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Abstract. Using recent investigated integral representations for the generalized alternating Math-

ieu series S̃
(α,β)
μ

(
r;{an}∞n=1

) (
r,α, β , μ, {an}∞n=1 ∈ R+) [9,14,18] with an = nγ , γ ∈ R+

and Mellin-Laplace type integral transforms for the generalized hypergeometric functions and the

Bessel function of first kind, some bounding inequalities for S̃
(α,β)
μ

(
r; {nγ }∞n=1

)
are presented.

Namely, it is shown that the series S̃
(α,β)
μ

(
r; {nγ }∞n=1

)
under some conditions for parameters

α, β , γ and μ are bounded with constants which do not depend on α , β and γ but only
depend on r and μ, i.e.

S̃
(α,β)
μ

(
r;
{
nγ
}∞

n=1

)
� 2

(1 + r2)μ
.

1. Introduction

The following familiar infinite series

S (r) =
∞∑
n=1

2n

(n2 + r2)2

(
r ∈ R+) (1.1)

is named after Emile Leonard Mathieu (1835-1890), who investigated it in his 1890
work [7] on elasticity of solid bodies. Bounds for this series are needed for the solution of
boundaryvalue problems for the biharmonic equations in a two-dimensional rectangular
domain (see [13], p.258, eq. (54)). An alternating version of (1.1)

S̃ (r) =
∞∑

n=1

(−1)n−1 2n

(n2 + r2)2

(
r ∈ R+) (1.2)

was recently discussed by Pogány et.al in [9].
Integral representations of (1.1) and (1.2) are given by (see [5] and [9])

S (r) =
1
r

∞∫
0

t sin (rt)
et − 1

dt, (1.3)
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S̃ (r) =
1
r

∞∫
0

t sin (rt)
et + 1

dt (1.4)

Several interesting problems and solutions dealingwith integral representations and
bounds for the following slight generalization of the Mathieu series with a fractional
power

Sμ (r) =
∞∑

n=1

2n

(n2 + r2)μ
(
r ∈ R+;μ > 1

)
(1.5)

can be found in the recent works by Diananda [2], Tomovski and Trenčevski [16] and
Cerone and Lenard [1]. Motivated essentially by the works of Cerone and Lenard [1]
(and Qi [12]) a family of generalized Mathieu series

S(α,β)
μ (r; a) = S(α,β)

μ
(
r; {an}∞n=1

)
=

∞∑
n=1

2aβn
(aαn + r2)μ

(
r,α, β ,μ ∈ R+) (1.6)

was defined in [14], where it is tacitly assumed that the positive sequence

a = {an}∞n=1 = {a1, a2, a3, .....}
(

lim an
n→∞

= ∞
)

is chosen such that the infinite series in definition (1.6) converges, that is, that the
following auxiliary series

∞∑
n=1

1

aμα−β
n

is convergent. Comparing the definitions (1.1), (1.5) and (1.6), we see that S2 (r) =
S (r) and Sμ (r) = S(2,1)

μ
(
r, {n}∞n=1

)
. Furthermore, the special cases S(2,1)

2

(
r; {an}∞n=1

)
,

Sμ (r) = S(2,1)
μ

(
r; {n}∞n=1

)
, S(2,1)

μ
(
r; {nγ }∞n=1

)
and S(α,α/2)

μ
(
r; {n}∞n=1

)
were investi-

gated by Qi [12]; Diananda [2]; Tomovski [16] and Cerone and Lenard [1].
Let

S̃(α,β)
μ (r; a) = S̃(α,β)

μ
(
r; {an}∞n=1

)
=

∞∑
n=1

(−1)n−1 2aβn
(aαn + r2)μ

(
r,α, β ,μ ∈ R+)

(1.7)
be an alternating variant of (1.6), where the positive sequence {an}∞n=1 satisfied the
same conditions of the definition (1.6). In [9, 14, 18] several integral representations
of (1.6) and (1.7) in terms of the generalized hypergeometric functions and the Bessel
function of first kind were obtained. Here we present some of them:

S̃(α,β)
μ

(
r; {nγ }∞n=1

)
=

2
Γ (μ)

∞∫
0

xγ (μα−β)−1

ex + 1 1Ψ1
[
(μ, 1) ; (γ (μα − β) , γα) ;−r2xγ α

]
dx

(
r,α, β , γ ∈ R+, γ (μα − β) > 1

)
; (1.8)
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S̃(α,β)
μ

(
r;
{

nq/α
}∞

n=1

)
=

2

Γ
(
q
[
μ− β

α

])

×
∞∫
0

xq[μ−β/α]−1

ex+1 1Fq

(
μ;Δ (q; q [μ−β/α]) ;−r2

(
x
q

)q)
dx

(
r,α, β ∈ R+, μ − β

α
> q−1; q ∈ N

)
, (1.9)

where Δ (q; λ) is the q− tuple
(
λ
q , λ+1

q , ..., λ+q−1
q

)
;

S̃(α,α/2)
μ+1

(
r;
{

n2/α
}∞

n=1

)
= S̃(2,1)

μ+1

(
r; {n}∞n=1

)
= S̃μ+1 (r)

=
√
π

(2r)μ−
1
2 Γ (μ + 1)

∞∫
0

xμ+ 1
2

ex + 1
Jμ− 1

2
(rx) dx,

(
r,μ ∈ R+) ,

(1.10)

S̃(α,0)
μ

(
r;
{

n2/α
}∞

n=1

)
=

∞∑
n=1

(−1)n−1 2

(n2+r2)μ
=

2
√
π

(2r)μ−
1
2 Γ (μ)

∞∫
0

xμ−
1
2

ex+1
Jμ− 1

2
(rx) dx

(
r ∈ R+, μ >

1
2

)
. (1.11)

Here pΨq denotes the Fox-Wright generalization of the hypergeometric pFq function
with p numerator and q denominator parameters (see for example [15, Eq.1.5 (21),
p.50])

pΨq (x) = pΨq

[
(al,αl)1,p ; (bj, βj)1,q ; x

]
=

∞∑
k=0

p∏
l=1

Γ (al + αlk)

q∏
j=1

Γ (bj + βjk)

xk

k!

⎛
⎝al, bj,αl, βj ∈ R; l = 1, 2, ..., p, j = 1, 2, ..., q; 1 +

q∑
j=1

βj −
p∑

l=1

αl > 0

⎞
⎠ .

(1.12)

The generalized hypergeometric function is defined by

pFq

[
(al)1,p ; (bj)1,q ; x

]
=

∞∑
m=0

p∏
l=1

(al)m

q∏
j=1

(bj)m

xm

m!
(1.13)

where (δ)m is the Pochhammer symbol, defined by

(δ)0 = 1, (δ)m = δ (δ + 1) · · · (δ + m − 1) =
Γ (δ + m)
Γ (δ)

(m ∈ N) ,



20 ŽIVORAD TOMOVSKI AND RUDOLF HILFER

so that, obviously

pΨq

[
(al, 1)1,p ; (bj, 1)1,q ; x

]
=

p∏
l=1

Γ (al)

q∏
j=1

Γ (bj)
pFq

[
(al)1,p ; (bj)1,q ; x

]

(
al > 0, bj /∈ Z−

0

)
.

(1.14)

2. Bounds derivable from the integral representations of S̃(α,β)
μ

(
r; {nγ }∞n=1

)
2.1. The Landau estimates (see [6])

|Jν (x)| � bLν−1/3 with bL = 3√2 sup
x∈R+

{Ai (x)} = 0.674885 . . . , uniformly in x,

(2.1)

|Jν (x)| � cLx
−1/3 with cL = sup

x∈R+

{
x1/3J0 (x)

}
= 0.78574687 . . . , uniformly in ν,

(2.2)
where Ai (z) denotes the known Airy function, were used in [9] to prove the following
bounds: ∣∣∣S̃(2,1)

