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Abstract

A quantitative comparison between the experimental microstructure of a sedimentary rock and
three theoretical models for the same rock is presented. The microstructure of the rock sample
(Fontainebleau sandstone) was obtained by microtomography. Two of the models are stochastic
models based on correlation function reconstruction, and one model is based on sedimentation,
compaction and diagenesis combined with input from petrographic analysis. The porosity of
all models closely match that of the experimental sample and two models have also the same
two point correlation function as the experimental sample. We compute quantitative di�erences
and similarities between the various microstructures by a method based on local porosity theory.
Di�erences are found in the degree of anisotropy, and in uctuations of porosity and connectivity.
The stochastic models di�er strongly from the real sandstone in their connectivity properties, and
hence need further re�nement when used to model transport. c© 1999 Elsevier Science B.V.
All rights reserved.

PACS: 61.43.G; 81.05.Rm; 47.55.Mh

1. Introduction

A quantitative prediction of uid ow, sound propagation, or chemical transport in
strongly correlated disordered media, such as sedimentary rock, frequently employs
representative microscopic models of the microstructure as input. A large number of
microscopic models have been proposed over the years to represent the microstructure
of porous media [1–15].
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Microscopic models do not reproduce the exact microstructure of the medium at
hand, but are based on the idea that the experimental sample is a representative real-
ization drawn from a statistical ensemble of similar microstructures. Hence it is neces-
sary to have methods for distinguishing microstructures quantitatively [16–19]. This is
particularly important for attempts to generate porous microstructures in an automatic
computerized process [9,20–22,10].
Despite the generality of the problem sketched above our discussion will be focussed

on uid ow through sedimentary rocks. In particular we will discuss Fontainebleau
sandstone. This model system has (together with Berea sandstone) acquired the status
of a reference standard for modeling and analysing sedimentary rocks [9–23,25,21].
General geometric characterization methods traditionally include porosities, speci�c

surface areas, and sometimes correlation functions [2,9,26–28]. Recently a more re�ned,
quantitative characterization for general stochastic microstructures was based on local
porosity theory (LPT) [16,18,29,30–35]. LPT is currently the most general geometric
characterization method because it contains as a special case also the characterization
through correlation functions (see [16] for details).
Local porosity theory is used in this paper to distinguish quantitatively various mod-

els for Fontainebleau sandstone. More precisely, the objective of this work is to give a
quantitative comparison of four microstructures. One of them is an experimental sample
of Fontainebleau sandstone, while three of the microstructures are synthetic samples
from computer simulation models for Fontainebleau sandstone. One of the models is
a sedimentation and diagenesis model that tries to mimick the formation of sandstone
through deposition and cementation of spherical grains. Two purely stochastic models
generate random realizations of microstructures with prescribed porosity and correla-
tion function. The �rst of these is based on Fourier space �ltering of Gaussian random
�elds, and the second is based on a simulated annealing algorithm.
In Section 2 we introduce and de�ne the geometrical quantities that will be used to

distinguish the microstructures. In Section 3 we present the four microstructures, their
generation and characterization in terms of the generation procedure. In Section 4 we
present the results and discuss the di�erences between the four microstructures.

2. Measured quantities

2.1. Porosity and correlation functions

Consider a rock sample occupying a subset S⊂Rd of the physical space (d= 3 in
the following). The sample S contains two disjoint subsets S=P∪M with P∩M=∅
where P is the pore space and M is the rock or mineral matrix and ∅ is the empty set.
The porosity �(S) of such a two component porous medium is de�ned as the ratio
�(S)=V (P)=V (S) which gives the volume fraction of pore space. Here V (P) denotes
the volume of the pore space, and V (S) is the total sample volume.
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For the sample data analysed here the set S is a rectangular parallelepiped whose
sidelengths are M1; M2 and M3 in units of the lattice constant a (resolution) of a simple
cubic lattice. Thus the sample is represented in practice as the subset S = [0; M1 −
1] × [0; M2 − 1] × [0; M3 − 1]⊂Z3 of an in�nite cubic lattice. Z denotes the set of
integers, and [0; Mi−1]⊂Z are intervals. The position vectors ri=ri1 ;:::;id=(ai1; : : : ; aid)
with integers 06ij ¡Mj are used to label the voxels, and ri is a shorthand notation
for ri1 ;:::;id . A con�guration (or microstructure) Z of a 2-component medium is then
given as

