
Fractional Calculus and Applied Analysis
https://doi.org/10.1007/s13540-021-00012-0

ORIG INAL PAPER

Sequential generalized Riemann–Liouville derivatives
based on distributional convolution

Tillmann Kleiner1 · Rudolf Hilfer1

Received: 15 October 2021 / Revised: 26 October 2021 / Accepted: 30 November 2021
© The Author(s) 2022

Abstract
Sequential generalized fractional Riemann–Liouville derivatives are introduced as
composites of distributional derivatives on the right half axis and partially defined
operators, called Dirac-function removers, that remove the component of singleton
support at the origin of distributions that are of order zero on a neighborhood of the
origin. The concept of Dirac-function removers allows to formulate generalized initial
value problems with less restrictions on the orders and types than previous approaches
to sequential fractional derivatives. The well-posedness of these initial value problems
and the structure of their solutions are studied.

Keywords Sequential derivatives · Generalized initial value problems · Convolution
of distributions

Mathematics Subject Classification 26A33 · 33E12 · 34A08 · 34K37 · 35R11 · 60G22

1 Introduction

An important issue in applications of fractional differential equations are initial con-
ditions, as emphasized already in [8], [9, p.115] or [10] for fractional relaxation and
fractional diffusion. Derivatives Dα,β

0+ of fractional order α and type β were introduced
precisely because their type β parametrizes different types of initial conditions.

Most investigations of fractional initial value problems were until recently con-
cerned with the simplest fractional derivatives Dα,0

0+ of type 0 (Riemann–Liouville)

or Dα,1
0+ of type1 (Liouville–Caputo) [7,12,16,22,31]. A number of recent works
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considered initial value problems for sequential fractional derivatives [3,24,25,30]
thereby continuing the classical investigations in [5] and [31, Sec. 42.2]. In [3,24,25]
generalized fractional derivatives of various types were studied all of which were
based on the standard kernel tα−1/�(α). Other recent works studied generalized
fractional derivatives where the kernel tα−1/�(α) is replaced by a Sonine kernel
[19,20,26,27,29]. Riemann–Liouville derivatives and their generalizations Dα,β

0+ have
β-dependent domains and null spaces, but they all coincide on a specific complement
of the null space of Dα,1

0+ [10, Sec.7]. Exactly on this complement they also coincide
with the causal distributional fractional derivative Dα+ of order α defined as [32]

Dα+ : D ′0+ → D ′0+, f �→ Yα ∗ f , (1.1)

whereD ′0+ is the space of distributions supported on the right half axis and Yα ∈ D ′0+
are causal power distributions that satisfy Yα(t) = tα−1/�(α) for t > 0 (see Equation
(2.7)), provided the function spaces for Dα,β

0+ are canonically identified via restriction
and zero extrapolation. Motivated by this observation and the recent research activity
in sequential fractional derivatives, the main purpose of this work is to generalize and
unify the theory of fractional initial value problems that involve several sequential
derivatives.

Distributional convolution operators on the full axis modified by certain partially
defined operators will be used in this work to reinterpret sequential fractional deriva-
tives

Dα0,β0
0+ ◦ · · · ◦ Dαn ,βn

0+ with α0, . . . , αn, β0, . . . , βn ∈ [0, 1] (1.2)

on the right half axis where n ∈ N0. Explicitly, composite operators of the form

Dα0+ ◦R ◦Dα1+ ◦ · · · ◦ R ◦Dαn+ with α0, . . . , αn ∈ R (1.3)

with Dα+ from (1.1) are investigated, where each first-order derivative in Eq. (1.2) gives
rise to an operator R in Eq. (1.3). In this representation the operator R is a partially
defined operator on D ′0+ that is called δ-eliminator, because it removes the δ-part of
a distribution at the origin.

Given a generalized sequential fractional derivative of the form (1.3), it can be
rewritten in the normal form

Dα|γ1,...,γm
0+ = Dα+ ◦Rγm ◦ · · · ◦ Rγ1 with γ1 < · · · < γm, (1.4)

where α = α0 + α1 + . . . + αn ∈ R is its fractional order, (γ1, . . . , γm) is called
its sequential type, and Rγ := D−γ

+ ◦R ◦Dγ
+ is called Yγ -eliminator. Linear com-

binations of generalized sequential fractional derivatives can then be written in the
form

D =
m∑

l=0
Dl ◦ Rγm ◦ · · · ◦ Rγ1 with γ1 < · · · < γm, m ∈ N0, (1.5)
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where the operators Dl are linear combinations of distributional fractional derivatives
Dα+, α ∈ R (Theorem 2, p. 21). Our Theorem 3 on p. 23 derives a set of basis functions
K1, . . . , Km such that every distribution from the null space of D is a linear com-
bination of the K1, . . . , Km . Ranges and maximal domains such that D becomes a
bijective operator are calculated in Theorem 4, p. 24. If a distribution g belongs to the
range of D, then it is an admissible inhomogeneity for the equation Df = g. And a
distribution f with Df = 0 is a linear combination of the basis functions K1, . . . , Km

that solves an initial value problem with initial values obtained by applying the oper-
ators V ◦Dγl+ ◦Rγl−1 ◦ · · · ◦Rγ1 to Kk for k, l = 1, . . . ,m, where the δ-value operator
V extracts the coefficient multiplying a δ-distribution.

While Theorem 3 provides a useful result, a complete characterization of the
null space of D requires an analysis of the value and well defined-ness of
V ◦Dγl+ ◦Rγl−1 ◦ · · · ◦ Rγ1(K ) with K a linear combination of the K1, . . . , Km . In
the case where D is a linear combination of sequential derivatives with distinct orders
Theorem 5,p. 25, gives a helpful simplification for this characterization. This leads
to a generalization of the existence and uniqueness results from [3] and [5, Theorem
4]. In the general case however, a complete characterization is quite complicated.
For the case with only two sequential types, γ1 and γ2, the null space of D is fully
characterized here in Section 5.4 below.

Analogous to the generalized fractional derivatives from [19,20,29] the operators
(1.4) can be generalized to CK ◦ Rγn ◦ · · · ◦ Rγ1 where CK denotes the convolution
operator f �→ K ∗ f on D ′0+ with convolution kernel K ∈ D ′0+. Theorems 2, 3 and
4 will be proved for this more general class of operators.

Section 2 summarizes some basic mathematical notations on causal distributional
convolution operators, the convolution field generated by causal power distributions
[17] and partially defined linear operators. Section 3 studies coefficient operators,
projectors and eliminators and their application to certain series of distributions.
The generalized sequential fractional derivatives are introduced in Section 4. Their
fundamental properties are established and their relation to classical Fractional Cal-
culus operators is elucidated. In the final Section 5, the kernels and maximal injective
domains of linear combinations of sequential derivatives are studied.

2 Preliminaries and notations

Subsection 2.1 recalls some basic properties of convolution of distributions with sup-
port on the right half axis. Subsection 2.2 summarizes some results from [17] about
the field of convolution operators that arises naturally from L. Schwartz’ approach to
Fractional Calculus. Subsection 2.3 summarizes definitions for partially defined linear
operators and forms.

2.1 Convolution of distributions with support on the right half axis

The following describes some important properties of convolution of distributionswith
support contained in the right half axis. The details can be found in [32, Chap. IV,§5]
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or [15]. Convolution of distributions is a bilinear continuous operation on

D ′0+ :=
{
f ∈ D ′(R) ; supp f ⊆ [0,+∞[ } , (2.1)

the space of causal distributions. In other words, D ′0+ is a convolution algebra with
continuous convolution operation. It follows that any distributionU ∈ D ′0+ gives rise
to a continuous linear translation-invariant endomorphism by means of the definition

CU : D ′0+ → D ′0+, f �→ U ∗ f . (2.2)

Conversely, any continuous linear translation-invariant endomorphism of D ′0+ is a
convolution operator CU for some kernel distribution U ∈ D ′0+.

The associative law for (D ′0+, ∗) entails the composition rule

CU ◦ CV = CU∗V for all U , V ∈ D ′0+. (2.3)

In particular, the convolution operator Cδ coincides with the identity operator E. A
convolution operator CU with U ∈ D ′0+ is continuously invertible if and only if there
exists a distribution V ∈ D ′0+ such that U ∗ V = δ, where δ denotes the “Dirac-
function”. Note, that V is unique because the convolution algebra D ′0+ has no zero
divisors.

A sequence ( fn) ⊆ D ′0+ is called absolutely summable if and only if

∞∑

n=1
|〈 fn, ϕ〉| <∞ for all ϕ ∈ D(R). (2.4)

Summation of sequences is compatible with convolution:

Lemma 1 Let ( fn), (gn) ⊆ D ′0+ be absolutely summable sequences. Then the double
sequence ( fn ∗ gm) is absolutely summable as well and

( ∞∑

n=1
fn

)
∗
( ∞∑

m=1
gm

)
=

∞∑

n,m=1
fn ∗ gm . (2.5)

Proof The space D ′0+ is complete. In D ′0+ sequences converge weakly if and only if
they converge strongly. Thus, the lemma follows from continuity of convolution [32,
Thm.XIII]. �

An immediate consequence of Lemma 1 is the following.

Lemma 2 Let f , g ∈ D ′0+ such that f = δ− g. If the expression

h :=
∞∑

p=0
g∗p with g∗p := g ∗ p−times. . . ∗ g and g∗0 = δ (2.6)

is well defined as an absolutely convergent series in D ′0+, then f ∗ h = δ.
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2.2 Causal distributional fractional calculus

In his book [32] L. Schwartz considered fractional integrals and derivatives, Iα+ and
Dα+, with orders α ∈ C, as convolution operators with distributional kernels operating
on the space D ′+ of distributions with support bounded on the left. In this work their
restrictions toD ′0+ are used. That is, one defines Iα+ := CYα and Dα+ := CY−α with the
kernels Yα ∈ D ′0+ defined as

Yα(t) :=
{
tα−1/�(α) if t > 0,

0 if t ≤ 0,
for α ∈ H, (2.7a)

Yβ := Dm Yα, for α ∈ H, β = α − m, m ∈ N. (2.7b)

Due to Equation (2.3) the semigroup property Yα∗Yβ = Yα+β automatically translates
to the well known index laws

Iα+ ◦ Iβ+ = Iα+β
+ , Dα+ ◦Dβ

+ = Dα+β
+ for all α, β ∈ C. (2.8)

The operators Iα+ and Dα+ are continuous, linear and inverse to each other.
The distributions Yα with orders α ∈ R generate a subalgebra A [YR] of D ′0+.

