
VOLUME 60, NUMBER 15 PHYSICAL REVIEW LETTERS 11 APRIL 1988

Phase Separation by Coupled Single-Crystal Growth and
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We present a theory for a new mode of phase separation in thin layers of amorphous Al-Ge alloys.
Phase separation and crystallization occur in colonies developing from Al nuclei. Their growth is con-
trolled by diffusion of Ge inside crystalline Al, and by the nucleation and growth of Ge crystallites on the
Al-Ge interface. The growth velocity is constant as a consequence of the interaction between the
ramified Al-Ge interface and the smooth boundary of the colony with the amorphous phase. Diffusion
occurs only in a narrow strip controlled by a length scale related to the width of the Ge dendrites. The
length scale is controlled by competition between nucleation and growth of Ge crystallites.

PACS numbers: 68.55.—a

An unusual growth morphology was recently discov-
ered by Deutscher and Lareah' in the phase separation
of amorphous alloys of Al-Ge. When thin layers (=600
A.) of the melt are quenched and subsequently reheated
they observe the growth of symmetric, essentially round,
"colonies" consisting of a branched, centered, dendritic
structure of polycrystalline Ge with the rim and inter-
stices made out of single-crystal Al. In most situations
no new Al crystals appear inside the colony. The cry-
stallization of Ge takes place on the Al-Ge interface
through the nucleation and growth of many small crys-
tallites. The outer boundary of the colony is relatively
smooth and certainly not dendritic. The relative concen-
trations of Al and Ge in the colonies are those of the
amorphous phase.

This growth mode, which has been called the "dense
branching morphology,

" appears to be possible only for
the growth of polycrystalline material. It is intermediate
between diffusion-limited aggregation, where no crystall-
ization takes place, and the dendritic growth of a single
crystal from an impure melt. The experimental results
are described in more detail in the previous Letter
where they are compared with the predictions of the
theoretical model which will be presented here. Our pur-
pose is first to understand the general requirements for
this form of pattern formation, and second to predict
both the growth velocity and the characteristic length
scales of the density profiles. We start with the first
question.

Below the eutectic point, the separation of a binary al-
loy into its constituent phases requires nucleation and
growth through diffusion of the pure crystalline phases.
Typical growth morphologies (spinodal, lamellar, den-

dritic, or large single crystals) are selected by the com-
petition between diffusive growth mechanisms and nucle-
ation. Our description for the new growth morphology
has three central features:

(a) The dominant diffusion process is the diffusion of
atomic Ge through crystalline Al.

(b) Nucleation and growth of Ge crystals occur only
at the interface between Al and Ge.

(c) The nucleation of Al crystals in the amorphous
phase is much more frequent than that of Ge but still
rare. It controls the initiation of new colonies.

Thus the scenario we envisage for solidification is a
two-stage process: First a nucleus of single-crystal Al is
formed in the amorphous phase. It contains in solution a
relatively large concentration of Ge atoms which, in a
second stage, precipitate inside the Al to form Ge crys-
tallites. Diffusion of Ge atoms occurs only in a thin lay-
er until the Ge atoms are absorbed by the ramified Al-
Ge boundary. The essential phenomenological features
of this model are, we believe, immediate consequences
from the experimental findings and the known properties
of Al-Ge alloys.

(I) The observed Ge pattern suggests dendritic
surface growth which is typical for diffusion-limited
growth. Since the Al-Ge interface is separated from
the amorphous phase by the Al rim, the Ge atoms have
to diffuse through single-crystal Al.

(2) The nucleation of Al in the amorphous phase must
be much easier than that of Ge' because at lower tem-
peratures it is found that only Al crystallizes while the
Ge is expelled into the amorphous phase without nu-
cleation. As noted, we assume that the Al nucleation
creates the colonies and that nucleation of Ge in the
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amorphous phase can be neglected.
(3) Atomic diffusion in an amorphous phase is very

slow compared with the crystalline phase. Note that this
is certainly not true for a melt (and in that case we

would also expect a capillary instability for the Al-melt
interface).