Z= (Z1; : : : ; ZN ) = (�P(r1); : : : ; �P(rN )) ; (2.1)

where N =M1M2M3, and

�G(r) =

{
1 for r ∈ G ;
0 for r 6∈ G (2.2)

is the characteristic (or indicator) function of a set G that indicates when a point is
inside or outside of G. A stochastic medium is de�ned through the discrete probability
density

p(z1; : : : ; zN ) = Prob{(Z1 = z1) ∧ · · · ∧ (ZN = zN )} (2.3)

where zi ∈ {0; 1}. Expectation values of functions f(Z) =f(z1; : : : ; zN ) are de�ned as

〈f(z1; : : : ; zN )〉=
1∑

z1=0

· · ·
1∑

zN=0

f(z1; : : : ; zN )p(z1; : : : ; zN ) ; (2.4)

where the summations run over all con�gurations. If the medium is statistically homo-
geneous (stationary) then the average porosity is given as

〈�〉= Prob{r0 ∈ P}= 〈�P(r0)〉 ; (2.5)

where r0 is an arbitrary lattice site. If the medium is also ergodic then the limit

lim
N→∞

�(S) = 〈�〉 (2.6)

exists. There are, however, many subtleties associated with this limit (see [16] for
details). Finally, we now de�ne the correlation function for a homogeneous medium
as the expectation

G(r0; r) = G(r− r0) = 〈�P(r0)�P(r)〉 − 〈�〉2
〈�〉(1− 〈�〉) : (2.7)

If the medium is also isotropic G(r)=G(|r|)=G(r). Obviously, G(0)=1 and G(∞)=0.
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2.2. Local porosity distributions

The basic idea of local porosity theory is to measure geometric observables within
a bounded (compact) subset of the porous medium and to collect these measurements
into various histograms. Let K(r; L) denote a cube of sidelength L centered at the lattice
vector r. The set K(r; L) de�nes a measurement cell inside of which local geometric
properties such as porosity or speci�c internal surface are measured [30]. The local
porosity in this measurement cell K(r; L) is de�ned as

�(r; L) =
V (P ∩K(r; L))
V (K(r; L)) ; (2.8)

where V (G) is the volume of the set G⊂Rd. The local porosity distribution �(�; L)
is de�ned as

�(�; L) =
1
m

∑
r

�(�− �(r; L)) ; (2.9)

where m is the number of placements of the measurement cell K(r; L) and �(x) is
Dirac’s �-distribution. Ideally all measurement cells should be disjoint [30], but in
practice this cannot be achieved because of poor statistics. The results presented below
are obtained by placing K(r; L) on all lattice sites r which are at least a distance L=2
from the boundary of S, and hence the following equation

m=
3∏
i=1

(Mi − L+ 1) (2.10)

will be used. �(�; L) is the empirical probability density function (histogram) of local
porosities. Its support is the unit interval. In the following we denote averages with
respect to �(�; L) by an overline. Thus for a homogeneous and ergodic medium

��(L) =
∫ 1

0
��(�; L) d�= 〈�〉 (2.11)

is the expected local porosity. In practice deviations from the last equality may occur
if the measurement cells are overlapping. Fig. 10 shows the average local porosity as
function of L for all four samples analyzed in this paper showing that deviations can
be as large as 0.5%. The deviations may be partly intrinsic and partly due to oversam-
pling the central regions because the measurement cells are overlapping. Similarly the
variance of local porosities is found as [16]

�2(L) = (�(L)− ��(L))2 =
∫ 1

0
[�− ��(L)]2�(�; L) d�

=
1
L3

〈�〉(1− 〈�〉)
(
1 +

2
L3

∑
ri ;rj∈K(r0 ;L)

i 6=j

G(ri − rj)
)
; (2.12)

where K(r0; L) is any cubic measurement cell.
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Table 1
Legend for index � of local percolation probabilities ��(�; L)

Index � Meaning

x x-direction
y y-direction
z z-direction
3 (x ∧ y ∧ z)-direction
c (x ∨ y ∨ z)-direction

It is simple to determine �(�; L) in the limits L→ 0 and L→ ∞ of small and large
measurement cells. For small cells one �nds generally [30,16]

�(�; L= 0) = �(S)�(�− 1) + (1− �(S))�(�) ; (2.13)

where �(S) is the sample porosity. If the sample is macroscopically homogeneous and
ergodic then one expects

�(�; L→ ∞) = �(�− �(S)) ; (2.14)

indicating that in both limits the geometrical information contained in �(�; L) consists
of the single number �(S). The macroscopic limit, however, involves the question of
macroscopic heterogeneity versus macroscopic homogeneity (for more information see
[16]). In any case, if Eqs. (2.13) and (2.14) hold it follows that there exists a special
length scale L∗ de�ned as

L∗ =min{L: �(0; L) = �(1; L) = 0} (2.15)

at which the �-distributions at � = 0 and 1 both vanish simultaneously for the �rst
time.

