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Abstract

E�ective electrical conductivity and electrical permittivity of water-saturated natural sandstones are evaluated on the

basis of local porosity theory (LPT). In contrast to earlier methods, which characterize the underlying microstructure

only through the volume fraction, LPT incorporates geometric information about the stochastic microstructure in

terms of local porosity distribution and local percolation probabilities. We compare the prediction of LPT and of

traditional e�ective medium theory with the exact results. The exact results for the conductivity and permittivity are

obtained by solving the microscopic mixed boundary value problem for the Maxwell equations in the quasistatic ap-

proximation. Contrary to the predictions from e�ective medium theory, the predictions of LPT are in better quanti-

tative agreement with the exact results. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Almost all discussions of mechanical properties,
(e.g. elasticity, plasticity, viscoelasticity or frac-
ture) and transport properties, (e.g. thermal con-
ductivities, electric conductivities or di�usion
constants) of microscopically heterogeneous ma-
terials assume that the material is homogeneous on
a su�ciently macroscopic length scale
[1,3,6,7,11,14±16]. Although there are di�erent
methods to describe random microstructures (e.g.
see [10]), the macroscopic mechanical or transport
parameters in most applicable theories depend on
random microstructure solely through a single
parameter, namely the volume fraction.

Microstructures are often very complicated and
this complexity cannot be captured by a single
parameter. To see this intuitively, consider a two-
phase medium composed of 50% rubber and 50%
steel. Two possible cases arise: (a) disconnected
rubber inclusions are embedded in the connected
steel matrix, and (b) disconnected steel particles
are spread in the connected rubber matrix. Al-
though it is clear that the ®rst medium has very
di�erent elastic properties than the second one, a
calculation of e�ective elastic constants including
only the volume fraction would fail to bring out
this distinction.

Di�culties of this nature have led to the need
for theories that incorporate more quantitative
information about the underlying microstructure.
Recently a general method, namely local porosity
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theory (LPT), was proposed [2,8±10]. It provides
quantitative geometric characteristic functions
through which microscopic pore spaces of real
sandstones and models can be compared. It also
provides a theoretical framework which incorpo-
rates these functions into the determination of the
e�ective transport parameters. We have carried
out an analysis on two di�erent natural sandstones
and obtained encouraging results which we report
here.

The organisation of the paper is as follows. In
Section 2 we present the samples and their con-
ventional characterization theory by means of
porosity and correlation function. In Section 3 we
de®ne the geometric characterization of LPT.
Section 4 provides the de®nition of the e�ective
material parameters and the general mixing-law
based on LPT. This mixing-law contains the clas-
sical mixing-formulae, such as Bruggeman's e�ec-
tive medium equation or Clausius±Mossotti
approximation [3,10,16], as special cases. In Sec-
tion 5 we present the results and conclusion.

2. Porosity and correlation functions

Consider a rock sample occupying a subset
S � Rd (d � 3) that contains two disjoint subsets
S � P [M with P \M � ; where P is the pore
space and M is the rock or mineral matrix and ; is
the empty set. The porosity /�S� is de®ned as the
ratio /�S� � V�P�=V�S� which gives the volume
fraction of the pore space. Here V �P� denotes the
volume of the pore space, and V �S� is the total
sample volume.

For the sample data analysed here the set S is a
rectangular parallelepiped whose sidelengths are
M1;M2 and M3 in units of the lattice constant a
(resolution) of a simple cubic lattice. The total
number of voxels is

N � M1M2M3, and

vG�r� � 1 for r 2 G;
0 for r 62 G;

�
�1�

is the characteristic (or indicator) function of a set
G that indicates when a point is inside or outside
of G. The correlation function for a homogeneous
medium is de®ned as

G�r0; r� � G�rÿ r0� � vP�r0�vP�r�h i ÿ /h i2
/h i�1ÿ /h i� ; �2�

where � � �h i denotes the ensemble average. If the
medium is isotropic G�r� � G�jrj� � G�r�, with
G�0� � 1 and G�1� � 0.

