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Stochastic reconstruction of sandstones

C. Manwart! S. Torquatd, and R. Hilfet*
Ynstitut fr Computeranwendungen 1, Universituttgart, 70569 Stuttgart, Germany
’Department of Chemistry and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
3Institut fir Physik, Universita Mainz, 55099 Mainz, Germany
(Received 4 February 20D0

A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a
Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and
“pore size” distribution function, respectively. We find that the temperature decrease of the annealing has to
be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological
guantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean
survival time of a random walker in the pore space is reproduced with good accuracy. However, a more
detailed investigation by means of local porosity theory shows that there may be significant differences of the
geometrical connectivity between the reconstructed and the experimental samples.

PACS numbegs): 61.43.Gt

[. INTRODUCTION “pore size” distribution[7,8], which is not the usual quan-
tity obtained from mercury porosimetry. We will study a

The microstructures of porous media determine their macBerea sandstone and a Fontainebleau sandstone.
roscopic physical propertiegl—3], such as conductivity, A comparison of the reconstructions with the original
elastic constants, relaxation times, permeabilities, or therm&@andstones shows to what extent the characteristics of the
properties. The relation between geometric microstructur&riginal geometry are reconstructed. A salient feature of the
and physica| properties is a fundamental open prob|enﬁ)riginal sandstone is the h|gh degree of ConnectiVity of the
whose solution is important to many applications rangingPore space. Hence one important criterion for judging a sto-
from geophysics to polymer physics and material sciencechastic reconstruction method is its ability to reproduce the
For the geometric modeling of porous media, it is thereforeconnectivity of the original sandstone. It is shown that Berea
important to characterize microstructures quantitatively andeconstruction does a better job of capturing connectivity
to construct models using given geometric characteristics. than does the Fontainebleau reconstruction, although neither

The reconstruction of random media with given stochasticaptures connectivity particularly well. Another important

properties is also of great interest for a variety of other reacriterion is the ability of the reconstruction procedure to re-
sons: produce the macroscopic properties of the original materials.

(i) Digitized three-dimensional geometries of real sand-We show that the mean survival times of our reconstructions
stones are difficult to obtain. Therefore the reconstructiorPf both sandstones agree well with mean survival times of

provides a method for easily generating detailed geometriee original sandstones. .
as needed, e.g., in numerical calculations of macroscopic The paper is organized as follows. In Sec. Il we describe

material parameters like those mentioned above. the reconstruction algorithm. In Sec. Il we introduce the
(i) The reconstruction of three-dimensional samples fronfluantities we use in the reconstruction process and to char-
two-dimensional data. acterize the sandstones. Because detailed discussions can be

(i ) Any calculation of macroscopic quantities of random found in the references, we will focus mainly on practical
media needs a set of stochastic functions that describes t@sPects and details of the implementation. In Sec. IV we
geometry. The reconstruction can help to decide which funcPresent the results for the reconstructions of a Berea sand-
tions one should use. The present work will focus mainly onstone and a Fontainebleau sandstone, respectively.
the latter question, the so-called inverse problem.

Recently, a simulated annealing algorithm for the recon-
struction of random porous media with predefined stochastic

functions was proposef#]. This method was used for the A two-phase porous medium consists of a pore or void
reconstruction of two-phase porous media, i.e., sandstoneghasel’ and a matrix or rock phas. Its microgeometry is

with a given two-point probability function and a lineal-path gescribed in detail by the characteristic function
function, which were measured from real sandstdbed. In

the present article, we will continue this work. An advantage

of the simulated annealing is that it allows for the reconstruc- [0 for xeM,

tion of a variety of different stochastic functions with the X(X)= 1 for XeP’ @)
available CPU time being the only limit on the use of a set of

functions. In Refs[5], [6], the two-point probability function

and the lineal-path function were used. Here we will extendror a discretized sampl&=(j,a,j,a,jsa) is the position
the investigations to the reconstruction of the so-calledvector of a cubic grid withj;=0,...M;— 1, lattice constand,

Il. THE RECONSTRUCTION METHOD
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and sizeM; XM;XM;. The total number of grid points is those terms ir§, are updated that have changed due to the
given byN=M;M,M;. In the following we will also refer exchange of voxels. On the sample boundaries we impose

to a grid point as a voxel. periodic boundary conditions.
The porosity¢, the probability of finding a point in pore  For reconstruction purposes, this simplification, i.e., the
space, is given by reconstruction 08, only in the direction of the three coor-
N dinate axes, may create some problems. Because all other
d=(x(X)). ) directions remain unoptimize&, measured in these direc-