2.3. Local percolation probabilities

The local percolation probabilities characterize the connectivity of measurement cells
of a given local porosity. Let

��(r; L) =

{
1 if K(r; L) percolates in “�”-direction
0 otherwise (2.16)

be an indicator for percolation. What is meant by “�”-direction is summarized in
Table 1. A cell K(r; L) is called “percolating in the x-direction” if there exists a
path inside the set P∩K(r; L) connecting those two faces of S that are vertical to the
x-axis. Similarly for the other directions. Thus, �3 = 1 indicates that the cell can be
traversed along all 3 directions, while �c = 1 indicates that there exists at least one
direction along which the block is percolating.
The local percolation probability in the “�”-direction is now de�ned through

��(�; L) =
∑

r ��(r; L)���(r; L)∑
r ���(r; L)

; (2.17)
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where ���(r; L) = 1 if � = �(r; L) and 0 otherwise. The local percolation probability
��(�; L) gives the fraction of measurement cells of sidelength L with local porosity �
that are percolating in the “�”-direction.

2.4. Total fraction of percolating cells

The total fraction of all cells of size percolating along the “�”-direction is given by
integration over all local porosities as

p�(L) =
∫ 1

0
�(�; L)��(�; L) d� : (2.18)

This quantitiy provides an important characteristic for constructing equivalent network
models. It gives the fraction of network elements (bond, sites etc.) which have to be
permeable in an equivalent network.

3. Description of microstructures

3.1. Experimental sample of Fontainebleau sandstone

The experimental sample is a three-dimensional microtomographic image of
Fontainebleau sandstone. This sandstone is a popular reference standard because of its
exceptional chemical, crystallographic and microstructural simplicity [23,24].
Fontainebleau sandstone consists of monocrystalline quartz grains that have been eroded
for long periods before being deposited in dunes along the shore during the Oligocene,
i.e. roughly 30 million years ago. It is well sorted containing grains of around 200�m
in diameter. During its geological evolution, that is still not fully understood, the sand
was cemented by silica crystallizing around the grains. Fontainebleau sandstone exhibits
intergranular porosity ranging from 0:03 to roughly 0:3 [24].
The computer-assisted microtomography was carried out on a micro-plug drilled from

a larger original core. The original core from which the micro-plug was taken had a
porosity of 0:1484, a permability of 1:3D and a formation factor of 22.1. The porosity
�(SEX) of our microtomographic data set is only 0.1355 (see Table 2). The di�erence
between the porosity of the original core and that of the �nal data set is due to the
heterogeneity of the sandstone and to the di�erence in sample size. The experimental
sample is referred to as EX in the following. The pore space of the experimental
sample is visualized in Fig. 1.

3.2. Sedimentation, compaction and diagenesis model

The sedimentation, compaction and diagenesis model, abbreviated as DM in the fol-
lowing, is obtained by numerically modelling the main geological sandstone-forming
processes [15,28]. Image analysis of backscattered electron=cathodo-luminescence im-
ages of thin sections provides input data such as porosity, grain size distribution, a
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Fig. 1. Three-dimensional pore space of Fontainebleau sandstone (sample EX). The resolution of the image
is a=7:5 �m, the sample dimensions are M1 =300; M2 =300; M3 =299. The porosity is �(SEX)=0:1355.
The pore space is indicated opaque, the matrix space is transparent. The lower image shows the front plane
of the sample as a two-dimensional thin section (pore space black, matrix grey).
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visual estimate of the degree of compaction, the amount of quartz cement and clay
contents and texture. The sandstone modelling is carried out in three main steps: grain
sedimentation, compaction and diagenesis. Here we give only a rough sketch of the
algorithms and refer the reader to [15,28] for a detailed description.
Grain sedimentation commences with image analysis of thin sections. The grain

size distribution is measured using an erosion-dilation algorithm. Spherical grains with
random diameters chosen from the grain size distribution are dropped onto the grain
bed and relaxed into a potential energy minimum. The sedimentation environment may
be low-energy (local minimum) or high-energy (global minimum).
Compaction reduces the bulk volume (and porosity) in response to vertical stress

from the overburden. It is modelled here as a linear process in which the vertical coor-
dinate of every sandgrain is shifted vertically downwards by an amount proportional to
the original vertical position. The proportionality constant is called the compaction fac-
tor. Its value for our Fontainebleau sandstone is estimated to be 0:1 from thin section
analysis.
In the diagenesis part only a subset of known diagenetical processes are simulated,

namely quartz cement overgrowth and precipitation of authigenic clay on the free
surface. Quartz cement overgrowth is modelled by radially enlarging each grain. If R0
denotes the radius of the originally deposited spherical grain, its new radius along the
direction r from grain centre is taken to be [7,15]