Because the interface between Al and the amorphous
phase is sharp (compared with the Al-Ge interface) we
will ignore its microstructure and treat it according to
continuum thermodynamics as follows. From the Al-Ge
phase diagram (Fig. 1) it is evident that the equilibrium
miscibility of Ge in Al at, say, 200 C is extremely low.
However, crystallization of Ge at the boundary between
Al and the amorphous phase is apparently rare, presum-

ably because of a high nucleation barrier, and for the
moment we will neglect it. Since it is of course the equi-
librium with crystalline Ge which leads to the low misci-

bility, we can extend the solidus and liquidus lines below

the eutectic (see Fig. 1). This gives a miscibility of
=9% Ge (cL, ) for this quasiequilibrium phase of Al. If
we assume that the Al-amorphous interface is in qua-
siequilibrium then we can equate cL, with the concentra-
tion of atomic Ge inside the Al at the boundary, in good
agreement with experiment. This assumption entails
that a (stable) liquid melt is a good description of the
thermodynamics of the quenched amorphous phase. A
similar argument also determines the concentration cg of
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FIG. 1. Equilibrium phase diagram of Al-Ge. The liquidus

is indicated by L, the solidus by S, the eutectic line by E, and

the eutectic point by P. If we could prevent Ge solidification
then the quasiequilibrium phase diagram would be obtained by
extension of the liquidus and solidus below the eutectic. An al-

loy of concentration co quenched from the melt below the eu-

tectic would then phase separate into cL, and c&. Inset: A typi-
cal (P =500, a=0.001) concentration profile for solid (g) and
diff'using (f) Ge.
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on the "right" inside the amorphous phase, where DL
and D~ are the respective diffusion constants for Ge. At
the boundary, one has c =cL on the Al side (r =R )
and cg on the amorphous side (r =R+). We describe
the growth process in its simplest form:

|lp/Br =Bcp (2)
because new growth occurs only at Al-Ge interfaces.
The phenomenological rate constant 8 describes the total
Ge growth and therefore, implicitly, both the growth and
the nucleation of the Ge crystallites. We shall discuss
the physical relationship between 8 and the actual pro-
cess of growth at the Ge-Al interfaces at a later stage.
The most serious problem with Eq. (2) is that it is purely
local: Inside the Al the p field can only grow where it al-
ready exists. We shall introduce the seeds for the growth
through the boundary conditions at the outer (Al-
amorphous) boundary r =R(t).

The diffusion field must obey mass conservation:

dfR(r)[wc+p(R)l! D t)c Bc
L

—D~
dt ar, =R ar, =,,

(3)
Here p(R) is a small seed concentration of crystalline
Ge at the boundary with the amorphous phase and
hc =c~ —cL is the discontinuity in the Ge concentration
(miscibility gap) across the boundary. Steady-state solu-
tions to Eqs. (1)-(3)are constant-velocity profiles:

c(r, t) =cpf(z), (4a)

(4b)p(r, r) =cpg(z),
where R =vt, z =(r —vt)/&, cp is the concentration of
Ge in the amorphous phase, and (=DL/v is the basic
length scale of the problem. The reason that only con-
stant-velocity profiles are found is clear from Eq. (3):
The ramified, crystalline Al-Ge interface near the
boundary acts as a sink for diffusing Ge which causes a

Ge on the other side of the boundary, in the amorphous
phase (see Fig. 1). The Al-amorphous boundary does
not suffer from capillary instabilities. The typical wave-

length for such instabilities is of order (dg) '~ with d
the capillary length (=1 A) and g the diffusive width of
the interface (see below). Since in our case g is only of
order 1 pm, we can assume the Al-amorphous boundary
to be flat.

We now turn to describe in an averaged fashion the
Al-Ge interface which has a more complicated structure.
Following Ball, Nauenberg, and Witten we replace the
local concentration of atomic Ge by its radial average
c(I ) and that of crystalline Ge by its radial average p(r).
To lowest order in p,
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finite value for the concentration gradient and thus a
finite velocity. For sufficiently long times, i.e., v t/
DL»1, the curvature of the interface can be neglected
and we obtain

f'+f" = —g' (sa)

(sb)

where P=cpBDL/v is a dimensionless parameter. Far
to the left (z —ee) we have g=l (p=cp) by mass
conservation and f=f ' =0. Therefore from Eq. (5)

g =1 f f—'. — (6)

At the Al-amorphous boundary (z =0) we have

f=cL/cp because c(R=vt) =cL. Thus Eq. (6) relates
g(0) [=p(R)/cpl to f'(0). Using the solution of Eq.
(lb)—the amorphous phase —in Eq. (3) with f(+~)
=1, we find that Eq. (lb) is decoupled from the solution
behind the front and that Dg is an irrelevant parameter.
Substituting Eq. (6) into (sb) gives us a closed nonlinear
equation for fwith P as the only control parameter:

f'+f" =Pf(1 f f'). — — (7)