μ
(
r; {nγ}∞n=1

)∣∣∣ �
bLC̃μ (r)Γ

(
μ + 1

2

)
(
μ − 3

2

)1/3
(2μ − 3 > 0) , (2.3)

∣∣∣S̃(2,1)
μ

(
r; {nγ }∞n=1

)∣∣∣ � cLC̃μ (r)Γ
(
μ + 1

6

)
3√r

(6μ + 1 > 0) , (2.4)

where C̃μ (r) =
√
π

(2r)μ−
3
2 Γ(μ)

. Moreover, if μ � 1
2

(
1 + r2

)
, then

0 < S̃(2,1)
μ

(
r; {nγ }∞n=1

)
�

bLC̃μ (r)Γ
(
μ + 1

2

)
(
μ − 3

2

)1/3
= Nb (r,μ) (2μ − 3 > 0) , (2.5)

0 < S̃(2,1)
μ

(
r; {nγ }∞n=1

)
�

cLC̃μ (r)Γ
(
μ + 1

6

)
3√r

= Nc (r,μ) . (2.6)

2.2. Now we shall improve the right sided bounding inequalities (2.5)–(2.6) by showing
that S̃(2,1)

μ
(
r; {nγ }∞n=1

)
is bounded with the constant

M (r,μ) =
2

(1 + r2)μ
(2.7)

under the conditions γ ∈ R+, μ � 1
2

(
1 + r2

)
. Let ϕ (x) = xγ

(x2γ+r2)μ with μ �
1
2

(
1 + r2

)
. Since

ϕ′ (x) =
γ xγ−1

(
r2 − (2μ − 1) x2γ )

(x2γ + r2)μ+1 < 0
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for all x constrained by the inequality x >
(

r2

2μ−1

) 1
2γ

it follows that ϕ (x) is a decreasing

function of x. So we have

S̃(2,1)
μ

(
r; {nγ }∞n=1

)
= M (r,μ) − 2

∞∑
n=1

[ϕ (2n) − ϕ (2n + 1)] <M (r,μ) (2.8)

when

[(
r2

2μ−1

)1/2γ
]

� 1 . But, this condition holds, sinceμ � 1
2

(
1 + r2

)
.

Next, it would be of interest to research the efficiency and the sharpness ofM (r,μ) .
In this goal, the r−domains in which M (r,μ) is superior to Nb and Nc have to be
obtained. We shall prove that M (r,μ) � Nb (r,μ) for all r ∈ R+ and all μ > 3

2 .
Let

P = P (r,μ) =
M (r,μ)
Nb (r,μ)

. (2.9)

Then

P =
(μ − 3/2)1/3

bL

√
2π

Γ (μ)
Γ (μ + 1/2)

(
2r

1 + r2

)μ−3/2 (
1 + r2

)−3/2
. (2.10)

We consider the function

f (r) =
rμ−3/2

(1 + r2)μ

(
r ∈ R+, μ >

3
2

)
(2.11)

It is easy to show that

max
r∈R+

f (r) = f

(√
μ − 3/2
μ + 3/2

) (
μ >

3
2

)
. (2.12)

Using the elementary inequality

(
2r

1 + r2

)μ− 3
2

� 1

(
r ∈ R+, μ >

3
2

)
(2.13)

and Gautschi’s inequality (see [4])

Γ (μ)
Γ (μ + 1/2)

� 1√
μ − 1/4

(
μ >

3
2

)
(2.14)

we get

P � (μ − 3/2)1/3

bL

√
2π

1√
μ − 1/4

⎛
⎝1 +

(√
μ − 3/2
μ + 3/2

)2⎞⎠
−3/2

=
(μ − 3/2)1/3

bL

√
2π

1√
μ − 1/4

(μ + 3/2)3/2

(2μ)3/2
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� 1

bL

√
2π

(μ − 1/4)1/3

(μ − 1/4)1/2
=

1

bL

√
2π

1

(μ − 1/4)1/6

<
1

bL

√
2π

6

√
4
5

< 1.

(2.15)

The similar comparison involvingM (r,μ) andNc (r,μ) we leave to the interested reader
which we propose as an open problem.