. : . tions may differ from the reference function. If this happens
With the assumption of a homogeneous, stationary, and efpa reconstructed sample is no longer isotrdiSid.0]. Fur-

godic stochastic porous medium, the angular brackets deno{ﬁermore, the reconstruction &, only along orthogonal

a volume average. . . lines reduces the three-dimensional optimization problem ef-
The_reconstructlon IS carried out by Teans Of a 5|m_ulate ectively to the optimization of three one-dimensional two-

annealing metho@4] with the target or “energy” function  int probability functions. This may reduce the number of

defined as conditions that the two-point probability function has to ful-
fill to be realizable[11], and may lead one to conclude in-

Et(ft)zz |£4(%) — Fre(X)|2. ©) correctly that the reconstruction is realizable in the space

X dimension of interest. However, the problem of realizability

does not apply to the reconstructions presented here, because
the two-point probability functions used as reference func-
. . . tions are measured from digitized three-dimensional images
sured at lteration step For the reconstruction .Of more than of real sandstones. Nevertheless, the reconstructions have to
one function, the energly, at the iteration stepis given by o \hecked for their isotropy.
Et:z,kEt(fgk))- where the indexk numbers the different The isotropy of the reconstructions can be improved, e.g.,
functions to be reconstructed. _ . _ by a full reconstruction of the two-point probability function

Starting from a random configuration with porosi#y  ysing Fourier transform techniques or by rotating the sample
two voxels of different phases are exchanged at each 'terfb‘uring the reconstruction. This was done for two-
tion step. Thus the porosity remains constant during the gimensional reconstructions ifl0]. However, for three-
reconstruction process. The new configuration is acceptegimensional reconstructions this leads to a prohibitive in-
with the probability given by the Metropolis rule crease of computation time.

For the specific surfacg i.e., the surface per unit volume
4) of the interface between pore space and matrix space, it is
known that[12]

The function f, is the stochastic function to be recon-
structed, whereak is the actual value of this function mea-

1 if Etht*l’
P= B Bm it By,

whereT plays the role of a temperature. In the case of rejec-

tion, the old configuration is restored. By decreasing the tem- 3S,(r)
peratureT, configurations with minimal energy, i.e., with s=-4 ar
minimal deviations of the stochastic functioff§ from their

reference functionst), are generated. The process termi-

nates after a certain number of consecutive rejections. Hergherefore a reconstruction @&, implies that the specific
the reconstruction was finished after®lébnsecutive rejec- surface area of the reconstructions matches that of the refer-

tions. ence sample. Equatidi®) may also be used for the calcula-
tion of the specific surface. Here we use a different, numeri-
cally very efficient method introduced [A43] for calculating

S.

(6)

r=0

I1l. MEASURED QUANTITIES
A. The two-point probability function

Using Eq. (1), the two-point probability function is de-

. B. Lineal-path function and “pore size” distribution
fined as

The lineal-path functio.(r) is defined as the probability
S,(X1,X0) ={x(X) x(X2)). (5  of finding a line segment of length entirely in pore space
when the line segment is randomly thrown into the porous
For a homogeneous and isotropic mediu®;(X;,X,) medium[14]. Hence forr=0, L(0)= ¢ holds. The lineal-
=S,(r) with r=|X;—X,|. In this caseS,(r) can be evalu- path function is related to the linear contact distribution in-
ated without loss of information from the intersection of thetroduced in mathematical stochastic geoméfy—17. The
sample with a plane or even a line. To speed up the numeriineal-path function is calculated as follows: For a given pore
cal evaluation ofS, it is therefore sufficient to sampl8,  voxel, the lineal path in units of the resolutiom is given as
only in directions of the principal axis given by the unit the number of pore voxels lying between the given pore
vectors€, [4]. voxel and the nearest matrix voxel in directién Evaluat-
HenceS, is calculated by evaluating E@5) for every ing the line segments starting from each pore voxel in all
pair of voxels atX; andX,=X;+r€&; with r=0,1,...r. where three coordinate directior& and counting the numbe(r)
r¢ is a cutoff value determined by the system size or a mulof line segments with length, the lineal-path function is
tiple of the correlation length. During the reconstruction onlygiven by
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L(H)=1(r)/[(M;—r)M,M3+M;(M,—r)M, C. The total fraction of percolating cells