R(r) = R0 + min(a‘(r); ‘(r)) ; (3.1)

where ‘(r) is the distance between the surface of the original spherical grain and
the surface of its Voronoi polyhedron along the direction r. The constant a controls
the amount of cement, and the growth exponent  controls the type of cement over-
growth. For ¿ 0 the cement grows preferentially into the pore bodies, for  = 0 it
grows concentrically, and for ¡ 0 quartz cement grows towards the pore throats [15].
Authigenic clay growth is simulated by precipitating clay voxels on the free mineral
surface. The clay texture may be pore-lining or pore-�lling or a combination of the
two.
For modelling the Fontainebleau sandstone we used a compaction factor of 0.1, and

the cementation parameters =−0:6 and a=2:9157. The resulting con�guration of our
sample DM is displayed in Fig. 2.

3.3. Gaussian �eld reconstruction model

The Gaussian �eld (GF) reconstruction model provides a random pore space con�g-
uration in such a way that its correlation function GGF(r) equals a prescribed reference
correlation function G0(r). In our case G0(r) =GEX(r) the reference is the correlation
function of the experimental sample described above. The method of Gaussian �eld re-
construction is well documented in the literature [20,36,9,37], and we shall only make
a few remarks that the reader may �nd of interest when implementing the method.
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Fig. 2. Three-dimensional pore space of the sedimentation and diagenesis model (sample DM). The resolution
is a=7:5 �m, the sample dimensions are M1 =255; M2 =255; M3 =255. The porosity is �(SDM)=0:1356.
The pore space is indicated opaque, the matrix space is transparent. The lower image shows the front plane
of the sample as a two-dimensional thin section (pore space black, matrix grey).
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Given the reference correlation function GEX(r) and porosity �(SEX) of the exper-
imental sample the three main steps of constructing the sample SGF with correlation
function GGF(r) = GEX(r) are as follows:
(1) A standard Gaussian �eld X (r) is generated which consists of statistically inde-

pendent Gaussian random variables X ∈ R at each lattice point r.
(2) The �eld X (r) is �rst passed through a linear �lter which produces a corre-

lated Gausssian �eld Y (r) with zero mean and unit variance. The reference correlation
function GEX(r) and porosity �(SEX) enter into the mathematical construction of this
linear �lter.
(3) The correlated �eld Y (r) is then passed through a nonlinear discretization �lter

which produces the reconstructed sample SGF.
Details of these three main steps are documented in Refs. [20,36]. However, in these

traditional methods the process described in step 2 is computationally di�cult because
it requires the solution of a very large set of non-linear equations. We have followed
an alternate and computationally more e�cient method proposed in Ref. [9] which uses
Fourier Transforms. For the sake of completeness we briey describe this. Later we
shall discuss some of the di�culties experienced while implementing this.
In the Fourier transform method the linear �lter in step 2 is de�ned in Fourier space

through

Y (k) = �(GY (k))1=2X (k) ; (3.2)

where M =M1 =M2 =M3 is the sidelength of a cubic sample, � =Md=2 is the nor-
malisation factor, and

X (k) =
1
Md

∑
r

X (r)e2�ik·r ; (3.3)

denotes the Fourier transform of X (r): Similarly, Y (k) is the Fourier transform of Y (r),
and GY (k) is the Fourier transform of the correlation function GY (r). GY (r) has to be
computed by an inverse process from the correlation function GEX(r) and porosity of
the experimental reference (details in [9]).
It is important to note that the Gaussian �eld reconstruction requires a large separa-