Open Problem: Does M (r,μ) � Nc (r,μ) for all r ∈ R+ ?

2.3. Next, we shall present some elegant bounds for the alternating Mathieu series

S̃ (r) , S̃(α,0)
μ

(
r;
{
n2/α}∞

n=1

)
, S̃μ+1 (r) , S̃(α,β)

μ

(
r;
{
nq/α}∞

n=1

)
, S̃(α,β)

μ
(
r; {nγ }∞n=1

)
by

using their integral representations given above.
2.3.1. Using the well-known formula (see [10, Vol.1, p.446])

∞∫
0

xe−x sin (xr) dx =
2r

(1 + r2)2 , (2.16)

we get

S̃ (r) � 1
r

∞∫
0

xe−x sin (xr) dx = M (r, 2) . (2.17)

2.3.2. In the theory of Bessel functions, it is fairly well-known that (cf; e.g. [3, p.49,
Eq. 7.7.3 (16)]

∞∫
0

e−sttλ−1Jν (ρt)dt =
( ρ

2s

)ν
s−λ Γ (ν+λ)

Γ (ν+1) 2F1

[
1
2

(ν+λ ) ,
1
2

(ν+λ+1) ; ν+1; −ρ2

s2

]

(Re (s) > |Im (ρ)| , Re (ν + λ ) > 0) . (2.18)

Because of
1F0 (λ ; −; z) = (1 − z)−λ (|z| < 1; λ ∈ C) (2.19)

the integral formula (2.18) would simplify considerably when λ = ν + 1 and when
λ = ν + 2 , giving us [see also (1.10) and (1.11) above]

∞∫
0

e−sttνJν (ρt)dt =
(2ρ)ν√

π
Γ
(
ν+ 1

2

)
(s2+ρ2)ν+

1
2

(Re (s) > |Im (ρ)| , Re (ν) > −1
2
);

(2.20)

∞∫
0

e−sttν+1Jν (ρt)dt =
2s (2ρ)ν√

π
Γ
(
ν+ 3

2

)
(s2+ρ2)ν+

3
2

(Re (s) > |Im (ρ)| , Re (ν) > −1).

(2.21)
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Using the formulas (2.20), (2.21), and integral representations (1.11) and (1.10), we

obtain the following bounds for S̃(α,0)
μ

(
r;
{
n2/α}∞

n=1

)
and S̃μ+1 (r) respectively:

S̃(α,0)
μ

(
r;
{

n2/α
}∞

n=1

)
� 2

√
π

(2r)μ−
1
2 Γ (μ)

∞∫
0

e−xxμ−
1
2 Jμ− 1

2
(rx) dx

=
2
√
π

(2r)μ−
1
2 Γ (μ)

(2r)μ−
1
2 Γ (μ)√

π (1 + r2)μ

= M (r,μ)
(

r ∈ R+, μ >
1
2

)
(2.22)

S̃(r)
μ+1 �

√
π

(2r)μ−
1
2 Γ (μ+1)

∞∫
0

e−xxμ+ 1
2 Jμ− 1

2
(rx) dx

=
√
π

(2r)μ−
1
2 Γ (μ+1)

2 (2r)μ−
1
2 Γ (μ+1)√

π (1+r2)μ+1 = M (r,μ+1)
(
r,μ ∈ R+)

(2.23)

2.3.3. In the theory of generalized hypergeometric functions it is known that the
following integral formula (see [11], p. 335):

∞∫
0

xlα−1e−σx
pFq

(
(ap) ; (bq) ;−ωxl

)
dx

= σ−lαΓ (lα) l+pFq

(
(ap) ,Δ (l, lα) ; (bq) ;− llω

σ l

) (2.24)

holds.
Using the formula (2.24) and integral representation (1.9) we obtain the following

bound for S̃(α,β)
μ

(
r;
{
nq/α}∞

n=1

)
:

S̃(α,β)
μ

(
r;
{

nq/α
}∞

n=1

)

� 2

Γ
(
q
[
μ− β

α

]) ∞∫
0

xq
[
μ− β

α
]
−1e−x

1Fq

[
μ;Δ

(
q; q

[
μ−β

α

])
;−r2

(
x
q

)q]
dx

=
2

Γ
(
q
[
μ− β

α

])Γ(q

[
μ−β

α

])
q+1Fq

(
μ,Δ

(
q, q

[
μ−β

α

])
;Δ
(

q, q

[
μ−β

α

])
;−r2

)

= 21F0
(
μ;−;−r2

)
=

2

(1 + r2)2 ,

i.e.