The quotient fieldQ[YR] ofA [YR] can be realized as a subalgebra of D ′0+ [17]. The
non-zero elements of Q[YR] were used in [17] to define translation-invariant linear
systems that correspond to fractional differential equations. An explicit description of
the quotient field Q[YR] was obtained from Lemma 2. It was found [17, Sec. 3] that
the distribution

U = δ+
n∑

k=1
λkYαk (2.9)

withn ∈ N0, 0 < α1 < · · · < αn andλ1, . . . , λn ∈ Cpossesses a unique convolutional
inverse given by

U∗−1 :=
∞∑

p=0
(−1)p

(
n∑

k=1
λkYαk

)∗p
∈ D ′0+. (2.10)

Moreover, using the notation of convolution quotients

∗U
V
:= U ∗ V ∗−1, (2.11)

the set Q[YR] \ {0} coincides with the set of convolution quotients

∗ λ1Yα1 + · · · + λnYαn

δ+ μ1Yβ1 + · · · + μmYβm

(2.12)
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with uniquely determined numbers α1 < · · · < αn , 0 < β1 < · · · < βm , λk, μl ∈ C
×

and n,m ∈ N0. Maximal domains for the convolution operators defined by the kernels
(2.12) were discussed in [17, Sec. 7]. However, for the purposes of this work it suffices
to consider them as convolution operators acting on D ′0+.

Remark 1 The presented approach to Fractional Calculus resembles operational cal-
culus approaches [13,23,28] in the sense that a quotient field construction is used in
both cases. However, the restriction to convolution quotients of a certain class of spe-
cial distributions, whose inverses are well understood distributions (see [17]), has the
advantage that the concrete interpretation of the abstract quotients is known very early
on.

2.3 Partially defined linear operators and forms

A partially defined linear operator A : dom A ⊆ X → X is a linear operator
A : dom A→ X with dom A ⊆ X a linear subspace. Similarly, a partially defined
linear form L : dom L ⊆ X → K is a linear form L : dom L → X with dom L ⊆ X
a linear subspace. The following recalls basic operations on partially defined linear
operators and forms.

Let A, B partially defined linear operators on X . One denotes

A ⊆ B ⇔ dom A ⊆ dom B and Ax = Bx for all x ∈ dom A. (2.13)

The sum A + B of A and B is defined as

dom(A + B) := dom A ∩ dom B (2.14a)

(A + B)x := Ax + Bx for x ∈ dom(A + B). (2.14b)

The scalar multiple λ · A with λ ∈ K is defined as

dom(λ · A) := dom A (2.15a)

(λ · A)x := λ · (Ax) for x ∈ dom A. (2.15b)

The composition A ◦ B of A and B is defined as

dom(A ◦ B) := { x ∈ dom A ; Bx ∈ dom A } (2.16a)

(A ◦ B)x := A(Bx) for x ∈ dom(A ◦ B). (2.16b)

Addition (2.14) respectively composition (2.16) defines a semigroup with neutral
element given by the zero operator 0with dom 0 = X respectively the identity operator
E with dom E = X . The distributive laws read

(A + B) ◦ C = A ◦ C + B ◦ C, (2.17a)

C ◦ (A + B) ⊇ C ◦ A + C ◦ B. (2.17b)
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Equality holds in Equation (2.17b) as well if domC = X .
Addition of partially defined linear forms is defined analogous to (2.14). The com-

position L◦A of a partially defined linear form L and a partially defined linear operator
A is defined analogous to (2.16). This composition defines a semigroup operation of
the partially defined linear operators on the partially defined linear forms on X .

The operations for partially defined operators and forms exhibit strange behaviour.
For instance, A − A = 0dom A ⊆ 0 and 0 · A = 0dom A ⊆ 0, but equality holds if and
only if dom A = X . For every linear subspace Y ⊆ X one obtains a linear space of
partially defined linear operators A : dom A ⊆ X → X with dom A = Y , but the set
of all partially defined linear operators or linear forms does not define a linear space.

3 Eliminators, initial values and series expansions

This section introduces and studies Yα-coefficient operators, -projectors and
-eliminators. These are defined for α = 0 in Subsection 3.1. Via fractional integration
and differentiation the definition is transported to general α in Subsection 3.2. Then,
in Subsection 3.3, the operators are applied to represent the coefficients of a series of
distributions Yα .

3.1 The δ-limit operator, the δ-projector and the δ-eliminator

Roughly speaking, the δ-elminator, which is denoted byR, removes the “δ-component”
of a distribution. This “surgery” does not go well without careful preparations. There-
fore, the δ-eliminator needs to be introduced as a partially defined operator on D ′0+.

Let I ⊆ R be open. The space of distributions of order zero on I , denoted by
D ′0(I ), is the set of distributions μ ∈ D ′(I ) satisfying

∀J ⊆ I compact ∃C ∈ R+ ∀ϕ ∈ DJ : |μ(ϕ)| ≤ C‖ϕ‖∞, (3.1)

where DJ = {ϕ ∈ D(R) ; suppϕ ⊆ J }. Any distribution f ∈ D ′0(I ) can be identi-
fied with a Radon measure on I , see [14, Def. 2.1.1] or [15, 4, §4].

Definition 1 Define the space of distributions

D ′0+,δ :=
{
f ∈ D ′0+ ; ∃ε > 0 : f |]−ε,ε[ ∈ D ′0(]−ε, ε[)

}
. (3.2)

The δ-value operator is the partially defined linear form V given by

domV := D ′0+,δ
(3.3a)

V f := lim
ε↘0
〈 f , 1]−ε,ε[〉 for all f ∈ domV, (3.3b)

where the right hand side of (3.3b) is defined for ε > 0 small enough by

〈 f , 1]−ε,ε[〉 := lim
n→∞〈 f , ϕn〉 (3.3c)
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for any sequence (ϕn) ⊆ D(R) such that ϕn ↗ 1]−ε,ε[ for n→∞.
The δ-projector is the partially defined operator

P : D ′0+,δ
⊆ D ′0+ → D ′0+, f �→ P f := δ · V f . (3.4a)

The δ-eliminator is the complementary projection of P, that is

R := E−P . (3.4b)

The δ-residual space of causal distributions is the range of the δ-remover

D ′0+,δ/
:= ran R = R

(
D ′0+,δ

)
. (3.5)

It is immediate from the definition of the space D ′0+,δ
that, for any ε > 0 and any

f ∈ D ′0+,δ
, the distribution f can be written as

f = μ+ g, μ ∈ D ′0, suppμ ⊆ [0, ε], g ∈ D ′, inf supp g > 0. (3.6)

The δ-coefficient can be defined equivalently as V f = μ({0}) for f = μ + g with
μ, g as in (3.6), due to the continuity of Radon measures [1,6]. Here μ({0}) denotes
the μ-measure of the Borel set {0} ⊆ R.

Proposition 1 The space D ′0+,δ
is a unitary convolution subalgebra of D ′0+, that is

D ′0+,δ
∗D ′0+,δ

= D ′0+,δ
.

Proof The proposition is immediate from Equation (3.6) and the following three facts:
It holds inf supp( f ∗g) ≥ inf supp f +inf supp g for all f , g ∈ D ′0+, the setD ′0+∩D ′0
is closed with respect to convolution, and δ ∈ D ′0+,δ

. �
Proposition 2 The operators P and R are complementary linear projection operators
on D ′0+,δ

, that is P ◦P = P, R ◦R = R, R ◦P = P ◦R = 0 and P+R = ED ′0+,δ
.

Every distribution f ∈ D ′0+,δ
has a unique representation

f = a · δ+ g with a ∈ C, g ∈ D ′0+,δ/, (3.7)

where a and g are given by a = V f and g = R f . In addition,

V ( f ∗ g) = V ( f ) · V (g) for all f , g ∈ D ′0+,δ
. (3.8)

Proof It is immediate from the Definitions (3.3) that P δ = δ. Thus, P ◦P = P and
the first part of the proposition follows from basic linear algebra. For Equation (3.8),
recall the remarks below Equations (3.1) and (3.6). Then use that

(μ ∗ ν)({0}) = (μ⊗ ν)({ (t,−t) ; t ∈ R }) = μ({0}) · ν({0}) (3.9)

for all μ, ν ∈ D ′0 ∩D ′0+.
The latter follows from Equation (1) in [2, Ch.VIII, §1,No.1]. �
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Equation (3.8) means, that the operator V defines an “augmentation” of the con-
volution algebra D ′0+,δ

. That is, the operator V defines a linear homomorphism
V : D ′0+,δ

→ C. Equation (3.8) implies that

D ′0+,δ
∗D ′0+,δ/

= D ′0+,δ/
. (3.10)

In particular, D ′0+,δ/
is a non-unitary convolution subalgebra of D ′0+,δ

.

3.2 Generalized initial value operators, eliminators and projectors

Composing the operators V, R and P with the distributional fractional integrals and
derivatives fromSubsection 2.2 yields operators that act on theYγ -part of a distribution
in an analogousway.This section studies these operators and, for the case of real orders,
the generated algebra of partially defined linear operators.

Definition 2 Let γ ∈ C. The Yγ -coefficient operator, the Yγ -projector and the Yγ -
eliminator are defined as the composite operators

Vγ := V ◦Dγ
+, Pγ := Iγ+ ◦P ◦Dγ

+, Rγ := Iγ+ ◦R ◦Dγ
+ . (3.11)

Further, one defines the distribution spaces

(3.12)

where D ′0+,δ
and D ′0+,δ/

are from eqs. (3.2) and (3.5).