In the present work we consider two natural
sandstones (Berea and Fontaine-bleau). The data
sets were obtained by computerized microtomo-
graphy. The resolution a of the discretization, the
sidelengths Mi of the sample, and the average po-
rosity �/ for the two samples are listed in Table 1.
The length scale L̂ will be de®ned and discussed in
Section 5. The corresponding two-point correla-
tion functions for the two samples are shown in
Fig. 1.

Table 1

Resolution a, sidelengths M1;M2;M3, average porosity �/ and a length scale L̂ (see below) for the two sandstone samples

Samples a �lm) M1 �M2 �M3
�/ L̂ �lm)

Berea 10 128� 128� 128 0.1775 150

Fontainebleau 7.5 128� 128� 128 0.1208 200

Fig. 1. The two-point correlation function G�r� for the two

samples of Berea (circles) and Fontainebleau (squares) sand-

stones with G�0� � 1.
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3. Local geometric characteristic functions

The basic idea of LPT is to measure geometric
observables within a bounded (compact) subset of
the porous medium and to collect these measure-
ments into various histograms. Let K�r; L� denote
a cube of sidelength L centered at the lattice vector
r. The set K�r; L� de®nes a measurement cell inside
which local geometric properties such as porosity
or speci®c internal surface are measured. The local
porosity within the cell K�r; L� is de®ned as

/�r; L� � V �P \K�r; L��
V �K�r; L�� : �3�

The local porosity distribution l�/; L� is de®ned as

l�/; L� � 1

m

X
r

d�/ÿ /�r; L��; �4�

where m is the number of placements of the mea-
surement cell K�r; L�. Ideally all measurement cells
should be disjoint, but in practice this cannot be
achieved because of poor statistics. The results
presented below are obtained by placing K�r; L� on
all lattice sites r which are at least a distance L=2
from the boundary of S, and hence
m � Q3

i�1�Mi ÿ L� 1�. l�/; L� is the empirical
probability density function (histogram) of local
porosities whose support is the unit interval.

Next the connectivity of a measurement cell
needs to be characterized. Let

K�r; L� �
1 if K�r; L� percolates in the

x-; y- and z-direction;
0 otherwise;

8<: �5�

be an indicator for the connectivity of a cell. A cell
K�r; L� is called ``percolating in the x-direction'' if
there exists a path inside the set P \K�r; L� con-
necting those two boundary faces of S that are
vertical to the x-axis, similarly for the other di-
rections.

The local percolation probability in all three di-
rections is now de®ned through

k�/; L� �
P

r K�r; L�d//�r;L�P
r d//�r;L�

: �6�

The local percolation probability k�/; L� gives the
fraction of measurement cells of sidelength L with

local porosity / that are percolating in all three
directions.

The total fraction of percolating cells is given by
integration over all local porosities as

p�L� �
Z 1

0

l�/;L�k�/; L�d/ �7�

and it characterizes the overall connectivity of the
sample. Clearly limL!1 p�L� � 0 if P is discon-
nected while limL!1 p�L� � 1 if P is connected.

4. E�ective permittivities

4.1. De®nition

To demonstrate our method of calculating
macroscopic material parameters we consider the
problem of dielectric relaxation. Let P and M have
the isotropic permittivities �P and �M, respectively.
The basic equations governing the static electric
displacement D�r� in such a two-phase material
are

r �D�r� � 0; r 2 G �G � P; M�: �8�
The local constitutive equation is

D�r� � ��r�E�r�; �9�
where

��r� � �PvP�r� � �MvM�r�: �10�
Here E�r� is the electric ®eld, which can be ex-
pressed as the gradient of the electric potential U,
i.e. E�r� � ÿrU�r�.

The e�ective permittivity �eff is de®ned as

hD�r�i � �effhÿrU�r�i; �11�
where angular brackets denote an ensemble aver-
age over the microstructure. Eq. (11) provides a
relation between the averaged ®elds on the
macroscopic level.

