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The backward-jump model is investigated for the case of a bond-disordered lattice. The
backward-jump model is a correlated nearest-neighbor random-walk model in which the walker has
a different transition rate for jumps to its previously visited site than for jumps to all other nearest-
neighbor sites. The standard formulation of the model must be modified if the disorder is intro-
duced at the level of the usual master equation. The difficulties with the standard formulation are
discussed in the paper. The first-order master equation for the disordered backward-jump model is
established, and a symmetrized second-order equation that was suggested previously is derived from

it.

A well-known generalization of uncorrelated random
walks on regular lattices is random walks with short-term
memory. In the so-called backward-jump model the
memory extends one time step into the past. In that
model the walker has a different probability for back
jumps than for all other (forward or sideward) jumps.
This type of correlated random walk was first studied in
one dimension by Fiirth! and subsequently by many au-
thors.>~® The model has found application to different
physical situations including polymer statistics, exciton
transport, superionic conductors, and cellular automata
for Lorentz lattice gases. For a review the reader is re-
ferred to Ref. 7.

My purpose here is to elucidate certain new aspects of
the backward-jump model when the underlying lattice is
not regular but a bond-diluted disordered lattice. The
study of the backward-jump model in a disordered envi-
ronment was initiated in Refs. 8 and 9.

Disordering the backward-jump model turns out to be
a more subtle problem than one might think at first. The
difficulties arise from an inconsistency in the formulation
of the model for ordered lattices. This inconsistency will
be discussed first. Afterwards it is shown how to refor-
mulate the model in a consistent manner.

Given that the random walker remembers only its pre-
viously occupied site the standard formulation considers
the probability density P(i,j,¢) to find the walker at site i
at time ¢ given that site j was occupied immediately prior
to the last jump (and that the walker started at the origin
at t =0). It is well known’ that one can obtain a Marko-
vian description by considering the history of the walker,
i.e., its current position together with its previous posi-
tion instead of just its current position. The standard for-
mulation is given by the following master equation for
P(i,j,t,):

%P(i,j,t)=w,,[P(j,i,t)—P(i,j,t)] (1)

+w3 [P(j,k,t)—P(i,j,1)].
ki

In Eq. (1) w, is the transition rate for back jumps, i.e.,
jumps to the previously occupied site, while the rate w

44

applies to all other transitions. The sum runs over all
nearest-neighbor sites k of site j (except /). Equation (1) is
valid on a regular lattice with coordination number z.

Let me now consider Eq. (1) for a bond-disordered lat-
tice. Each bond of the underlying regular lattice has a
probability p of being present, and is missing with proba-
bility 1 —p. Only bonds which are present can be crossed
by the walker, transitions over missing bonds are forbid-
den. Note that in this model the coordination number z;
of site i is a random quantity varying between 0 and z.

In the disordered case there will always be lattice sites
with z;=1. Obviously, if w, approaches O then the walk-
er acquires an infinite memory at such points. This is in-
consistent with the original assumption of a finite length
memory.

Another manifestation of the problem is the absence of
a model parameter related to the length of memory. The
rate w determines the units of time as 1/w. The rate w,,
on the other hand, sets the strength of the correlations,
i.e., it determines the average number of executed or
avoided back jumps, and w, /w might be called a correla-
tion time. The length of memory is fixed implicitly as the
length of the history, i.e., the number of previous sites
that influence the transition rate. But there is no model
parameter to change the memory length at fixed length of
the history. As long as the lattice is regular this presents
no problems because on average there will be a transition
within a time 1/w, and therefore the length of history is
roughly equal to the length of memory. In the disordered
case, however, the length of the memory becomes posi-
tion dependent as well as w, dependent.

In Ref. 8 these problems have been avoided by intro-
ducing the disorder after symmetrizing Eq. (1). The sym-
metrization consists in writing a closed second-order
equation for the probability densities P(i,t)
=3P, j,t) where the summation runs over all
nearest neighbors of site i. The probability density P(i,¢)
is the usual quantity known from uncorrelated random
walks. It is the probability density to find the random
walker at site / at time ¢ if it started from the origin at
time 0. The resulting symmetrized equation can be easily
disordered® to give
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di—P(z t)+(y+wb—w) P(z =w Y A4,

ij
i d

where ¥y =w, +w(z—1), z is the coordination number of
the underlying regular lattice, and the A4;; are defined as

1 if the bond [ij] is present

4;;=4;;= 10 if the bond [ij] is absent .

ij Ji—
Equation (2) is symmetric, and the possibility of an
infinite memory at z; =1 sites no longer exists.

In the rest of this paper it will be shown that Eq. (2)
can be obtained more directly than in Ref. 8. The disor-
der can be introduced directly into Eq. (1) after some
small modifications in the formulation which eliminate
the position dependence of the memory length.