It is immediate from the definitions, that the operators Iγ+ and Dγ
+ induce bijections

between spaces D ′Y,γ and D ′/Y,γ of different orders. For instance, one has a bijection

Iδ−γ
+ : D ′Y,γ → D ′Y,δ with Iδ−γ

+
(
D ′/Y,γ

)
= D ′/Y,δ for all γ, δ ∈ C. (3.13)

The domains of the operators from Definition 2 are

domVγ = dom Pγ = domRγ = D ′Y,γ . (3.14)

Ranges and kernels of these operators are given by

ker Vγ = ker Rγ = ran Pγ = 〈Yγ

〉
, (3.15a)

ker Pγ = ran Rγ = D ′/Y,γ . (3.15b)

The brackets 〈−〉 denote the (complex) linear span.
There hold the composition and commutation rules

Vγ ◦Dδ+ = Vγ+δ, Rγ ◦Dδ+ = Dδ+ ◦Rγ+δ for all γ, δ ∈ C. (3.16)
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Analogous to the operators V, P and R, one has the relations

Pγ = Yγ · Vγ , Rγ = ED ′0+ −Pγ for all γ ∈ C. (3.17)

The operators Pγ and Rγ are complementary projections, just as P and R, and a
statement analogous to (3.7) holds. However, the operator Vγ does not define an
augmentation. From Equation (2.8) and Equation (3.10), one obtains the convolution
inclusions

D ′Y,γ ∗D ′Y,δ = D ′Y,γ+δ, D ′Y,γ ∗D ′/Y,δ = D ′/Y,γ+δ for all γ, δ ∈ C. (3.18)

Lemma 3 It holds Iγ+
(
D ′0+,δ

)
= D ′Y,γ ⊆ D ′0+,δ/

for all γ ∈ H.

Proof It holds V
(
Yγ ∗M0+

) = {0} for γ ∈ H due to Yγ ∈ L1
loc. �

Corollary 1 Let γ, δ ∈ C. If �γ < �δ, then Pγ |D ′Y,δ
= 0D ′Y,δ

and Rγ |D ′Y,δ
= ED ′Y,δ

.

Lemma 4 Every composition of the form

Rγ1 ◦ · · · ◦ Rγn with γ1, . . . , γn ∈ R, n ∈ N0 (3.19)

is equal to a composition of the form

Rδm ◦ · · · ◦ Rδ1 with δ1 < · · · < δm, m ∈ N0, (3.20)

where δk = γσ(k) for some function σ : {1, . . . ,m} → {1, . . . , n}. For any partially
defined linear operator onD ′0+ of the form (3.20) the parameters δ1, . . . , δm, m ∈ N0
are uniquely determined.

Proof Corollary 1 implies Rγ ◦Rδ = Rδ whenever δ ≥ γ . Using this repeatedly, the
expression (3.19) can be reduced to an expression of the form (3.20) without changing
the resulting operator. Because every set of the form {Yδ1 , . . . ,Yδm } is linearly inde-
pendent and the kernel of the operator from Equation (3.20) is equal to

〈
Yδ1 , . . . ,Yδm

〉
,

it follows that the representation (3.20) is unique. �
Definition 3 Let γ1 < · · · < γn and n ∈ N. The Yγ1,...,γn -eliminator and the Yγ1,...,γn -
projector are defined as

Rγ1,...,γn := Rγn ◦ · · · ◦ Rγ1 , Pγ1,...,γn := E−Rγ1,...,γn . (3.21)

The Yγn |γ1,...,γn−1 -coefficient operator is defined as

Vγn |γ1,...,γn−1 := Vγn ◦Rγ1,...,γn−1 . (3.22)
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The operators Rγ1,...,γn , Pγ1,...,γn and Vγn |γ1,...,γn−1 have the joint domain

D ′Y,γn
+ 〈Yγ1 , . . . , Yγn−1

〉 = D ′/Y,γn
+ 〈Yγ1 , . . . ,Yγn

〉
. (3.23)

For kernels and ranges one has

ker Pγ1,...,γn = ran Rγ1,...,γn = D ′/Y,γn
, (3.24a)

(3.24b)

Lemma 5 Let γ1 < · · · < γn and n ∈ N. Then

Rγ1,...,γn = E−
n∑

k=1
Pγk ◦Rγ1,...,γk−1 , (3.25a)

Pγn ◦Rγ1,...,γn−1 = Rγ1,...,γn−1 −Rγ1,...,γn . (3.25b)

In particular

〈
Rγ1,...,γn ; γ1 < · · · < γn, n ∈ N0

〉

= 〈E,Pγn ◦Rγ1,...,γn−1 ; γ1 < · · · < γn, n ∈ N
〉

(3.26)

with the convention Rγ1,...,γn = E for n = 0.

Proof The distributive law (2.17a) and Eq. (3.17) imply Eq. (3.25b). Let k ∈
{1, . . . , n}. Using (3.17) and (2.17a) again one obtains

Rγ1,...,γk = [E−Pγk
] ◦ Rγ1,...,γk−1 = Rγ1,...,γk−1 −Pγk ◦Rγ1,...,γk−1 . (3.27)

Equation (3.25a) follows from a repeated application of (3.27). �
Proposition 3 Let γ1 < · · · < γn, δ1 < · · · < δm and n,m ∈ N. Then, with l =
min { k = 1, . . . , n ; γk > δm }, it holds

Rγ1,...,γn ◦Rδ1,...,δm = Rδ1,...,δm ,γl ,...,γn . (3.28)

Proof One applies the cancelation rule Rγ ◦Rδ = Rδ for δ ≥ γ . �

3.3 Series expansions in causal power distributions

Absolutely convergent series over expressions cγ Yγ , with cγ ∈ C and γ ∈ R, are now
considered as a kind of fractional Taylor series expansion. Theorem 1 shows how to
extract the coefficients cγ using coefficient operators Vγ and composite eliminators
Rγ1,...,γn .
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Definition 4 LetU ∈ D ′0+ and γ ∈ R. ThenU is said to possess a non-trivial Yγ -part
if and only if

U ∈ D ′Y,γ and Vγ (U ) �= 0. (3.29)

The statement O (U ) = γ will be used as equivalent notation for conditions (3.29).
The notation O (U ) ∈ R means that there exists γ ∈ R, such that conditions (3.29)
hold true.

Let k ∈ N0. One defines Ok (U ) := O (Uk), whereUk is recursively defined by the
initial condition U0 := U and

Ul+1 := Rγl (Ul) with γl := O (Ul) for l = 0, . . . , k − 1, (3.30)

whenever O (U0) , . . . ,O (Uk) ∈ R.

Lemma 6 Let (γn) be a sequence of strictly increasing positive numbers and (cn) a
sequence of complex numbers. If the series

∑∞
n=0 cnYγn converges absolutely in D ′,

then it converges absolutely in L1
loc ∩ E ( ]0,∞[ ).

Proof Let K ⊆ R compact, χ ∈ D , χ ≥ 0 and χ(K ) ⊆ {1}. Then

‖Yγ ‖1,K =
∫

K∩R+

∣∣∣∣
tγ−1

�(γ )

∣∣∣∣ dt ≤ 〈Yγ , χ〉 for all γ > 0. (3.31a)

Let L ⊆ ]0,+∞[ be compact. There exists ε > 0 such that L ⊆ ]ε,+∞[ and a
function θ ∈ D(]0,+∞[), θ ≥ 0 and θ(L) ⊆ {1}. It holds

‖Dm Yγ ‖1,L =
∫

L

∣∣∣∣
tγ−m−1

�(γ − m)

∣∣∣∣ dt ≤ |〈Yγ−m, θ〉| = |〈Yγ ,Dm θ〉| (3.31b)

for all γ > 0 and m ∈ N that satisfy m − γ /∈ N0. (If m − γ ∈ N0, then Dm Yγ

vanishes on ]0,+∞[.) �
Corollary 2 If the series from Lemma 6 converges absolutely in D ′, then its limit
belongs to D ′0+,δ/

.

Theorem 1 Let (γk) ⊆ R and (ck) ⊆ C such that (γk) is strictly increasing and
the series

∑∞
k=0 ckYγk converges absolutely to the limit U. Then Ok (U ) = γk and

Vγk ◦Rγ1,...,γk−1 (U ) = ck for all k ∈ N0.

Proof For all k ∈ N0 it holdsUk =∑∞n=k ckYγn = ckYγk+Uk+1 withUk+1 ∈ D ′/Y,γk+1
due to Corollary 2. �
Proposition 4 Let U , V ∈ D ′0+ such that O (U ) and O (V ) exist. Then O (U ∗ V )

exists as well and O (U ∗ V ) = O (U )+ O (V ).
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Proof Equation (3.18) implies

(c · Yγ +D ′/Y,γ ) ∗ (d · Yδ +D ′/Y,δ) = (c · d) · Yγ+δ +D ′/Y,γ+δ (3.32)

for all γ, δ, c, d ∈ C, which proves the proposition. �
Lemma 7 Letα1 < · · · < αn,0 < β1 < · · · < βm,λ1, . . . , λn∈C×,μ1, . . . , μm∈C×,
m ∈ N0 and n ∈ N. Then

O

(
∗ λ1Yα1 + · · · + λnYαn

δ+ μ1Yβ1 + · · · + μmYβm

)
= α1. (3.33)

Proof The limit U∗−1 of the series in (2.10) satisfies O
(
U∗−1

) = 0 and one has
O
(
λ1Yα1 + · · · + λnYαn

) = α1 according to Theorem 1. Thus, Equation (3.33) fol-
lows follows from Proposition 4. �

4 Generalized sequential fractional derivatives

The generalized sequential fractional derivatives are introduced and their basic
properties summarized in Subsection 4.1. Then, in Subsection 4.2, restrictions and
extrapolations of measures and distributions are defined. Subsection 4.3 discusses
examples of generalized sequential fractional derivatives and their relations to other
Fractional Calculus operators on the right half axis from the literature.

4.1 Definition and fundamental properties

Generalized sequential fractional derivatives are introduced as catenations of a distri-
butional fractional derivative and a composite of eliminators.

Definition 5 Let α ∈ R, γ1 < · · · < γn and n∈N. The sequential fractional derivative
of orderα and sequential type (γ1, . . . , γn) is defined as

Dα|γ1,...,γn
0+ := Dα+ ◦Rγ1,...,γn (4.1)

where Dα|
0+ := Dα+ is used to link the notation for sequential fractional derivatives

with that for simple fractional derivatives.