4.2. Mixing-law

In LPT, as in most of the classical e�ective
medium approximations (EMA), it is assumed
that the local geometries are statistically indepen-
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dent, and simple enough to be modelled as
spherical-coated inclusions embedded in an e�ec-
tive medium [6,16].

Consider a static electric ®eld E0 � E0 ez (in
positive z-direction) incident on a sphere of radius
r2 (pore space) uniformly coated with spherical
shell of radius r1 (matrix) immersed in an e�ective
medium with permittivity �eff . In polar coordinates
�r; h;u� the potential Uout outside the coated
sphere is given by an elementary result of electro-
statics as [5,12]

Uout�r; h;u� � ÿE0 r cos h� a
r2

cos h: �12�

Here

a � r3
1

�CS��P; �M; /� ÿ �eff

�CS��P; �M; /� � 2�eff

E0 �13�

and / � �r2=r1�3 is the local volume fraction.
The corresponding coated sphere permittivity

can be expressed as

�CS��M; �P; /� � �M �P � 2�M � 2/ �P ÿ �M� �
�P � 2�M ÿ / �P ÿ �M� �

� �
:

�14�
If the materials are exchanged one obtains
�CS��P; �M; 1ÿ /� instead of �CS��M; �P; /�.

The self-consistency condition of the EMA re-
quires that the average electric ®eld hE�r; h;u�i
equals the external ®eld E0, i.e. hE�r; h;u�i � E0,
within the e�ective medium. Substituting (12) into
(11) and using this self-consistency condition,
yields

hai � 0; �15�
where the h� � �i indicates an average over /.

The mixing-law resulting from Eq. (15) readsZ 1

0

l�/; L�k�/; L� �CS��P; �M; 1ÿ /� ÿ �eff

�CS��P; �M; 1ÿ /� � 2�eff

d/

�
Z 1

0

l�/; L� 1� ÿ k�/; L�� �CS��M; �P; /� ÿ �eff

�CS��M; �P; /� � 2�eff

d/

� 0: �16�

�CS��P; �M; 1ÿ /� is the permittivity of the water-
coated spherical rock grain and �CS��M; �P; /� the

permittivity of the rock-coated spherical water
pore grain.

Because every EMA neglects the in¯uence of
local pore geometry, we emphasize that �eff calcu-
lated from Eq. (16) is an approximate e�ective
permittivity.

5. Results and discussion

In Fig. 2 we present the local porosity distri-
bution and the local percolation probability
functions for Berea and Fontainebleau sandstones
at L � 300 lm. The Fontainebleau sample is more
homogeneous as indicated by the smaller width of
l�/; L� than that of Berea. The most probable
porosity (peak) is close to the average porosity in
both cases.

The local percolation probabilities k�/; L�
(shown as solid lines) are increasing from 0 to 1.
This indicates that the measurement cells with
higher porosity are more likely to be connected at
this length scale in both sandstones. The k�/; L�
for Berea fall to the left of the corresponding
l�/; L� whereas in Fontainebleau it falls to the
right. This indicates that the degree of connectivity
of Berea is larger than that of Fontainebleau
sandstone.

Fig. 2. Local porosity distribution l�/; L� (dotted lines) and

local percolation probability k�/;L� (solid lines) for Berea

sandstone (circles) and Fontainebleau sandstone (squares) for

the measurement cell size L � 300 lm. The ordinate for the

graphs of l�/;L� is on the left and the ordinate for k�/; L� is on

the right as indicated by the axis labels.
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The di�erence in the degree of connectivity is
more quantitatively evident in Fig. 3, where we
have plotted the total fraction of the percolating
cells for both the sandstones together. Over the
whole range of length scales the connectivity in-
dicator p�L� for Berea is roughly 10% higher than
for Fontainebleau. Therefore Berea is expected to
have higher conductivity than the Fontainebleau
sample.