7) The total fraction of percolating cellsis a key measure
in local porosity theory{20,2]. Local porosity theory mea-
sures the fluctuations of morphological quantities, e.g., po-

The lineal-path function incorporates information about™Sity, specific surface, and connectivity, in cubic sub-
the connectivity of the pore space. Of course it would beS@MPples of the total samp[@1]. We will refer to such a

desirable to reconstruct functions that provide more complet§UPic subsample with side lengthas a measurement cell.
information about the geometric connectivity of the poreBased on the scale-dependent morphological quantities, the

space, as for example the cluster correlation funci&jror theory provides scale-depe_ndent estim_ates for _transport pa-
the local percolation probabilitj2], but currently the com- ameters from a generalized effective medium  theory

putation time for evaluating these functions prevents theipz’zﬂ' . .
use in the above reconstruction scheme. Let u(¢,L)d¢ be the probability that a given measure-

The “pore size” distribution functionP(8) is defined ment cell of side lengtiL has a porosity in the interval

such thatP(5)ds is the probability that a randomly chosen [#:#+d¢]. The probability density functionu is called
point in the pore space lies at a distafiges+ds] from the local porosity distribution. The probability that a given mea-

nearest point on the interfae g]. It is related to the spheri- Surement cell with porosity) is percolating in all three di-
cal contact distributiof15,16,18. The associated cumula- '€ctions is the local percolation probability functinge,L).
tive distribution function Here percolating in all three directions means that each face

of the measurement cell is connected to the opposite face

+M My (M3—r)],

where we assume nonperiodic boundary conditions.

% with a path lying entirely in pore space. Using this, the total
F(60)= L P(o)do (8)  fraction of percolating cells is given by
1
gives the fraction of the pore space that has a diameter larger p(L)= f u(d,LYN(p,L)d . (12
then 5,. Clearly 0
JF _ ) ) -
P(8)=— o5 (9)  The total fraction of percolating cellg(L) is the probability

of finding a measurement cell with side lendthwhich is
percolating in all three directions. Henpds a measure for

and the geometrical connectivity.

P(0) (10

D. The mean survival time

e
Th o In contrast to the previous quantities, the mean survival
€ mean pore size is given as . : : i
time 7is not a purely geometrical but a physical observable.
- - The mean survival time is the average lifetime of a random
<5>:f 5P( 5)d5:f F(5)dé. (11  walker, which can freely move in pore space, but gets in-
0 0 stantly absorbed on contact with the pore-matrix interface. It
) i o is a measure of a characteristic pore size. The mean survival
The_quarjntyP(&) arises in rigorous bounds on the meanime 1 is calculated using a first passage cub@Q algo-
survival time([8]. o _ rithm [19,24). The FPC algorithm uses the fact that the mean
We compute an approximation R() by choosing a ran-  ime it takes for a certain type of diffusive random walker

dom point in pore space and measuring its distaht@the  starting at the center of a cube with side length t cross
nearest point on the matrix-pore interface assuming periodighe surface of this cube is given by

boundary conditions. This process is repeated for several

random points in pore space. The “pore size” distribution is 7(T)~0.224 8% 2, (13

then obtained by binning the distanc&and dividing by the

number of random placements in pore space. We emphasize

that the random placements in pore space are not necessarifignce it is not necessary to simulate the steps of the walker
grid points. The computation of is only approximate be- in detail. Instead, one determines the biggest cube centered
cause it requires a modeling of the interface between poraround the position of the walker, which is still entirely in
and matrix space. Here, we assume that the internal surfagmre space. The walker then jumps on the surface of this
is given by the surface of the cubic voxels. This is the saméPC and a time given by E¢13) is added to its lifetime.
modeling that is used, e.g., in a computation of the meafhis procedure is iterated until the walker touches the inter-
survival time or in finite difference calculations of transport face and gets absorbed. The mean survival time is given by
properties. In general, this may overestimate the specific suaveraging over many walkers.

face area appearing in E¢LO) by a factor of roughly 1.5 The probability with which the walker jumps to a certain
[19]. For use in the reconstruction we measuds the point on the surface of the FPC is described by a probability
distance between a pore voxel and the nearest matrix voxailensity functionw(y,z) wherey andz are the coordinates on
The resulting function is not equal #8(5) becauses can  the surface, assuming without loss of generality tkat

now only take values 0b=\i2+j2+k? with i,j ke Z. +L. For an analytic expression @f(y,z) we refer to[24].
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Fontainebleau

TABLE |. Characteristic quantities of the Berea sandstone, its
LS reconstructions, and itBS reconstructions. The values given
for the reconstructions are averaged over five configurations.