tion �EX.N 1=d where �EX is the correlation length of the experimental reference, and
N =M1M2M3 is the number of sites. �EX is de�ned as the length such that GEX(r) ≈ 0
for r ¿�EX. If the condition �EX.N 1=d is violated then step 2 of the reconstruction
fails in the sense that the correlated Gaussian �eld Y (r) does not have zero mean and
unit variance. In such a situation the �lter GY (k) will di�er from the Fourier transform
of the correlation function of the Y (r). It is also di�cult to calculate GY (r) accurately
near r = 0 [9]. This leads to a discrepancy at small r between GGF(r) and GEX(r).
The problem can be overcome by choosing large M as we veri�ed in d = 1 and 2.
However, in d= 3 very large M also demands prohibitively large memory. In earlier
work [9,36], the correlation function GEX(r) was sampled down to a lower resolution,
and the reconstruction algorithm then proceeded with such a rescaled correlation func-
tion. This leads to a reconstructed sample SGF which also has a lower resolution. Such
reconstructions have lower average connectivity compared to the original model [38].
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Because we intend a quantitative comparison with the microstructure of SEX it is nec-
essary to retain the same level of resolution. Hence we use throughout this article the
original correlation function GEX(r) without subsampling. Because GEX(r) is nearly 0
for r ¿ 30a we have truncated GEX(r) at r = 30a to save computer time. The �nal
con�guration SGF with M = 256 generated by Gaussian �ltering reconstruction that is
used in the comparison to experiment is displayed in Fig. 3.

3.4. Simulated annealing reconstruction model

The simulated annealing (SA) reconstruction model is a second method to generate
a three-dimensional random microstructure with prescribed porosity and correlation
function. A simpli�ed implementation was recently discussed in Ref. [21] and we
follow their algorithm here. The method generates a con�guration SSA by minimizing
the deviations between GSA(r) and a prede�ned reference function G0(r). Of course in
our case we have again the Fontainebleau sandstone as reference, i.e. G0(r) =GEX(r).
The reconstruction is performed on a cubic lattice with side length M=M1=M2=M3

and lattice spacing a. The lattice is initialized randomly with 0’s and 1’s such that
the volume fraction of 0’s equals �(SEX). This porosity is preserved throughout the
simulation. For the sake of numerical e�ciency the autocorrelation function is evaluated
in a simpli�ed form using [21]

G̃SA(r)(G̃SA(0)− G̃SA(0)2) + G̃SA(0)2

=
1
3M 3

∑
r

�M(r)(�M(r+ re1) + �M(r+ re2) + �M(r+ re3)) ; (3.4)

where ei are the unit vectors in direction of the coordinate axes, r = 0; : : : ; (M=2)− 1;
and where a tilde ∼ is used to indicate the directional restriction. The sum

∑
r runs

over all M 3 lattice sites r with periodic boundary conditions, i.e. ri + r is evaluated
modulo M .
We now perform a simulated annealing algorithm to minimize the “energy” function

E =
∑
r

(G̃SA(r)− GEX(r))2 ; (3.5)

de�ned as the sum of the squared deviations of G̃SA from the experimental correlation
function GEX. Each update starts with the exchange of two randomly chosen pixels,
one from pore space, one from matrix space. Let n denote the number of the proposed
update step. Introducing an acceptance parameter Tn, which may be interpreted as an
n-dependent temperature, the proposed con�guration is accepted with probability

p=min
(
1; exp

(
−En − En−1

TnEn−1

))
: (3.6)

Here the energy and the correlation function of the con�guration is denoted as En and
G̃SA; n; respectively. The evaluation of G̃SA; n does not require a complete recalculation.
It su�ces to update the correlation function G̃SA; n−1 of the previous con�guration by
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Fig. 3. Three-dimensional pore space having the same correlation function as the experimental sam-
ple of Fontainebleau sandstone (sample GF). The pore space was constructed using Gaussian ran-
dom �elds which are subsequently �ltered. The resolution is a = 7:5 �m, the sample dimensions are
M1 = 256; M2 = 256; M3 = 256. The porosity is �(SGF) = 0:1421. The pore space is indicated opaque, the
matrix space is transparent. The lower image shows the front plane of the sample as a two-dimensional thin
section (pore space black, matrix grey).
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adding or subtracting those products in (3.4) which changed due to the exchange of
pixels. In case the proposed move is rejected, the old con�guration is restored.
The generation of a con�guration with correlation GEX is achieved by lowering T .

At low T the system approaches a con�guration that minimizes the energy function.
In our simulations we lower Tn with n as

Tn = exp
(
− n
100 000

)
: (3.7)

We stop the simulation when 20 000 consecutive updates are rejected. In our simulation
this happened after 2:5× 108 updates (≈15 steps per site). The resulting con�guration
SSA for the simulated annealing reconstruction is displayed in Fig. 4.
Our de�nition of the correlation function in (3.4) deserves some comment. A com-

plete evaluation of the correlation function as de�ned in (2.7) requires such a great
numerical expense that the algorithm is too slow to allow three-dimensional recon-
structions within a reasonable time. Therefore, to increase the speed of the algorithm,
the correlation function is only evaluated along the directions of the coordinate axes
as indicated in (3.4). As a result of this simpli�cation the reconstructed sample may
cease to be isotropic. It will in general deviate from the reference correlation function
in all directions other than those of the axes. In the special case of the correlation
function of the Fontainebleau sandstone, however, this e�ect seems to be small (see
below). This may serve as an a posteriori justi�cation for using (3.4).