S̃(α,β)
μ

(
r;
{

nq/α
}∞

n=1

)
� M (r,μ)

(
r,α, β ∈ R+, μ − β

α
> q−1; q ∈ N

)
. (2.25)
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Specifically for p = 1, q = 2, l = 2 , we get from (2.24)

S̃(α,β)
μ

(
r;
{

n2/α
}∞

n=1

)

� 2

Γ
(
2
[
μ − β

α

]) ∞∫
0

x2
[
μ− β

α
]
−1e−x

1F2

(
μ;

[
μ − β

α

]
,

[
μ − β

α

]
+

1
2
;− r2x2

4

)
dx

=
2

Γ
(
2
[
μ − β

α

])Γ(2

[
μ − β

α

])

× 3F2

[
μ,

[
μ − β

α

]
,

[
μ − β

α

]
+

1
2
;

[
μ − β

α

]
,

[
μ − β

α

]
+

1
2
;−r2

]

=
2

(1 + r2)μ
,

i.e.
S̃(α,β)
μ

(
r;
{

n2/α
}∞

n=1

)
� M (r,μ) . (2.26)

2.3.4. Now applying the formula (see [11, p.355])
∞∫
0

xα−1e−σx
pΨq

[
(ap,αp) ; (bq, Bq) ;−wxl

]
dx

=
1
σα p+1Ψq

[
(α, r) , (ap,αp) ; (bq, βq) ;− w

σ l

]
we obtain from the integral representation (1.8),

S̃(α,β)
μ

(
r; {nγ }∞n=1

)
� 2

Γ (μ)

∞∫
0

xγ (μα−β)−1e−x
1Ψ1

[
(μ, 1) ; (γ (μα − β) , γα) ;−r2xγ α

]
dx

=
2

Γ (μ) 2Ψ1
[
(γ (μα − β) , γα), (μ, 1) ; (γ (μα − β) , γα) ;−r2]

=
2

Γ (μ)

∞∑
m=0

Γ (γ (μα − β) + γαm)Γ (μ + m)
Γ (γ (μα − β) + γαm)

(−r2
)m

m!

= 21F0
(
μ;−;−r2

)
=

2

(1 + r2)μ
,

i.e.

S̃(α,β)
μ

(
r; {nγ }∞n=1

)
� M (r,μ)

(
r,α, β , γ ∈ R+, γ (μα − β) > 1

)
(2.27)

In Figure 1, we present some numerical results for three alternating series: S̃ (r) ,

S̃(2,2)
2

(
r; {n}∞n=1

)
, S̃(2.5,2.1)

2

(
r;
{
n3/2

}∞
n=1

)
bounded by the constants M (r, 2)with

0 < r < 3.
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0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

r

S
(α

,β
)

μ
(r

,{
nλ

})
, M

(r
,μ

)

 

 

M(r,2.0)
α=2.0,β=1.0,λ=1.0
α=2.0,β=2.0,λ=1.0
α=2.5,β=2.1,λ=1.5

Figure 1. Alternating Mathieu type series S̃(α,β)
μ

(
r;
{
nλ
}∞

n=1

)
with α = 2, β = 1,

λ = 1, μ = 2 (dashed),α = 2, β = 2, λ = 1, μ = 2 (dashdotted) and α = 2.5,
β = 2.1, λ = 1.5, μ = 2 (dotted) as functions of r with 0 < r < 3 and

their bound M (r, 2) (solid line).
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