For given permittivities �P � 87:74 and
�M � 4:7 (in units of �0 � 8:854� 10ÿ12 F/m), and
conductivities rP � 1:0 S �mÿ1 and rM � 0:0 we
have computed e�ective electrical permittivities �eff

and e�ective electrical conductivities reff in three
ways: ®rst we solve Eqs. (8)±(10) exactly, then we
solve Eq. (16), and ®nally we compute reff and �eff

within the EMA.
We solve Eqs. (8)±(10) exactly by a ®nite vol-

ume technique [13], the mesh sizes are equal to the
resolution a. We apply a potential gradient across
the sample and require no ¯ow boundary condi-

tions on the other faces of the sample. On the
stochastic internal boundary oP we have conti-
nuity of normal components of the electric dis-
placement D�r� and tangential components of the
electric ®eld E�r�. For the permittivity problem we
calculate �EC from Eq. (11). For the electrical
conductivity problem we solve a similar set of
equations with values rP and rM above.

We compute rLPT�L� and �LPT�L� as functions of
L by solving the approximate Eq. (16) iteratively.
As suggested by Boger et al. [4], we ®nd a length
scale L̂ (see Table 1) such that �LPT�L̂� � �EC. The
results L̂B � 150 lm for Berea and L̂F � 200 lm
for Fontainebleau form the last column in Table 1.
Thus L̂ may be interpreted as an electrical length
which can be used to characterize the electrical
transport properties.

We observe also that the line p � 0:38 in Fig. 3
intersects the pB�L� at L̂B and pF�L� at L̂F. This
supports the interpretation from above that the
length scale L̂ is related to the connnectivity of the
underlying microstructure. It is also gratifying to
observe that L̂ is approximately two times the
correlation length, because this ensures that the
local geometries are statistically independent as
required in Section 4. However, we cannot rule out
the dependence of L̂ on other structural properties
of the sandstones. Further work on di�erent
sandstones is necessary to establish any such re-
lationship (Table 2).

Finally we calculate the e�ective conductivity
rEMA and permittivity �EMA also within the classi-
cal EMA [6]

�/
cP ÿ ceff

cP � 2ceff

� �1ÿ �/� cM ÿ ceff

cM � 2ceff

� 0: �17�

This equation can be obtained as the special case
L � 0 from Eq. (16). We ®nd that rEMA � 0, be-
cause the porosity �/ of both the samples is below
the percolation threshold �/c � 1=3. For both the
sandstones, �LPT for L � L̂ is in better agreement

Fig. 3. The total fraction of percolating cells for Berea and

Fontainebleau sandstones. The horizontal solid line is p � 0:38.

The left dotted line represents L̂B � 150 lm, the right one for

L̂F � 200 lm.

Table 2

E�ective electrical permittivity � (in units of �P) and e�ective electrical conductivity r in S �mÿ1

Samples �EC �LPT �EMA rEC rLPT rEMA

Berea 0:1121� 0:0016 0.1235 0:0931 0:0240� 0:0026 0.0198 0

Fontainebleau 0:0934� 0:0021 0.0953 0.0763 0:0136� 0:0043 0.0106 0
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with �EC than the corresponding �EMA. It should be
emphasized that rLPT > 0 while rEMA � 0. This is
important for the transport properties of rocks,
because generally rocks are connected down to
very low porosity (even below 1%).

In summary we have studied the quantitative
prediction of macroscopic material properties in
the simplest linear example. Despite its simplicity
the disordered potential equation has numerous
other applications, such as di�usion, heat trans-
port, thermal and electrical osmosis, or hydrody-
namic ¯ow to name only a few of them. For the
quantitative prediction of mechanical properties
such as elastic moduli we are currently extending
LPT to the case of linear elasticity. We feel that a
quantitative understanding of the in¯uence of the
microstructure on linear response properties is a
prerequisite without which predictive theories of
nonlinear phenomena such as plasticity and frac-
ture will remain limited in their applicability to
experiment.
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