The operators defined in Equation (4.1) coincide with alternating compositions of
eliminators and fractional derivatives with real orders. This means operators

Dα0+ ◦R ◦ · · · ◦ R ◦Dαn+ with α0, . . . , αn ∈ R. (4.2)

Note, that R ◦Dα+ ◦R = Dα+ ◦R holds for all α < 0, so that α1, . . . , αn−1 > 0
may be assumed without loss of generality. The expression on the right hand side of
Equation (4.1) constitutes a normal form of the operators from Equation (4.2). The
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advantage of the normal form from Equation (4.1) is that domain and kernel are given
by

domDα|γ1,...,γn
0+ = domRγ1,...,γn , ker Dα|γ1,...,γn

0+ = ker Rγ1,...,γn , (4.3)

because the operator Dα+ is bijective. Thus, domain and kernel are given by Equa-
tion (3.23) and (3.24a).

Another normal form is obtained when the operators Dα+ and Rγ1,...,γn are com-
muted. Let α0, . . . , αn ∈ R with α1, . . . , αn−1 > 0. Using the commutation rules
(3.16) the relations between different normal forms can be derived. They read

Dαn+ ◦R ◦ · · · ◦ R ◦Dα0+ = Dα+ ◦Rγ1,...,γn = Rδ1,...,δn ◦Dα+ (4.4a)

with the parameters

α := α0 + · · · + αn, γk :=
k−1∑

l=0
αl , δk := −

n∑

l=n+1−k
αl (4.4b)

for k = 1, . . . , n. Using Equations (3.17) and (3.25a) one obtains

Dα|γ1,...,γn
0+ = Dα+ −

n∑

k=1
Yγk−α · Vγk | γ1,...,γk−1 (4.4c)

for α ∈ R, γ1 < · · · < γn , n ∈ N.

Proposition 5 Let α, β ∈ R, γ1 < · · · < γn, δ1 < · · · < δm and m, n ∈ N0. Then the
composition law

Dα|γ1,...,γn
0+ ◦Dβ|δ1,...,δm

0+ = Dα+β|δ1,...,δm ,γl+β,...,γn+β
0+ (4.5)

holds with l = min { k ∈ 1, . . . , n ; γk + β > δm }.
Proof The commutation rules from Eq. (3.16) give

Dα|γ1,...,γm
0+ ◦Dβ|δ1,...,δn

0+ = Dα+β
+ ◦Rγ1+β,...,γm+β ◦Rδ1,...,δn (4.6)

and an application of Proposition 3 yields Equation (4.5). �
Remark 2 The normal form (4.4c) exists as well for composite operators of the form
Rγ ◦CK with γ ∈ R and K ∈ Q[YR]. It holds

Rγ ◦CK = CK −Yγ · VO(K )(K ) · Vγ−O(K ) . (4.7)

Equation (4.7) holds alsowhen K ∈ D ′Y,O(K ). However, even for K ∈ A [YR] a similar
description of composites of the form Rγ1,...,γn ◦CK leads to a more complicated
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expression that involves multiple case distinctions. Let us remark, that for future
studies of the operators CK ◦Rβ1,...,βn , it seems plausible to generalize the eliminators
as well.

4.2 Restriction and extrapolation of distributions

Let I ⊆ R be an interval and J ⊆ R an open interval. The restriction of a
distribution f : D(R) → C to J is defined as f |J := f |DJ

: DJ → C with
DJ = {ϕ ∈ D ; suppϕ ⊆ J }. The restriction of a Radon measure μ : K (R) → C

to I is defined by μ|I (ϕ) := μ(ϕ|zero
R

) with ϕ|zero
R

(x) equal to 0 for x ∈ I and equal
to ϕ(x) for x /∈ I . Here, the Borel measurable function ϕ|zero

R
is the zero extrapolation

of ϕ ∈ K (I ).
The restriction of a distribution f ∈ D ′0+,δ

to R0+ is defined as the linear form
f : D(R0+)→ C such that

f |R0+ (ϕ) := μ|R0+ (ϕ)+ g|R+ ( (χϕ)|zero
R

) for ϕ ∈ D(R0+), (4.8)

where μ and g are defined as in (3.6), D(R0+) = { ϕ|R0+ ; ϕ ∈ D(R) } and χ ∈
E (R0+) is such that χ(supp g) ⊆ {1} and χ([0, ε]) ⊆ {0} for some ε > 0. This is
well defined due to 0 /∈ supp g.

For I = R+, α ∈ R, or, I = R0+, α ≥ 0, define the space

D ′Y,α(I ) := { f |I ; f ∈ D ′Y,α

}
, D ′/Y,α(I ) :=

{
f |I ; f ∈ D ′/Y,α

}
. (4.9)

with D ′Y,α,D ′/Y,α defined in Eq. (3.12).
Define the zero extrapolation of a Radon measure μ ∈ K (I ) to R as

μ|zero
R

(ϕ) := μ(ϕ|I ) for all ϕ ∈ K (R) and I ⊆ R an interval. (4.10)

The zero extrapolation f |zero
R

of f ∈ D ′0+,δ
(R+) is defined as

〈
f |zero

R
, ϕ
〉 := μ(ϕ|R+)+ g (θϕ) , (4.11)

where μ and g are defined as in (3.6) and θ ∈ E (R+) is such that θ−1(1) ⊇ suppϕ

and supp θ ⊆ R+. Define the zero extrapolation of a distribution f ∈ D ′0+,δ
(R0+) to

R as

f |zero
R
:= μ|zero

R
+ g|zero

R
, (4.12)

with μ resp. g as in the representation formula (3.6) and their zero extrapolations
defined by Equations (4.10) resp. (4.11). The continuous constant extrapolation f |c.c.

R

of f is defined as

f |c.c.
R
:= 1R− · V1( f )+ f |zero

R
for f ∈ D ′Y,1(R+) ∪D ′Y,1(R0+), (4.13)
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where 1R− denotes the indicator function for the open left half axis.
Restricting a distribution fromD ′Y,0 toR+ and extending toRby zero afterwards has

the same effect as applying the eliminator. Restricting to R0+ and zero-extrapolating
to R has no effect. This can be expressed as

(
f |R+

)∣∣zero
R
= R( f ) for all f ∈ D ′Y,0, (4.14a)

(
f |R0+

)∣∣zero
R
= f for all f ∈ D ′Y,0. (4.14b)

Because R reduces to the identity on D ′0+,δ/
, the mappings

D ′0+,δ/(R0+)→ D ′0+,δ/(R+), f �→ f |R+ :=
(
f |zero

R

)∣∣
R+ , (4.15a)

D ′0+,δ/
(R+)→ D ′0+,δ/

(R0+), f �→ f |zero
R0+ :=

(
f |zero

R

)∣∣
R0+ , (4.15b)

define mutually inverse isomorphisms that restrict to isomorphmisms between D ′Y,α

and D ′Y,α for α > 0.

4.3 Examples

Numerous operators can be reinterpreted as generalized sequential fractional deriva-
tives on subspaces of D ′0+ in the context of restriction to the right half axis and
extrapolation to the full real axis. This section collects some examples.

Distributional derivatives on the right half axis

The distributional derivative is well defined as an operator acting on distributions
defined on the open right half axis R+. Using restriction and zero extrapolation oper-
ators the sequential derivative D1|1

0+ can be related to the operator D : D ′(R+) →
D ′(R+) via

D f = D
(
f |zero

R

)∣∣
R+ for all f ∈ D ′Y,1(R+), (4.16a)

D1|1
0+ f = D

(
f |R+

)∣∣zero
R

for all f ∈ D ′Y,1(R). (4.16b)

The sequential derivative D1|1
0+ f of f ∈ D ′Y,1(R) is a modification of the distributional

derivative of f that ignores jumps at the origin.
According to (4.16b), this is equivalent to interpreting f as a distribution on the

open right half axis and extrapolating by zero after the calculation of the derivative.
Unfortunately, the case of the closed right half axis is more involved, despite the

existence of the isomorphism D ′Y,1(R+) → D ′Y,1(R0+). The reason is, that the def-
inition of the derivative of a function f ∈ D ′Y,1(R0+) at the origin depends on its
extrapolation to a neighborhood of the origin. In particular, it holds
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(
D
(
f |zero

R

)− D
(
f |c.c.

R

))∣∣
R0+ =

(
δ · V1 ( f |zero

R

))∣∣∣
R0+

(4.17a)

D1|1
0+
(
f |zero

R

)∣∣∣
R0+
= D

(
f |c.c.

R

)∣∣
R0+ (4.17b)

for all f ∈ D ′Y,1(R0+). These relations reflect the fact that it is always necessary give
a precise interpretation of the derivatives when a boundary is involved.

Riemann–Liouville fractional integrals

Riemann–Liouville fractional integrals with orders α ∈ H, that act on functions on
the closed or open right half axis, can be represented using the sequential derivatives
D−α|
0+ = Iα+. Note, that the Riemann–Liouville integral RL Iα0+ μ(t) of a measure μ ∈

M (R) orμ ∈M (R+) can be defined, in the almost everywhere sense for the variable
t , by applying the classical formula to μ. (In the latter case, the domains of integration
must include the point zero.) This extends most common definitions of the Riemann–
Liouville integral (compare [24, Remark 4.4]).

With these definitions one obtains the relations

Iα+
(
μ|zero

R

) = (RLIα0+ μ
)∣∣zero
R

for all μ ∈M (R+) ∪M (R0+), (4.18a)
(
Iα+ μ

)∣∣
R0+ = RLI

α
0+
(
μ|R0+

)
for all μ ∈ D ′0+,δ(R) ∩M (R), (4.18b)

(
Iα+ μ

)∣∣
R+ = RLI

α
0+
(
μ|R+

)
for all μ ∈ D ′0+,δ/

(R) ∩M (R). (4.18c)

However, the action of the sequential derivative D−α|
0+ = Iα+ on functions f ∈ D ′Y,−α \

D ′0+,δ
can not be described using Riemann–Liouville integrals defined on the closed

or open right half axis, because neither the corresponding restriction operators nor the
corresponding extrapolation operators are well defined for such functions f .