Berea LS PS "
<
Porosity 0.1775 0.1775 0.1775 é
Specific surfacédmm™?) 13.9 14.7 14.4 "c%
Mean survival timerD (um?) 100 89 93 @
Mean pore sizés) (um) 6.71 6.52 6.66
f, (%) 97.16 88.76 85.49
p(L=60) 0.997 0.747 0.712
IV. RESULTS

uctions

In this section we present results for reconstructions of a€
Berea sandstone and a Fontainebleau sandstone. For bog
sandstones we computed reconstructions with the lineal-patl §-
function and the two-point probability functiofL,S recon-
struction as well as reconstructions with the “pore size
distribution function and the two-point probability function
(PS reconstruction The Berea sandstone and its reconstruc-
tions have the dimension 128128x 128 and the resolution
a=10um. The porosity is¢p=0.1775. The Fontainebleau
sandstone has dimensions 29800x 300 and its reconstruc-
tions have the dimension 128128x 128. The resolution is
a=7.5um; the porosity is¢p=0.1355. The reconstructed
functions were calculated as described above; i.e., we use
periodic boundary conditions for all except for the lineal-
path function. The two-point probability functid®,(r) was
reconstructed in the intervak0,1,...,63. The annealing pro-
cess terminated after 1@ubsequent rejections.

We performed fiveLS reconstructions and fivleS recon-
structions for both the Berea and the Fontainebleau sanq
stones. Some of the re.sults are summarized in. Table | for thg, J\\s the original sandstones, the middle row ItSereconstruc-
Berea sandstone and in Table Il for the Fontainebleau san ons, and the bottom row thBS reconstructions with the Berea

stone, respectively. The values are averaged over five recozngstones on the left and the Fontainebleau sandstones on the right
structions. The quantityD is the mean survival time multi-  gige Al slices have approximately the average porositydof

plled by the diffusion coefficienD for the random-walk =0.1775 for the Berea an¢:01355 for the Fontainebleau, re-
process discussed above. The quarttjygives the fraction  spectively.

of pore voxels that belong to the percolating cluster.
Figure 1 shows two-dimensional slices of the original andge a4 sandstone, the reconstructions look similar to the

the reconstructed sandstones. The top row shows th? orlg'né‘l'iginal sandstone, while for the Fontainebleau sandstone the
sandstones, the row in the middle t_hS reconstr_uc'uons, reconstructions are clearly distinguishable from the original
and the bottom row theS reconstructions. The slices were g, ysione. The matrix of the original Fontainebleau sand-
takgn .from reconstructions with the yalug p(L=60), tone shows a granular structure where single grains can be
which is close to the average values given in the tables. Allyqniified. The pores between these grains are long and nar-
slices are chosen to have average porosity. In the case of trr"8w. In the reconstructions, no granular structure of the ma-
TABLE Il. Characteristic quantities of the Fontainebleau sand-mgr:ﬁizidlz dvililZlﬁép-lc—ahchE)rokr)?)SthO;at:(?strc)e:::,sglicgﬁrrfb:rreof

stone, itd_S reconstructions, and i8S reconstructions. The values isolated pores is significantly higher in the reconstructions
given for the reconstructions are averaged over five configurationér . P 9 yn 9 o
his is expressed bfy,, the fraction of pore space belonging

C!