Far inside the colony (z large and negative) f is small,
and one can linearize Eq. (7) with solution f~e'/~ where

g '=-,' [—I+(1+4p)'"]. (8)
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FIG. 2. Trajectories fulfilling the boundary conditions at
z = —~ for selected values of P (P =0.2, 1, 5, 25, 100, and
500). Inset: Dependence of f(0) =ci./co on p for trajectories
fulfilling the boundary conditions both at z = —~ and z =0
with a seed concentration a=10

It is most convenient to display the general solution as
trajectories in the ff' plane as shown in Fig. 2. The tra-
jectories, which already fulfill the boundary conditions at
z = —~, emerge from the origin with a slope f '/f = I/g.
All trajectories end at the fixed point (1,0) on the f axis.
The straight line 1 f f'=0 (g—=0—) is an exact solu-
tion of Eq. (7) and thus acts as a separatrix because flow

lines cannot cross. This means that one cannot have
g=0 for z(0. The low-velocity solutions (P) 1) are
tangential to g=0 at (1,0) and approach it exponentially
fast (f"/f' —1). The two boundary conditions on f
at the boundary z =0 are

f(0) =cL/cp,

1 —f(0) —f'(0) =e,

(9a)

(9b)

where e=g(0), the seed concentration. The second
boundary condition [Eq. (9b)] determines a straight line
parallel to the separatrix. If we choose a value for P we
must follow the associated flow line starting from (0,0)
until it intersects this straight line and read off the corre-
sponding value f(0) =cL/cp. This determines P, and
thus v, as a function of cz (see the inset in Fig. 2). For
P»1, the flow line is practically a straight line up to
g=e so that, from Eq. (8), f'(0)/f(0) =P'/ and from
Eq. (9b) and the definition of P,

v = (cL/cp)DL/g(

gj,"=(DL/cpB) '

(loa)

(1ob)

Measuring the characteristic length scale g from the
density profile deep inside the colony (i.e., z —~) we
can check Eq. (10a) since cL, , cR, and DL are known. If
P changes from P & 1 to P & 1 one expects a qualitative
change in the growth mode because for P & 1 (high ve-

locity) and small e only concentrations ct. = cp are possi-
ble, and conversely, P is a very sensitive function of cL/cp
near ct./co =1 (see Fig. 2).

The parameter e introduces nonlocality into the equa-
tions. In spite of the purely local form of Eq. (2) this is
sufficient to assure continued growth, [i.e. , solutions of
Eq. (7)]. Physically it can originate in two ways: Either
the growing tips "find" small crystallite Ge grains which
have nucleated in the amorphous phase but are too small
to be stable and grow on their own or crystals nucleated
behind the boundary grow sufficiently rapidly to catch
up. For small but finite t. the velocity selection is not
very sensitive to e. Thus for experimental value of cL/cp
( =0.15) one finds 400 & P & 600 for 10 & e & 10

Although our predictions concerning the constant
growth velocity and the relation between v and g seem to
be confirmed by experiment, we did not really solve the
problem of determining the velocity selected by the
growing front. The reason is that the reaction rate B is
not a material parameter: Bp is the capture rate for
diffusing Ge by Al-Ge interfaces. The capture probabili-
ty near the interface is expected to be high because of
the very high supersaturation of Ge in the Al rim. As-
suming the capture probability to be 1, we can estimate
the capture rate from the time required to diffuse to the
Al-Ge surface. This gives Bcp=DL/(t where gt is a
typical length for the texture, say the width of an Al
"fjord." This, however, is only compatible with Eq.
(10), the velocity selection, if (t is of order of g, i.e., if
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the radial and angular Ge density profiles are governed

by the same length scale. This reduces the determina-
tion of 8 to a search for a selection mechanism for the
width of the Ge fingers. For that we need a more de-
tailed model. Contrary to the normal situation for den-
dritic growth, we cannot determine this length from a
simple competition between diffusion and surface tension
in view of the considerable interfacial roughness. This
roughness is related to the polycrystallinity of the Ge
dendrites. In the fingers one observes a broad distribu-
tion of crystallite sizes with the largest comparable to the
finger width (. This suggests that g is determined by a
competition between the growth of an individual crystal-
lite in a supersaturated atmosphere (c cL) and the
screening due to the nucleation and growth of nearby
crystallites with different crystallographic orientation.
This mechanism for pattern formation is peculiar to the
growth of polycrystalline materials and is quite distinct
from both diffusion-limited aggregation and normal den-
dritic growth. We expect to present a detailed model
along these lines separately.
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