Generalized Riemann–Liouville fractional derivatives [7]

The fractional derivatives of Riemann–Liouville and their generalizations can be rein-
terpreted by replacing the first order derivatives with D1|1

0+ and RL I
1−α
0+ with Dα−1|

0+ .
Specifically, the generalized fractional derivative Dα,μ

0+ of order α and type μ with
α ∈ ]0, 1], μ ∈ [0, 1] can be interpreted as a generalized sequential derivative

Dα;μ
0+ := Dα|α+μ−αμ

0+ = Iμ(1−α)
+ ◦D1|1

0+ ◦ I(1−μ)(1−α)
+ (4.19)

of order α and sequential type α + μ − αμ. The sequential reinterpretation Dα;μ
0+

is distinguished notationally by a semicolon instead of a comma from the original
operator Dα,μ

0+ . The domain of Dα;μ
0+ is

dom Dα;μ
0+ = D ′Y,1−αμ. (4.20)

123



T. Kleiner and R. Hilfer

With the notations fromEquation (4.19) thewell-known relation [7, p.434] between
two derivatives of same order α ∈ ]0, 1], but distinct types 0 ≤ μ1 < μ2 ≤ 1 reads

Dα;μ1
0+ = Dα;μ2

0+ −Yμ2(1−α) · Vα+μ2(1−α) . (4.21a)

The relation is immediate from the fact that

Dα;μi
0+ = Dα+ −Yμi (1−α) · Vα+μi (1−α) for i = 1, 2, (4.21b)

according to Equation (4.4c), because the partially defined linear form Vα+μ1(1−α)

reduces to zero on the domain of partially defined linear form Vα+μ2(1−α).

nth-level fractional derivatives [5,24]

The sequential fractional derivatives from Definition 5 extend earlier definitions as
studied in [5], or later ones, in [24]. In the following, the operators from Definition 5
are compared with the “nth-level derivatives” from Definition 3.6 in [24]. Similar
remarks apply to the sequential derivatives given in [31]. For the purpose of a more
convenient comparison the domains X1

nL of nth-level derivatives are defined as spaces
of functions on the whole real line. This definition becomes equal to the definition in
Equation (3.41) from [24] when the functions are restricted to ]0, 1[.

More precisely, let 0 < α ≤ 1, γ = (γ1, . . . , γn) such that γk ≥ 0 andα+sk ≤ k for
all k = 1, . . . , n, with the notation sk :=∑k

i=1 γi . The indices for the corresponding
generalized sequential fractional derivatives are defined as δn−k+1 := α+ sk − k+ 1.
These satisfy δ1 < · · · < δn if and only if γk < 1 for k = 2, . . . , n − 1. Further, it
holds 0 < δ1 if and only if α + sn > n + 1.

Consider now, the space X1
nL,+(R), defined as

X1
nL,+(R) :=

{
f ∈ domDα|δ1,...,δn

0+ ; Dα|δ1,...,δn
0+ f ∈ L1

loc(R)
}

. (4.22)

The space X1
nL fromDefinition 3.6 in [24] can be characterized as the set of restrictions

f |]0,1[ with f ∈ X1
nL,+(R) by using the following lemma.

Lemma 8 For every f ∈ D ′Y,1(R) there holds the equivalence

f |R0+ ∈ AC(R0+) ⇔ f ∈ AC(R) ⇔ D1|1
0+ f ∈ L1

loc(R). (4.23)

The operator nL D
α,(γ )
0+ with dom nL D

α,(γ )
0+ = X1

nL,+(R) and the parameters γ =
(γ1, . . . , γn) can now be defined as in [24, Def. 3.6], but for the whole right half axis.
With the comparison of partially defined operators from (2.13), one has

nL D
α,(γ )
0+ ⊆ Dα|δ1,...,δn

0+ . (4.24)

The advantage of the different parameterization from Definition 5 is, that the domain
and the kernel of the operators Dα|δ1,...,δn

0+ can be deducted directly from the indices
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δ1, . . . , δn . Compare Equations (3.23), (3.24) and (4.3) with Equation (3.45) from
[24]. Further, Definition 5 allows more general indices because the only condition is
δ1 < · · · < δn and it is always guaranteed that the derivative is “truly nth-level”.

Let 0 < γk ≤ 1 and define σk := ∑n
k=1 γk − 1, k = 1, . . . , n. Similar to the nth-

level derivatives, the Dzherbashian-Nersesian derivatives DND
σn
0+, defined in Equation

(2.5) from [5], satisfy

DND
σk
0+ ⊆ D

σk |σ0+1,...,σ(k−1)+1
0+ for k = 0, 1, . . . , n. (4.25)

Generalized fundamental theorem of fractional calculus

The composition law from Proposition 5 implies:

Corollary 3 Let α ∈ R and γ1 < · · · < γn. Then

Dα|γ1,...,γn
0+ ◦ Iα+ = Rγ1−α,...,γn−α, (4.26a)

Iα+ ◦Dα|γ1,...,γn
0+ = Rγ1,...,γn . (4.26b)

Equations (4.26) correspond to the Fundamental Theorem of Fractional Calculus.
More specifically, Equation (4.26b) implies the projector formula [25, Theorem2]. The
fact that the right-hand side ofEquation (4.26a) is not the identity operator on a function
space does not contradict the Fundamental Theorem of Fractional Calculus from [24,
Theorem 3.4]. Because, under suitable assumptions on the parameters α, γ1, . . . , γn
and when the distributional translation-invariant Riemann–Liouville operator Iα+ in
Equation (4.26a) is restricted to a classical domain of the Riemann–Liouville integral
on the half axis, then the right hand side becomes an identity operator on this restricted
domain.

This can be expressed by the slightly more general relations

Dα|γ1,...,γn
0+ ◦ Iα+

∣∣
D ′0+,δ

= ED ′0+,δ
if 0 < γ1 < · · · < γn < α, (4.27a)

Dα|γ1,...,γn
0+ ◦ Iα+

∣∣
D ′0+,δ/

= ED ′0+,δ/
if 0 < γ1 < · · · < γn ≤ α. (4.27b)

The domain D ′0+,δ/
contains all domains that are commonly used to define Riemann–

Liouville operators on the right half axis, as discussed on page 17. In particular, it
holds D ′0+,δ/

⊇ XFT ,+(R), where XFT ,+(R) is defined as

{
f ∈ D ′0+(R) ∩ L1

loc(R) ; Iα+ f ∈ AC(R), V1(Iα+ f ) = 0
}

. (4.28)

Using Lemma 8 it follows that the space XFT from [24, Eq. (3.18)] is characterized
by the restrictions f |]0,1[ with f ∈ XFT ,+(R). Thus, (4.27b) implies Theorem 3.4
from [24].
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Generalized derivatives with Sonine kernels

Generalizations of fractional derivatives and integrals where the kernels Yα are
replaced by pairs of kernels K and L from L1

loc∩D ′0+ that satisfy the Sonine relations
K ∗ L = Y1 were introduced in [18] and recently discussed in [21,29]. The Sonine
relations imply

D(K ∗ L) = (D K ) ∗ L = K ∗ (D L) = δ. (4.29)

The convolution operator CK and the composite

LD
1
0+ := CL ◦ R1 (4.30)

correspond to the generalized integral and the generalized derivative of Caputo type
in [29, Eq. (26), (20)]. Equations (4.29) and (4.7) imply

CK ◦ LD
1
0+ = CK ◦ CL ◦ R1 = R1, (4.31a)

LD
1
0+ ◦ CK = CL ◦ R1 ◦CK = E−Y1 · V1(K ) · V . (4.31b)

From similar considerations as for Equations (4.27) it is found that the Equations (4.31)
imply Theorem 1 from [29].

Two counterexamples

The operators of Caputo-Fabrizio [4, Eq.(1)] and Atangana-Baleanu-Caputo [4,
Eq. (2)] CF Dα

0+ and ABC Dα
0+, can be represented as composites of convolution oper-

ators with kernels from Q[YR] and eliminators. Explicitly, one obtains

CF D
α
0+ = C(CFKα)∗−1 ◦ R1 (4.32a)

with CFKα = (α · δ+ (1− α) · Y1)/M(α), and

ABC Dα
0+ = C(ABCKα)∗−1 ◦ R1 (4.32b)

with ABCKα = (α ·δ+(1−α) ·Yα)/B(α) and normalization constants M(α), B(α) ∈
R. The formulas follow immediately from the form of the derivative operators in
Equations (1) and (3) in [4] and the formulas for the corresponding operators, CF Jα0+ =
CCFKα and ABC Jα0+ = CABCKα , from Equations (5) and (9) in [4]. An application of
Equation (4.7) yields the relations

CF D
α
0+ ◦ CF Jα0+ = E−(δ+ α

1−α
· Y−1)∗−1 · V1, (4.33a)

ABC Dα
0+ ◦ ABC Jα0+ = E−(δ+ α

1−α
· Y−α)∗−1 · V1, (4.33b)

that correspond to Equations (6) and (10) from [4]. This shows, once again, that these
operators do not satisfy a Fundamental Theorem such as (4.31).
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5 Generalized sequential fractional initial value problems

The main purpose of this section is to study the kernels of generalized sequential frac-
tional differential operators. Subsection 5.1 provides an algorithm (Theorem 2) that
can be used to simplify linear combinations of sequential derivatives to an eventually
simpler normal form. The result is used in Subsection 5.2 to derive a representa-
tion formula for kernels (Theorem 3) and a characterization of the maximal injective
domains (Theorem 4). The case of sequential derivatives with distinct order is con-
sidered in Subsection 5.3 in more detail. This yields a simplified criterion for kernel
functions in general (Theorem 5) and a full characterization for important special cases
(Theorem 6). Last, in Subsection 5.4, all possible cases with two types are described.

5.1 Simplifying linear combinations of sequential derivatives

Due to annihilation effects evaluating linear combinations of partially defined linear
operators can be cumbersome. The theorem to be established below provides an algo-
rithm that reduces sums of composites CK ◦ RΓ of convolution operators CK and
composite eliminators RΓ to a simple expression. Due to the theorem, the operators
to be investigated can be assumed to be given in the form (5.3).

Note, that every finite subset Γ ⊆ R can be represented as Γ = {γ1, . . . , γn} with
unique γ1 < · · · < γn and n ∈ N0. Thus, the notations

RΓ := Rγ1,...,γn , PΓ := Pγ1,...,γn (5.1)

are well defined with the conventions R∅ = E and P∅ = 0.

