polyhedron is a union of simplices, from

the last last formula it follows that Eq. (8) is valid also if X

is a finite union of compact convex polyhedra. Setting x(Rd)

� 1 we get x��Xc�cl� � x��Rd \X�cl� � 1 1 �21�d11x�X�.
Let a be a three-dimensional random set and assume that

a is homogeneous and its realizations are almost surely

locally finite unions of compact convex polyhedra. Then the

density xV�a� :� limr!1 Ex�a > rW�=V�rW� exist, and

using the local version of the Euler characteristic, see

Schneider & Weil (2000), one can show that

xV�ac� :� lim
r!1

Ex��R3\a�cl > rW�
V�rW�

� lim
r!1

1 1 Ex�a > rW�
V�rW� � xV�a�:

The identity KV(ac) � KV(a) follows from KV � 4pxV.

Finally, for any (r,v) the planar section a > Er,v, forms a

planar random set which is almost surely a locally finite

union of compact convex polygons. Then the densities

xA�a > Er;v� :� lim
s!1

Ex�a > sW > Er;v�
A�sW > Er;v�

and

xA�ac > Er;v� :� lim
s!1

Ex��Er;v\a�cl > sW�
A�sW > Er;v�

exist and with d � 2 from Eq. (8) we obtain the relationship

xA�ac > Er;v� � 2xA�a > Er;v�; �r;v� [ R3:

Using the Cauchy formula, the homogeneity of a

implies MV�a� � 2p
�
V xA�a > Er;v�m�dv� and MV�ac� �

2p
�
V xA�ac > Er;v�m�dv� for r [ eo,v , which yields the

fundamental equation MV�ac� � 2MV�a�.
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