4. Results and discussion

We begin our presentation of the results with an analysis of traditional quantities
such as porosities and correlation functions of the four samples. Then we proceed to
a visual characterization of the three-dimensional images. Next we shall discuss local
porosities and percolation probabilities, and �nally we conclude with implications for
transport properties.

4.1. Conventional analysis

Table 2 gives a synopsis of di�erent properties of the four samples. The preparation
of the various samples was described in detail in Section 3. The dimensions and porosi-
ties also need no further comment. Samples GF and SA were constructed to have the
same correlation function as sample EX. This is indicated in the line labelled G(r).
In Fig. 5 we plot the directionally averaged correlation functions G(r) = (G(r; 0; 0) +
G(0; r; 0) + G(0; 0; r))=3 of the four samples where G(r1; r2; r3) = G(r). GDM(r) dif-
fers clearly from the rest. Accidentally, however, GDM(0; 0; r) ≈ GEX(0; 0; r): GGF(r)
di�ers from GEX(r) for small r as discussed in Section 3.3 above. Remember also
that by construction GGF(r) is not expected to equal GEX(r) for r larger than 30. The
discrepancy at small r reects the quality of the linear �lter, and it is also respon-
sible for the di�erences of the porosity and speci�c internal surface. Although the
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Fig. 4. Three-dimensional pore space having the same correlation function as the experimental sample of
Fontainebleau sandstone (sample SA). The pore space was constructed using a simulated annealing algorithm.
The resolution is a=7:5 �m, the sample dimensions are M1 = 256; M2 = 256; M3 = 256. The bulk porosity
is �(SSA) = 0:1354. The pore space is indicated opaque, the matrix space is transparent. The lower image
shows the front plane of the sample as a two-dimensional thin section (pore space black, matrix grey).
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Table 2
Overview of various properties for the four samples

Properties SEX SDM SGF SSA
Origin Experiment Diagenesis model Gaussian �eld Simulated annealing
M1 ×M2 ×M3 300× 300× 299 255× 255× 255 256× 256× 256 256× 256× 256
�(S) 0.1355 0.1356 0.1421 0.1354
G(r) GEX GDM GGF ≈ GEX GSA = GEX
S from dG

dr

∣∣
r=0

0.078 0.082 0.125 0.083
Isotropy xyz xy xyz xyz
Isolated M No No Yes Yes
Pore surface Smooth Smooth Rough Rough
L∗ 35 25 23 27
Connectivity xyz xyz xyz xyz
1− �c(0:1355; L∗) 0.0045 0.0239 0.3368 0.3527

Fig. 5. Averaged directional correlation functions G(r) = (G(r; 0; 0) + G(0; r; 0) + G(0; 0; r))=3 of all four
samples.

reconstruction method of sample SSA is intrinsically anisotropic the correlation func-
tion of sample SA agrees also in the diagonal directions with that of sample EX.
Sample SDM on the other hand has an anisotropic correlation function.
If two samples have the same correlation function they are also expected to have

the same speci�c internal surface as calculated from

S = −4〈�〉(1− 〈�〉)dG(r)
dr

∣∣∣∣
r=0

: (4.1)

The line in Table 2 labelled S gives the speci�c internal surfaces.
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If one de�nes a decay length by the �rst zero of the correlation function then the
decay length is roughly 18a for samples EX, GF and SA. For sample DM it is
somewhat smaller mainly in the x- and y-direction. The correlation length, which will
be of the order of the decay length, is thus relatively large compared to the system
size. Together with the fact that the percolation threshold for continuum systems is
typically around 0:15 this might explain why models GF and SA are connected in
spite of their low value of the porosity.
In summary, the samples SGF and SSA were constructed to be indistinguishable with

respect to porosity and correlations from SEX. The imperfection of the reconstruction
method for sample GF, however, accounts for the deviations of its correlation function
at small r from that of sample EX.