Theorem 2 Every partially defined linear operator C of the form

C =
n∑

k=1
CUk ◦ RΓk (5.2)

with U1, . . . ,Un ∈ D ′0+, Γ1, . . . , Γn ⊆ R finite and n ∈ N0, can be written

C =
m∑

l=0
CVl ◦ Rγ1,...,γl (5.3a)

with unique convolution kernels V0, . . . , Vm ∈ D ′0+, types Γ = {γ1, . . . , γm} and a
step number m ∈ N0, given by

Γ =
{

γ ∈ R ; ∃k ∈ {1, . . . , n} : γ ∈ Γk ,

∀k ∈ {1, . . . , n} : γ ∈ Γk or γ > supΓk

}
, (5.3b)

Vl =
∑

(Uk : k = 1, . . . , n | γl = sup(Γk ∩ Γ ) ) , (5.3c)

V0 =
∑

(Uk : k = 1, . . . , n | Γk ∩ Γ = ∅ ) , (5.3d)

for l = 1, . . . ,m.
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Proof Reducibility to the normal form: Let n ∈ N0. Define the total number of elimi-
nators arising in expression (5.2) as Σ :=∑n

k=1 #Γk . The reducibility will be proved
via of induction over Σ . If Σ = 0 or n = 0 the expression (5.2) obviously has the
form (5.3a). Thus, the Lemma holds for Σ = 0 or n = 0.

Assume now, thatΣ > 0 and n > 0. The induction hypothesis is, that the statement
of the Lemma holds for all expressions of the form (5.2) that have a total number of
eliminators Σ ′ < Σ . Consider the order parameter

γ1 := max {minΓk ; k ∈ {1, . . . , n}, Γk �= ∅ } . (5.4)

In the expression (5.2), all operators Rγ with γ < γ1 can be canceled from the right
due to (2.14), (3.14) and Corollary 1. A new expression of the form (5.2) emerges
with a reduced total number of eliminators Σ ′ < Σ . Thus, the induction hypothesis
applies to the new expression and it thus reduces to the form (5.3a).

If no eliminator can be canceled in this way, then for all k = 1, . . . , n either
γ1 = maxΓk or Γk = ∅. Then, the operator Rγ1 can be factored out as

C =
n∑

k=1
CUk ◦ RΓk =

⎡

⎢⎢⎣
n∑

k=1
Γk �=∅

CUk ◦ RΓk\{γ1}

⎤

⎥⎥⎦ ◦ Rγ1 +
n∑

k=1
Γk=∅

CUk . (5.5)

The expression inside the brackets has the form (5.2) and satisfies Σ ′ < Σ . Thus, the
induction hypothesis applies and the whole expression (5.5) can be written in the form
(5.3a) by inserting an expression of the form (5.3a) into the brackets in Equation (5.5)
and factoring out all composed eliminators.

Uniqueness of the normal form: According to equations (3.23) and (4.3) it holds

sup
{
γ ∈ R ; Yγ /∈ domC

} = γm (5.6)

and therefore Yγ ∈ domC for all γ ∈ R with γ ≥ γm . Further, (3.23) and (4.3) imply

{γ1, . . . , γm} =
{
γ ∈ R ; Yγ ∈ domC, γ ≤ γm

}
. (5.7)

Thus, the orders γ1 < · · · < γm and the number m are uniquely determined by C . For
γ ∈ R one calculates

Y−γ ∗ C(Yγ ) = Y−γ ∗
m∑

l=0
CUl ◦ Rγ1,...,γl (Yγ ) =

{∑m
l=0Ul if γ > γm,∑m
l ′=m−l+1Ul ′ if γ = γl .

(5.8a)

From this equations it is clear how to represent the convolution kernels Ul , l =
0, . . . ,m as linear combinations of expressions Y−γ ∗ C(Yγ ). Therefore, the Ul are
uniquely determined by the operator C . �
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Example 1 Corresponding to the problem from [3] consider

D =
n∑

k=1
λk D

αk |αk−�αk�+1,...,αk−1,αk
0+ (5.9a)

with λ1, . . . , λn−1 ∈ C
×, λn = 1, 0 < α1 < · · · < αn and n ∈ N. An application of

Theorem 2 yields

D =
n∗∑

k=1
λk D

αk |
0+ +

n∑

k=n∗+1
λk D

αk |αn−�αn−αn∗ �+1,...,αk
0+ , (5.9b)

where n∗ is the largest k with αn − αk /∈ N if it exists and n∗ = n otherwise. Thus,
the proof of Theorem 2 generalizes Lemma 2 from [3].

5.2 The structure of the kernel

Consider an operator C in the form of Equation (5.3a). Changing to a different nor-
mal form makes it easy to obtain certain structural results on its kernel kerC . Using
Lemma 5 one calculates directly that

C =
m∑

l=0
CVl ◦ Rγ1,...,γl = CW0 −

m∑

l=1
CWl ◦ Pγl ◦Rγ1,...,γl−1 (5.10a)

for all V0, . . . , Vm,W0, . . . ,Wm ∈ D ′0+, γ1 < · · · < γm and m ∈ N0 with

Wl =
m∑

l ′=l
Vl ′ for l = 0, . . . ,m, (5.10b)

Vl = Wl −Wl+1 for l = 0, . . . ,m − 1, (5.10c)

where the convention Wm+1 = 0 applies. Equation (5.10b) is equivalent to Equa-
tion (5.10c). The described transformation works as well under the restrictions that the
distributions V0, . . . , Vm and W0, . . . ,Wm all belong toQ[YR], or belong to A [YR].

For the remainder of this subsection let C be an operator of the form of Equa-
tion (5.10) such that the distributions V0, . . . , Vm , or, equivalently, the distributions
W0, . . . ,Wm , belong to the convolution field Q[YR]. Define the number

l0 = l0(C) := min { l = 0, . . . ,m ; Wl �= 0 } . (5.11)

With these notations, the structure of kerC is characterized by the following.
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Theorem 3 Every distribution K ∈ domC satisfies

K ∈ kerC ⇔ K ∈
m∑

l=l0+1
Kl · Ll(K )+

〈
Yγ1 , . . . ,Yγl0

〉
, (5.12a)

where Kl and Ll are defined as

Kl :=
⎧
⎨

⎩
Yγl ∗ ∗

Wl

Wl0
if l > l0,

Yγl if l ≤ l0,
(5.12b)

Ll := Vγl |γ1,...,γl−1 . (5.12c)

In particular, the kernel satisfies the inclusions

〈
Yγ1 , . . . ,Yγl0

〉
⊆ kerC ⊆ 〈K1, . . . , Km〉 . (5.13a)

Proof The right hand side of (5.10) can be rewritten as

⎛

⎝CWl0
−

m∑

l=l0+1
CWl ◦ Pγl ◦Rγl0+1,...,γl−1

⎞

⎠ ◦ Rγ1,...,γl0 . (5.14)

Let K ∈ domC and set K̃ = Rγ1,...,γl0 (K ). Applying the operator from (5.14) to K
and setting the result to zero yields

Wl0 ∗ K̃ −
m∑

l=l0+1
Wl ∗ Yγl ∗ Ll(K̃ ) = 0. (5.15)

Solving for K̃ in Eq. (5.15) and noting that the distributions Yγ1 , . . . ,Yγl0
belong to

kerC , due to (5.14), proves the proposition. �

The following theorem provides the maximal domains for admissible inhomo-
geneities g of the equation C f = g.

Theorem 4 The operator C from (5.10) restricts to a bijection

C |D ′/Y,γm
: D ′/Y,γm

→ D ′/Y,γm+O(W0)
, f �→ W0 ∗ f . (5.16)

Proof This is immediate from the formula (4.3) for kernels of sequential derivatives
and Proposition 4. �
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5.3 Sums of sequential derivatives with distinct orders

In the following, those generalized fractional sequential differential operators are con-
sidered that are sums of generalized fractional sequential derivatives with distinct
orders. That means, an operator D of the form

D :=
n∑

k=0
λk D

αk |γ1,...,γσ(k)
0+ = Rγ1,...,γσ(0) +

n∑

k=1
λk D

αk |γ1,...,γσ(k)
0+ (5.17)

is considered with parameters n,m ∈ N0, 0 = α0 < α1 · · · < αn , 1 =
λ0, λ1, . . . , λn ∈ C

×, γ1 < · · · < γm and a function σ : {0, . . . , n} → {0, . . . ,m}
such that m = max{ σ(k) ; k = 0, . . . , n }. In order to exclude trivial cases,
min{ σ(k) ; k = 0, . . . , n } = 0 is assumed as well.

Using Theorem 3 the kernel of the operator D can be expressed in terms of the
functions Kl and the composed coefficient operators Ll . The distributions Kl are
given by

Kl := Yγl ∗Wl ∗ (W0)
∗−1 for l = 1, . . . ,m, (5.18a)

and the distributions Wl are given by

Wl = Y−αn ∗
n∑

k=0
σ(n−k)≥l

Zk for l = 0, . . . ,m, (5.18b)

with the notation Zk := μkYβk and the parameters βk := αn − αn−k and μk :=
λn−k/λn for k = 0, . . . , n.

In the following, elementary properties of the kernel distributions Kl are summa-
rized. That will help to shed more light on the structure of ker D. After an examination
of Equation (5.18b), one concludes that

Kl ∈
{
Yγl +D ′/Y,γl

if l = 1, . . . , σ (n),

D ′/Y,γl
if l = σ(n)+ 1, . . . , n.

(5.19)

Let l, l ′ ∈ {1, . . . ,m}. Equation (5.19) yields the implications

l ≤ l ′ ⇒ Kl ′ ∈ dom Ll , (5.20a)

l < l ′ ⇒ Kl ′ ∈ ker Ll , (5.20b)

and the equation

Ll(Kl) =
{
1 if l = 1, . . . , σ (n),

0 if l = σ(n)+ 1, . . . ,m.
(5.21)
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Note, that O (Kl) < O (Kl ′) holds for all l ∈ {1, . . . , σ (n)}, l ′ ∈ {1, . . . ,m} with
l < l ′ according to Eq. (5.19). However, if l ∈ {σ(n)+ 1, . . . ,m − 1}, then O (Kl) <

O (Kl ′) does not necessarily hold. Nevertheless, the functions K1, . . . , Kl are linearly
independent. This is because in the expression for Wl from Equation (5.18b), as l
increases the number of terms Zk reduces or O (Wl) increases.