The inconsistency in the formulation of Eq. (1) can be
eliminated by allowing transitions from a site to itself. In
Eq. (1) it was assumed that i#j. This restriction is now
lifted. Taking this modification into account and intro-
ducing disorder via a factor A4;; for each bond one arrives
at the following master equation:

—d-—P( i, j,t)=

dt E Ajjwiy Ay P(j,k,t) (3a)

— > A wy; AP, j,t)
1

Here the A4;; are defined as 4;; =1 for all i, and

1 if the bond [ij] is present

Aij = A_]l =

(3b)

0 if the bond [ij] is absent
as before. The rates w;; are defined as
w for i#j*k
w, fori=k,i#j
w, fori=j=k
Wik = \w for j=k,i#j (3¢)

(M+z—z)w fori=j,iFk

0 otherwise ,

where M is a constant. The first sum in Eq. (3) runs over
all k that are nearest neighbors of j as well as k =j. Simi-
larly the second sum runs over [/ =i as well as all / that
are nearest neighbors of i. Equation (3) represents the
formulation of correlated random walks in a bond-
disordered environment.

The parameter M determines the length of the memory
as 1/M in units of 1/w. A finite value for M means that

4 pliyt)—(w,

—(M+z—z)w] i

d2
—P(i,t)+
e [y
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[PU,t)—P(i,t)]twy 3 A4;[PU,t)—P(i,1)] @)

iti}

—w)yP(i,t)= wEAUj P(j,t

the previously visited site is forgotten on the average
after a time 1/M even if no jump occurred during that
time interval. For M =0 the previously visited site is
only forgotten when the walker jumps. In that case it
will be seen below that Eq. (3) reduces to Eq. (1) if the
lattice is regular.

The master equation, Eq. (3), implies that P(i,j,¢)=0 if
the bond [ij] is absent because such bonds cannot be
crossed. This implies the relation A4;;P(i,j,1)=P(i,j,t).
Using it Eq. (3) can be rewritten for the case i) as

%P(i,j,t)=wA,-jP(j,t)+(w,,*-w)P(j,i,t)—VP(i,j,t) :
(4a)
while for i = one has
d . ... ._ .
—P(i,i,t)=(M ~+z —z; )wP(i,t)
dt
+(w, —w)P(i,i,t)—yP(i,i,t) . (4b)
In Eq. 4) y=w, +w(M+z—1) and
P(i,t)=3 P(i,j,t) (5)

J
where the sum runs over j =i and all nearest neighbors j
of site i.

For the case of the regular lattice, i.e., z; =z, and M =0
one recovers Eq. (1) from Eq. (4) as noted above. In the
disordered case, however, Eq. (4b) remains coupled to Eq.
(4a) for all values of M. This is the reason for the absence
of the inconsistency discussed above.

In order to derive the symmetrized form of Eq. (3) for
the quantities P(i,z) of Eq. (5) one differentiates Eq. (4)
and sums over all j to obtain
@ i)y — (M +z—z)w]SP(i,1)

2 ! dt
d . . d , ..

=wy A;—-P(j,t)+(w, —w) ¥ —-P(,it) . (6)
= Ydt T dt
Next one writes Eq. (4) with i and j interchanged. Again
summing over j yields

Z%P(j,i,t) yP(i,t)—y 3 P(j,i,t)
J J

Inserting this into Eq. (6) leads to

)+ (wy —w)y S PG iyt). )
JFI J

Finally Eq. (4) is summed over j and then solved for 3 P(j,i,t). The result is

J

(w, —w) S P, it

-4 p; _
> )= dtP(t,tH—['y

(M ~+z—z;)w]P(i,t

)_wz A,‘jP(j,t) .
JFEi
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Together with Eq. (7) one obtains

2
%P(i,t)+[y+wb +w(z,-—~1)]%P(i,t)+ywz,~P(i,t)=

This result is equivalent to Eq. (2) in the limit M =0.

The foregoing derivation establishes the equivalence of
the model defined by Egs. (3) and (2) which is the system
treated in Ref. 8. In Ref. 8 Eq. (2) was studied using an
effective-medium approach. New and interesting effects
from the interplay between memory correlations and dis-
order effects were found in the generalized frequency-
dependent diffusion coefficient. As an example the real
part of the frequency-dependent diffusion coefficient can
exhibit a maximum while the imaginary part shows a
zero for certain choices of the parameter w,. The reader
is referred to Ref. 8 for a complete discussion.

In summary this paper has investigated the problem of
correlated random walks in a bond-disordered lattice. It
was shown that the usual formulation leads to problems

S

w3 A4, 2P0+ wy S 4,P ) ®)
i t ji

because it fixes the length of the history but not the
length of the memory. The inconsistencies can be avoid-
ed by reformulating the problem such that transitions
from a site to itself are admissible. The corresponding
master equation was established, and it was shown to be
equivalent to the formulation which was used as the
starting point for the investigations in Ref. 8. The model
discussed here represents one of the simplest systems for
studying correlation effects on transport in a disordered
environment.
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