4.2. Visual inspection of images

We now collect results from a visual comparison. Visual inspection of Figs. 1–4
reveals that none of the models SDM;SGF or SSA resemble closely the experimental
microstructure SEX. This applies in particular to samples GF and SA which were
constructed to match the traditional geometrical characteristics of sample EX, such as
porosity, speci�c surface and correlation function.
Figs. 1–4 suggest that samples SGF and SSA have isolated islands of matrix space

although this cannot be seen directly because the pore space is rendered opaque. Isolated
islands of matrix space cannot exist in a real porous medium such as sample EX.
They are also absent in the compaction and diagenesis model DM. The comparison is
indicated in the line labelled “isolated M” in Table 2. The pore surfaces in samples GF
and SA are much rougher than in samples EX and DM. Sample DM appears visually
more homogeneous than the other samples. Although there is no anisotropy visible for
sample DM from Fig. 2 its connectivity properties will be found below to be strongly
anisotropic.
In summary the traditional characteristics such as porosity, speci�c surface and corre-

lation functions are insu�cient to distinguish di�erent microstructures. Visual inspection
of the pore space by the human eye indicates that samples GF and SA have a similar
structure which, however, di�ers from the structure of sample EX. Although sample
DM resembles sample EX more closely with respect to surface roughness it di�ers
visibly in the shape of the grains.

4.3. Local porosity analysis

We turn to an analysis of the uctuations in local porosities. The di�erences in visual
appearance of the microstructures �nd a quantitative expression here.
The local porosity distributions �(�; 20) of the four samples at L=20a are displayed

as the solid lines in Figs. 6–9. The ordinates for these curves are plotted on the
right vertical axis. The �gures show that the original sample exhibits stronger porosity
uctuations than the three model samples except for sample SA which comes close.
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Fig. 6. Local percolation probabilities ��(�; 20) (broken curves, values on left axis) and local porosity
distribution �(�; 20) (solid curve, values on right axis) at L = 20 for sample EX. The inset shows the
function p�(L). The line styles corresponding to � = c; x; y; z; 3 are indicated in the legend.

Fig. 7. Local percolation probabilities ��(�; 20) (broken curves, values on left axis) and local porosity
distribution �(�; 20) (solid curve, values on right axis) at L = 20 for sample DM. The inset shows the
function p�(L). The line styles corresponding to � = c; x; y; z; 3 are indicated in the legend.
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Fig. 8. Local percolation probabilities ��(�; 20) (broken curves, values on left axis) and local porosity
distribution �(�; 20) (solid curve, values on right axis) at L = 20 for sample GF. The inset shows the
function p�(L). The line styles corresponding to � = c; x; y; z; 3 are indicated in the legend.

Fig. 9. Local percolation probabilities ��(�; 20) (broken curves, values on left axis) and local porosity
distribution �(�; 20) (solid curve, values on right axis) at L = 20 for sample SA. The inset shows the
function p�(L). The line styles corresponding to � = c; x; y; z; 3 are indicated in the legend.
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Fig. 10. Average local porosities for sample EX (solid line with tick) DM (dashed line with cross) GF
(dotted line with square), and SA (dash–dotted line with circle).

Sample DM has the narrowest distribution which indicates that it is most homogeneous.
Figs. 6–9 show also that the component at the origin, �(0; 20), is largest for sample
EX, and smallest for sample GF. For samples DM and SA the values of �(0; 20)
are intermediate and comparable. Plotting �(0; L) as a function of L we �nd that this
remains true for all L. These results indicate that the experimental sample EX is more
strongly heterogeneous than the models, and that large regions of matrix space occur
more frequently in sample EX. A similar conclusion may be drawn from the variance
of local porosity uctuations which will be studied below. The conclusion is also
consistent with the results for L∗ shown in Table 2. L∗ gives the sidelength of the
largest cube that can be �t into matrix space, and thus L∗ may be viewed as a measure
for the size of the largest grain. Table 2 shows that the experimental sample has a
larger L∗ than all the models. It is interesting to note that plotting �(1; L) versus L also
shows that the curve for the experimental sample lies above those for the other samples
for all L. Thus, also the size of the largest pore and the pore space heterogeneity are
largest for sample EX. If �(�; L∗) is plotted for all four samples one �nds two groups.
The �rst group is formed by samples EX and DM, the second by samples GF and SA.
Within each group the curves �(�; L∗) nearly overlap, but they di�er strongly between
them.
Figs. 10–12, exhibit the dependence of the local porosity uctuations on L. In

Fig. 11 we plot the variance of the local porosity uctuations, de�ned in Eq. (2.12) as
function of L. The variances for all samples indicate an approach to a �-distribution
according to Eq. (2.14). Again sample DM is most homogeneous in the sense that
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Fig. 11. Variance of local porosities for sample EX (solid line with tick) DM (dashed line with cross) GF
(dotted line with square), and SA (dash–dotted line with circle).