Theorem 5 Let K =∑m
l=1 al Kl with a1, . . . , am ∈ C. Then

1. It holds K ∈ dom D if and only if

l−1∑

i=1
ai · Ki ∈ dom Ll for all l = 1, . . . ,m. (5.22)

2. It holds K ∈ ker D if and only if K ∈ dom D and

Ll

(
l−1∑

i=1
ai · Ki

)
=
{
0 if l ≤ σ(n),

al if l > σ(n),
for all l = 1, . . . ,m. (5.23)

Proof Due to Equation (5.20a), and because dom D is linear, K ∈ dom D is equivalent
to (5.22). Inserting K ∈ dom D into Equation (5.12a) yields Equation (5.23) after
canceling all terms that are zero according to Equation (5.21). �
Corollary 4 The estimate dim ker D ≤ σ(n) holds.

Corollary 5 If l ′ ∈ {1, . . . ,m} is such that Kl /∈ ker Ll+1 for all l = 1, . . . , l ′, then
ker D ⊆ 〈Kl ′+1, . . . , Km

〉
.

Theorem 6 The kernel of D satisfies dim ker D = m = n if the conditions
σ(n) = m and βϕ(l,1) > γm − γl , l = 1, . . . ,m − 1 hold, where ϕ(l, 1) :=
min { k ∈ {1, . . . , n} ; σ(n − k) < l }.
Proof Introducing a term W0 ∗ (W0)

∗−1 one calculates

Kl = Yγl ∗ (Wl −W0) ∗ (W0)
∗−1 + Yγl . (5.24)

Therefore, O1
(
Kl − Yγl

)=O (Wl −W0)=βϕ(l,1) and the distributions K1, . . . , Km

satisfy the condition (5.23) from Theorem 5. �
Example 2 The operator D from Equation (5.9b) satisfies the requirements of Theo-
rem 6. Thus, for linear combinations of Riemann–Liouville operators the cancellation
of the dimension of the kernel is already explained by the cancellation effects described
in Theorem 3.

Example 3 Let L̃ be the operator from Equation (2.16) in [5] for the special case
of constant coefficients p̃0, . . . , p̃n . For simplicity, assume that the p̃k are non-zero.
(Within this remark, symbols x from [5] are decorated as x̃ .) Recalling Equation (4.25)
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the operator D−σ̃0+ ◦L̃ can be identified with an operator of the form D as in Equa-
tion (5.17) above with the definitions n = ñ + 1, m = ñ, α1 = −σ̃0, αk = σ̃k−1 − σ̃0
for k = 2, . . . , n, γl = σ̃l−1 + 1 for l = 1, . . . ,m and λ1 = 1, λk = p̃ñ+1−k for
k = 2, . . . , n − 2, λn−1 = p̃ñ−1, λn = p̃ñ .

One verifies, that ϕ(l, 1) = n + 1− l and thus βϕ(l,1) = σ̃ñ − σ̃l > σ̃ñ−1 − σ̃l for
all l = 1, . . . ,m. Therefore, Theorem 6 and Theorem 3 imply the existence result [5,
Thm.4] for a trivial inhomogeniety f̃ = 0. From O (W0) = −αn , the relation

γm − αn = σ̃ñ−1 − σ̃ñ + 1+ σ̃0 = 1− γ̃n + σ̃0, (5.25)

and Theorem 4 one finds that D−σ̃0+ ◦L̃ restricts to a bijection

D ′/Y,σ̃ñ−1+1→ D ′/Y,1−γ̃ñ+σ̃0
. (5.26)

This extend the result from [5, Thm.4] to inhomogeneities f̃ ∈ D ′
/Y,1−γ̃ñ

.
The restriction γ̃0 > 1 − γ̃n is required in [5, Thm.4] in order to ensure that

Yσ̃k+1 = I1−γ̃n+ (Yσ̃k+γ̃n ) is well defined as a classical Riemann–Liouville integral. The
condition becomes superflous in the generalized sequential setting because it is not
required that Yσ̃k+γ̃n is locally integrable.

5.4 Characterization of the kernel for two primary orders

In the following analysis the representation formula

∗Wl

W0
= ε(l) · δ+ (−1)ε(l) · ∗Zϕ(l,1) + · · · + Zϕ(l,Φ(l))

δ+ Z1 + · · · + Zn
(5.27a)

is used with the notations

ε(l) := 1(l≤σ(n)) =
{
1 if l ≤ σ(n),

0 if l > σ(n),
(5.27b)

Φ(l) :=
{
# { k ∈ {1, . . . , n} ; σ(n − k) < l } if l ≤ σ(n),

# { k ∈ {1, . . . , n} ; σ(n − k) ≥ l } if l > σ(n),
(5.27c)

ϕ(l, i) := i-th element of

{
{ k ∈ {1, . . . , n} ; σ(n − k) < l } if l ≤ σ(n),

{ k ∈ {1, . . . , n} ; σ(n − k) ≥ l } if l > σ(n),

(5.27d)

for i = 1, . . . , Φ(l) and l = 1, . . . ,m. Further, let

ζ(l) := max{ i ∈ {1, . . . , Φ(l)} ; ∀ j < i : Zϕ(l, j+1) = Zϕ(l,1) ∗ Z j } (5.28)
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and define the notation

δl,l ′ := γl+l ′ − γl for l ∈ {1, . . . ,m}, l ′ ∈ {1, . . . ,m − l}. (5.29)

Lemma 9 Let U1, . . . ,Un, V1, . . . , Vm ∈ Q[YR] \ {0} with m ≤ n, m, n ∈ N and
assume, that 0 < O (U1) < · · · < O (Un) and O (V1) < · · · < O (Vm). Then

∗
∑m

l=1 Vl
δ+∑n

k=1Uk
∈ V1 +

{
Vl ′+1 − V1 ∗Ul ′ +D ′

/Y,O(Vl′+1−V1∗Ul′)
if l ′ < m,

− V1 ∗Um +D ′/Y,O(V1∗Um ) if l ′ = m,

(5.30)

where l ′ is the largest k′ such that Vk+1 − V1 ∗Uk = 0 for all k < k′.

Proof The assumptions imply δ+U1 + · · · +Un �= 0 and one obtains

(5.31)

The assumptions and Proposition 4 imply that

O (Vl+1 − V1 ∗Ul) < O
(
Vl ′+1 − V1 ∗Ul ′

)
for l ′ = l + 1, . . . ,m − 1, (5.32a)

O (Vl+1 − V1 ∗Ul) < O (V1 ∗Um) . (5.32b)

With these considerations Equation (5.30) is immediate from (5.31). �
Lemma 10 For all l = 1, . . . ,m one has

∗Wl

W0
∈ ε(l) · δ+ (−1)ε(l) · Zϕ(l,1) + . . .

(−1)ε(l) ·
{
Zϕ(l,ζ(l)+1) − Zϕ(l,1) ∗ Zζ(l) +D ′/Y,γ l

if ζ(l) < Φ(l),

− Zϕ(l,1) ∗ ZΦ(l) +D ′/Y,γ l
if ζ(l) = Φ(l),

(5.33a)

with the order parameter

βl :=
{
min{βϕ(l,ζ(l)+1), βϕ(l,1) + βζ(l)} if ζ(l) < Φ(l),

βϕ(l,1) + βΦ(l) if ζ(l) = Φ(l),
(5.33b)

where βk was defined just after Eq. (5.18b).

Proof One applies Lemma 9 to Equation (5.27a) with Uk = Zk , k = 1, . . . , n and
Vk = Zϕ(l,k), k = 1, . . . , Φ(l). �

An application of Lemma 10 yields:
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Lemma 11 Let l ∈ {1, . . . ,m − 1}. Then

Kl ∈ dom Ll+1 ⇔ βϕ(l,1) ≥ δl,1. (5.34)

If Kl ∈ dom Ll+1, then

Ll+1(Kl) = (−1)ε(l) ·
{
0 if βϕ(l,1) > δl,1,

μϕ(l,1) if βϕ(l,1) = δl,1.
(5.35)

In particular, it holds

Kl ∈ ker Ll+1 ⇔ βϕ(l,1) > δl,1. (5.36)

Example 4 CombiningTheorem5 andLemma11 a complete characterization of ker D
can be obtained. The possible cases are given by

ker D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if σ(n) = 0,⎧
⎪⎨

⎪⎩

〈K1〉 if βϕ(1,1) > δ1,1,〈
K1 − μϕ(1,1) · K2

〉
if βϕ(1,1) = δ1,1,

{0} if βϕ(1,1) < δ1,1,

if σ(n) = 1,

{
〈K1, K2〉 if βϕ(1,1) > δ1,1,

〈K2〉 if βϕ(1,1) ≤ δ1,1,
if σ(n) = 2.

(5.37)

A minimal example for the first, and trivial, case is the operator

D = Rγ1,γ2 +λDα with 0 < α, γ1 < γ2, λ ∈ C
×. (5.38)

The cases with σ(n) = 1 are covered by the minimal examples

D = Rγ1,γ2 +λ1 D
α1+ +λ2 D

α2|γ1
0+ with

⎧
⎪⎨

⎪⎩

α2 − α1 > γ2 − γ1,

α2 − α1 = γ2 − γ1,

α2 − α1 < γ2 − γ1,

(5.39)

where 0 < α1 < α2, γ1 < γ2 and λ1, λ2 ∈ C
×. The cases with σ(n) = 2 are covered

by the examples

D = E+λDα|γ1,γ2
0+ with

{
α > γ2 − γ1,

α ≤ γ2 − γ1,
(5.40)

where 0 < α, γ1 < γ2 and λ ∈ C
×.