<
=
n )
]

PS reconstructions

FIG. 1. Two-dimensional slices of the Berea sandstone, the Fon-
ainebleau sandstone, and two reconstructions of each. The top row

Fontainebleau LS PS to the percolating cluster. For 'Fhe Berea, 97.16% of the pore
space belongs to the percolating cluster whereas for the re-

Porosity 0.1355 0.1355 0.1355 constructions this fraction is roughly 10% smaller. For the
Specific surfacédmm™?) 10.0 10.6 10.4 Fontainebleau the difference is even bigger. In the original
Mean survival timerD (um?) 134 129 121 sandstone, 99.35% of the pore space percolates while for the
Mean pore siz¢s] (um) 7.85 7.88 7.73 reconstructiond , is approximately 52%. Here we find that
fo (%) 99.35 5222 5126 onelLS andPS reconstruction of the Fontainebleau are not
p(L=60) 0.956 0.265 0.234 percolating in all three directions.

In the course of our work we also used a slowly decreas-
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FIG. 2. Two-point probability function$, of the Berea(top) 0.14 ' ' ' Ref
and the Fontaineblea(bottom sandstones. The solid lines show 042 "52 o
the reference functions, the points show typical reconstructed func-
tions for aLS and aPS reconstruction. 01 b
ing step function for the temperatufeto obtain an optimal 008 r 1
match of the reconstructed functions. Surprisingly, with a %
slow cooling schedule the majority of the reconstructed con- %96 |
figurations was not percolating in all three directions. Fur- 004 | X
thermore, the reconstructed samples showed a strong aniso o
ropy with E(S,) of the order 102, whereS, denotes the 0.02 - ° o
two-point probability function measured in the directions ST
+ e 4i- 0 s L 99000 X
171 0 50 100 150 200 250

For the reconstructions presented here, we used a fas
exponential cooling schedule=exp(/10°) wheret as above
denotes the iteration step. This cooling schedule took ap- FIG. 3. Lineal-path functionk of the Bereatop) and the Fon-
proximately 3W iterations steps to complete a reconstruc-tainebleau(bottom sandstone. The solid lines correspond to the
tion, whereas the slow cooling took more than ROiera- reference functions, the points show typidss and typical PS
tions steps. Using the fast cooling schedule allreconstructions.
reconstructions of the Berea sandstone are percolating in all
three directions and only orleS and onePS reconstruction  Here typical means that the energy given by E).of the
of the Fontainebleau are not percolating. Also, with the fasteconstructed functions is close to the average value. In the
cooling schedule the reconstructed functions are matcheghse of the two-point probability function, the reconstructed
very well; i.e.,E(S,) is of the order 10%°, E(L) is of the  functions appear to be indistinguishable from the reference
order 10°8. Moreover, the anisotropy measured in terms offunctions. The same applies to the lineal-path functions mea-
E(S,) was reduced by an order of magnitude. Plottfg sured from thd_S reconstructions. The lineal-path functions
only the PS reconstructions of the Fontainebleau showedof thePS reconstructions clearly underestimate the reference
small deviations. functions. Complementary to thi®, is equally matched by

Our explanation for the fact that a slower cooling sched-both types of reconstructions as shown in Fig. 4. A logarith-
ule results in reconstructions with stronger anisotropy andnic plot of P and L reveals that the reconstructions only
only poor connectivity is the artificial anisotropy introduced poorly match the tails of those functions. This is due to the
by reconstructings, andL only in three directions. With an extremely small values d?(5) andL(r) for largesand large
increasing number of iterations the influence of the isotropicy, respectively. Furthermore, for the lineal-path function
random starting configuration is decreased while the anisathis may be a finite size effect becauses a long ranged
tropic calculation scheme of the two-point probability func- function withL(r)>0 for values ofr in the order of a third
tions as described above becomes more significant. Thisf the system size.
view agrees with previous work5,6] where three- Looking at Fig. 4 it seems that for our reconstructions the
dimensional isotropic reconstructions of sandstones also ugneal-path functiorL and the two-point probability function
ing a fast cooling schedule were presented. The poor conne&, incorporate nearly the same information about the shape
tivity of the reconstructions with a slow cooling schedule of the pores a$, andP do. Moreover, as seen from Fig. 3
may be a result of their strong anisotropy. the PS reconstruction lacks information about long line seg-

In Figs. 2, 3, and 4 the two-point probability functions ments. This may be understood from the fact thas a very
S,, the lineal-path function&, and the “pore size” distri- short ranged function wit?(5) #0 only in a range smaller
bution functionsP, respectively, are plotted for both sand- than the correlation length. For the Berea sandste(é)
stones using lines and for typical reconstructions using dots=0 for §>60um, and for the Fontainebleau sandstone