Fig. 12. Skewness of local porosities for sample EX (solid line with tick) DM (dashed line with cross) GF
(dotted line with square), and SA (dash–dotted line with circle).
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its variance is smallest. The agreement between samples EX, GF and SA reects the
agreement of their correlation functions, and is expected by virtue of Eq. (2.12).
Fig. 12 shows the skewness as a function of L calculated from

�3(L) =
(�(L)− ��(L))3

�(L)3
; (4.2)

where �(L) is the variance de�ned in Eq. (2.12). �3 characterizes the asymmetry of
the distribution, and the di�erence between the most probable local porosity and its
average. Again samples GF and SA behave similarly, but sample DM and sample EX
di�er from each other, and from the rest.
At L= 4a the local porosity distributions �(�; 4) show small spikes at equidistantly

spaced porosities for samples EX and DM, but not for samples GF and SA. The
spikes indicate that models EX and DM have a smoother surface than models GF and
SA. For smooth surfaces and small measurement cells porosities corresponding to an
interface intersecting the measurement cell occur with higher frequency, and this gives
rise to spikes. The presence of isolated islands of pore or matrix space reduces these
spikes. It is unclear at present whether the spikes persist when the measurement cells
are chosen to be nonoverlapping.

4.4. Local percolation analysis

Visual inspection of Figs. 1–4 did not allow us to recognize the degree of con-
nectivity of the various samples. A quantitative characterization of the connectivity is
provided by the local percolation probabilities [30,35], and it is here that the samples
di�er most dramatically.
All the four samples are globally connected in all three directions. This, however,

does not imply that the samples have similar or comparable connectivity. The last line
in Table 2 gives the fraction of blocking cells at the porosity 0:1355 and for L∗. It
gives a �rst indication that the connectivity of samples SA and GF is, in fact, much
poorer than that of the experimental sample EX.
Figs. 6–9 give a more complete account of the situation by exhibiting ��(�; 20)

for � = 3; c; x; y; z for all four samples. First, one notes that sample DM is strongly
anisotropic in its connectivity. It has a higher connectivity in the z-direction than in the
x- or y-direction. This might be due to the anisotropic compaction process. �z(�; 20)
for sample DM di�ers from that of sample EX although their correlation functions in
the z-direction are very similar. The �-functions for samples EX and DM rise much
more rapidly than those for samples GF and SA. The inection point of the �-curves
for samples EX and DM is much closer to the most probable porosity (peak) than in
samples GF and SA. All of this indicates that connectivity in cells with low poros-
ity is higher for samples EX and DM than for samples GF and SA. In samples GF
and SA only cells with high porosity are percolating on average. In sample DM the
curves �x; �y and �3 show strong uctuations for � ≈ 1 at values of � much larger
than the 〈�〉 or �(SDM). This indicates a large number of high porosity cells
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Fig. 13. p3(L) for sample EX (solid line with tick) DM (dashed line with cross) GF (dotted line with
square), and SA (dash–dotted line with circle).

which are nevertheless blocked. The reason for this is perhaps that the linear compaction
process in the underlying model blocks horizontal pore throats and decreases horizontal
spatial continuity more e�ectively than in the vertical direction, as shown in [28],
Table 1 p. 142.
The absence of spikes in �(�; 4) for samples GF and SA combined with the fact

that cells with average porosity (≈0.135) are rarely percolating suggests that these
samples have a random morphology similar to percolation.

4.5. Implications for transport properties

The connectivity analysis of local porosity theory allows to make some predictions
for transport properties (such as conductivity or permeability) without actually calculat-
ing them. A detailed comparison between the predictions of local porosity theory and
exact calculation of transport properties will appear elsewhere [39]. These predictions
are made by calculating the total fraction of percolating cells from Eq. (2.18). The
insets in Figs. 6–9 show the functions p�(L) = ��(�; L) for � = 3; x; y; z; c for each
sample. The curves for samples EX and DM are similar but di�er from those for sam-
ples GF and SA. In Fig. 13 we plot the curves p3(L) of all four samples in a single
�gure. The samples fall into two groups {EX,DM} and {GF,SA} that behave very
di�erently. Fig. 13 shows that reconstruction methods [9,21] based on correlation func-
tions do not reproduce the connectivity properties of porous media. As a consequence,
within the e�ective medium approximation of local porosity theory [30] samples GF
and SA would both yield much lower permeabilities or conductivities than those of
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samples EX and DM. Based on these results it appears questionable whether correlation
function reconstruction can produce reliable models for the prediction of transport.
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