Example 5 Linear combinations of a first order time derivative and a generalized
Riemann–Liouville fractional derivative were used in [10] as infinitesimal genera-
tors for composite fractional time evolutions. Reinterpreting the operator Dα,μ

0+ in [10]
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along the lines of eq. (4.19) as Dα;μ
0+ the solution f (t), t ≥ 0 of the initial value prob-

lem (32) in [10] can be represented as the restriction f := K |R0+ of a distribution
K ∈ D ′0+, where the distribution K is the solution to the following generalized initial
value problem: Define the operator

D = λ2 D
1|1
0+ +λ1 D

α|α+μ−αμ
0+ + E, (5.41a)

where λ1 = (τα)α , λ2 = τ1 and the parameters τα, τ1 > 0, 0 < α < 1 and 0 ≤ μ ≤ 1.
According to Theorem 2 the equality

D = λ2D
1|1
0+ + λ1 D

α|
0+ +E, (5.41b)

holds if and only if μ �= 1 (corresponding to Equation (34) in [10]). In any case, there
exists a unique distribution K ∈ D ′0+ such that

K ∈ ker D, V1 K = 1. (5.41c)

The relation R = S ∗ Y̌1 between the normalized relaxation function R = K + Y̌1 and
the time-domain representation of the corresponding normalized susceptibility S was
verified using convolutional calculus in [17]. Here, Y̌1 denotes the reflection of Y1.
The Laplace-transform of S (in the sense of [33]) defines the susceptibility function
ε(u) in the frequency domain.

Another interpretation of the infinitesimal generator D from [10]was recently given
in [11]. It is obtained from observing Dα;μ

0+ = Rμ−μα ◦Dα|
0+ and shifting Rμ−μα from

Dα|
0+ to the infinitesimal generator D1|1

0+ of translations in eq. (5.41). The physical
motivation for this are relaxation processes that are too fast to be resolved [11]. The
modified interpretation leads to a sequential first order derivative

Rμ−μα ◦D1|1
0+ = Rμ−μα ◦R0 ◦D1+ = D1+ ◦Rδ ◦R1 = D1|1,δ

0+ (5.42)

with δ = 1+μ(1−α). Instead of D and problem (5.41) the modified fractional initial
value problem involves the modified operator

D̃ = λ2 D
1|1,δ
0+ +λ1 D

α|
0+ + E (5.43a)

where λ1 = (τα)α , λ2 = τ1, δ = 1 + μ(1 − α) with the parameters τα, τ1 > 0,
0 < α < 1 and 0 < μ < 1. Note, that 1 − δ < 1 − α. Therefore, Theorem 6
guarantees the existence of a unique distribution K̃ ∈ D ′0+ such that

K̃ ∈ ker D̃, V1 K̃ = 1, V1,δ K̃ = −ν/λ2. (5.43b)

with ν = (τab)
δ . Theorem 3 and Equations (5.18) yield the solution

K̃ = ∗ λ2δ− νYδ−1
δ+ λ1Y−α + λ2Y−1

. (5.44)
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As above, the relaxation motion R̃ satisfies R̃ = K̃ + Y̌1 = S̃∗ Y̌1, with the normalized
susceptibility S̃ given by the convolution quotient

S̃ = ∗δ+ λ1Y−α + νYδ−2
δ+ λ1Y−α + λ2Y−1

. (5.45)

The normalized susceptibility function ε(u) from Equation (3) in [11] coincides with
the Laplace-transform of the distribution S̃. Thus, S̃ is the time-domain representation
of ε̃(u) and it follows that the function t �→ K̃ (t) for t ≥ 0 is the normalized relaxation
motion corresponding to ε̃(u). As shown in [11,17] the solution (5.45) agrees over a
range of 12 decades in time or frequency with a physical relaxation experiment.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bourbaki, N.: Elements of Mathematics: Integration I. Springer, Berlin (2004)
2. Bourbaki, N.: Elements of Mathematics: Integration II. Springer, Berlin (2004)
3. Cao-Labora, D.: Fractional integral equations tell us how to impose initial values in fractional differ-

ential equations. Mathematics 8, Art. 1093 (2020)
4. Diethelm, K., Garrappa, R., Giusti, A., Stynes,M.:Why fractional derivatives with nonsingular kernels

should not be used. Fract. Calc. Appl. Anal. 23(3), 610–634 (2020). https://doi.org/10.1515/fca-2020-
0032

5. Dzherbashian, M.M., Nersesian, A.B.: Fractional derivatives and the Cauchy problem for differential
equations of fractional order. Fract. Calc. Appl. Anal. 23(6), 1810–1836 (2020). https://doi.org/10.
1515/fca-2020-0090

6. Godement, R.: Analysis IV: Integration and Spectral Theory. Springer, Berlin (2015)
7. Hilfer, R.: Applications of Fractional Calculus in Physics.World Scientific Publ. Co., Singapore (2000)
8. Hilfer, R.: Fractional diffusion based on Riemann-Liouville fractional derivatives. The J. of Physical

Chemistry B 104, 3914–3917 (2000)
9. Hilfer, R.: Fractional time evolution. In: Hilfer, R. (ed.) Applications of Fractional Calculus in Physics,

pp. 87–130. World Scientific, Singapore (2000)
10. Hilfer, R.: Experimental evidence for fractional time evolution in glass formingmaterials. Chem. Phys.

284, 399–408 (2002)
11. Hilfer, R.: Excess wing physics and nearly constant loss in glasses. J. of Statistical Mechanics: Theory

and Experiment 2019, Art. 104007 (2019)
12. Hilfer, R.: Mathematical and physical interpretations of fractional derivatives and integrals. In:

Kochubei, A., Luchko, Yu. (eds.) Handbook of Fractional Calculus with Applications: Basic The-
ory, vol. 1, pp. 47–86. Walter de Gruyter GmbH, Berlin (2019)

13. Hilfer, R., Luchko,Yu., Tomovski, Z.: Operational method for the solution of fractional differential
equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12(3),
No 3, 299–318 (2009)

14. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. 1. Springer, Berlin (1990)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1515/fca-2020-0032
https://doi.org/10.1515/fca-2020-0032
https://doi.org/10.1515/fca-2020-0090
https://doi.org/10.1515/fca-2020-0090


T. Kleiner and R. Hilfer

15. Horvath, J.: Topological Vector Spaces and Distributions. Addison-Wesley, Reading (1966)
16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equa-

tions. Elsevier, Amsterdam (2006)
17. Kleiner, T., Hilfer, R.: Fractional glassy relaxation and convolution modules of distributions. Analysis

and Mathematical Physics 11, Art. 130 (2021)
18. Kochubei, A.: General fractional calculus, evolution equations, and renewal processes. Integr. Equ.

Oper. Theory 71, 583–600 (2011)
19. Kochubei, A.: Equations with general fractional time derivatives - Cauchy problem. In: Kochubei,

A., Luchko, Yu. (eds.) Handbook of Fractional Calculus with Applications: Basic Theory, vol. 1, pp.
223–234. Walter de Gruyter GmbH, Berlin (2019)

20. Kochubei, A.: General fractional calculus. In: Kochubei, A., Luchko,Yu. (eds.) Handbook of Fractional
CalculuswithApplications: Basic Theory, vol. 1, pp. 111–126.Walter deGruyter GmbH, Berlin (2019)

21. Kochubei, A., Kondratiev, Y.: Growth equation of the general fractional calculus. Mathematics 7, Art.
615 (2019)

22. Kochubei, A., Luchko, Yu.: Basic FC operators and their properties. In: Kochubei, A., Luchko, Yu.
(eds.) Handbook of Fractional Calculus with Applications: Basic Theory, vol. 1, pp. 23–46. Walter de
Gruyter GmbH, Berlin (2019)

23. Luchko, Yu.: Operational methods for fractional ordinary differential equations. In: Kochubei, A.,
Luchko, Yu. (eds.) Handbook of Fractional Calculus with Applications: Basic Theory, vol. 2, pp.
91–118. Walter de Gruyter GmbH, Berlin (2019)

24. Luchko, Yu.: Fractional derivatives and the fundamental theorem of fractional calculus. Fract. Calc.
Appl. Anal. 23(4), 939–966 (2020). https://doi.org/10.1515/fca-2020-0049

25. Luchko, Yu.: On complete monotonicity of solution to the fractional relaxation equation with the nth
level fractional derivative. Mathematics 8, Art. 1561 (2020)

26. Luchko, Yu.: General fractional integrals and derivatives of arbitrary order. Symmetry 13, Art. 755
(2021)

27. Luchko, Yu.: General fractional integrals and derivatives with the Sonine kernels. Mathematics 9, Art.
594 (2021)

28. Luchko, Yu.: Operational calculus for the general fractional derivative and its applications. Fract. Calc.
Appl. Anal. 24(2), 338–375 (2021). https://doi.org/10.1515/fca-2021-0016

29. Luchko, Yu., Yamamoto, M.: The general fractional derivative and related fractional differential equa-
tions. Mathematics 8, Art. 2115 (2020)

30. Pskhu, A.: The fundamental solution of a diffusion-wave equation of fractional order. Izv. Math. 73,
351–392 (2009)

31. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach, Berlin
(1993)

32. Schwartz, L.: Theorie des Distributions. Hermann, Paris (1966)
33. Zemanian, A.: Distribution Theory and Transform Analysis. McGraw-Hill, New York (1965)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1515/fca-2020-0049
https://doi.org/10.1515/fca-2021-0016

	Sequential generalized Riemann–Liouville derivatives based on distributional convolution
	Abstract
	1 Introduction
	2 Preliminaries and notations
	2.1 Convolution of distributions with support on the right half axis
	2.2 Causal distributional fractional calculus
	2.3 Partially defined linear operators and forms

	3 Eliminators, initial values and series expansions
	3.1 The  -limit operator, the  -projector and the   -eliminator
	3.2 Generalized initial value operators, eliminators and projectors
	3.3 Series expansions in causal power distributions

	4 Generalized sequential fractional derivatives
	4.1 Definition and fundamental properties
	4.2 Restriction and extrapolation of distributions
	4.3 Examples
	Distributional derivatives on the right half axis
	Riemann–Liouville fractional integrals
	Generalized Riemann–Liouville fractional derivatives hil98e
	nth-level fractional derivatives DN020,luc020a
	Generalized fundamental theorem of fractional calculus
	Generalized derivatives with Sonine kernels
	Two counterexamples


	5 Generalized sequential fractional initial value problems
	5.1 Simplifying linear combinations of sequential derivatives
	5.2 The structure of the kernel
	5.3 Sums of sequential derivatives with distinct orders
	5.4 Characterization of the kernel for two primary orders

	References