1 [um]
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FIG. 4. “Pore size” distribution function® of the Berea sand- FIG. 5. Total fraction of percolating cels for the Berea sand-
stone (top) and the Fontainebleau sandstofettom. The solid stone (top) and the Fontainebleau sandstof®ttom). The solid

lines correspond to the reference functions, the points show typic:aHneS showp measured from the original sandstones. The curves

LS and typicalPS reconstructions. shown for the reconstructions are averaged over five configurations

each.
P(6)=0 for 6>78um. Hence even thougR contains full

three-dimensional information about spherical regions in  We find analogous results for the mean survival time
pore space, similar information is already provided by thewhich is a diffusive transport property. In fact, the mean
two-point probability functionS, . survival time can be related to the mean pore $&e The
Looking at the parameters given in Tables | and Il,®  mean survival time is a physical transport property, but un-
reconstructions match the specific surface better. This is exike the fluid permeability, it does not capture the same in-
pected because the specific surfagan be measured from formation about the dynamical connectivity of the pore
eitherS, or P as seen from Eq4¢6) and(10). However, the space; indeed, neither does the conductiviy formation
value ofs measured from E¢(10) turns out to be roughly a facton [8,25]. Nonetheless, a cross-property formula relating
factor of 1.5 bigger than the value computed from Eg).  the fluid permeability to a combination of the porosity, mean
This is due to the simple surface modeling in the calculatiorsurvival time, and formation factdf has been shown to be a
of P as discussed above. We believe the kinli@) for 6  highly accurate estimate &ffor sandstonef26]. This cross-
=0.5a to be an artifact of the discretization. property formula was used to demonstrate that the perme-
In the case of Berea we find the best agreement of thability of another reconstructed sandstdbé was in excel-
mean pore siz&d) for the PS reconstructions, while in the lent agreement with the exact Stokes solution determination
case of the Fontainebleau the match appears to be better fof the permeability of the original sandstof6].
the LS reconstruction. The lineal-path function seems to be We note that a good match ofalone may not always
better suited to describe the long narrow pores of the Fonindicate a good match faF or k. In fact, combining results
tainebleau sandstone than the “pore size” distribution. Asfrom [22,23,4 suggests thaf correlates strongly with the
already seen from the two-dimensional slices, the appearandecal percolation probabilityp, which is a measure of the
of the Berea sandstone is quite similar to the appearance geometrical connectivity. We find significant differences be-
the reconstructions. The pores are much more rounded itween the local percolation probabilities of the real sand-
shape. Here the reconstruction is slightly improved with re-stones and the present reconstructions.
spect to the mean pore size by incorporatihgwhich con- Figure 5 shows plots of the local percolation probabitity
tains information about spherical regions. for the original sandstones, theS reconstructions, th®S
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reconstructions, and reconstructions of the two-point probBerea sample is only 128128x 128, resulting in poor sta-
ability function only (S reconstruction The pureS recon- tistical quality.

structions are included here for comparison to previous work Our work has shown that simulated annealing provides a
[6]. The curves shown for the reconstructions are averageflexible and simple to implement method for reconstructing
over five configurations each. The local percolation probabiltwo-phase random media and that local porosity theory pro-
ity p of the reconstructions lies well below the curves of thevides highly sensitive tools for their comparison and analy-
original sandstones. From this plot it seems that neither thsis. However, with the present computer power there is still a
use ofL nor the use oP can significantly improve the geo- need to introduce simplifications to reduce the computation
metric connectivity compared to the reconstructionSyf  time. Reconstructing the two-point probability functi@;
only. The differences between the curves of the three recorenly in certain directions may artificially introduce a strong
structions seem to be within the range of statistical fluctuaanisotropy or affect the connectivity. We find that a fast
tions. Nevertheless, a similar result for tBereconstruction cooling schedule can reduce this problem. This implies that
of the Fontainebleau sandstone was presentedlifor a  the final configuration is not completely independent from
larger sample. Other woi6] showed that d.S reconstruc- the initial configuration, and hence the reconstructed micro-
tion of a different Fontainebleau sandstone reproduced thstructure does not only depend on the reconstructed statisti-

geometric connectivity well. cal functions, which would be desirable.
In general, when comparing tHeS reconstructions and
the !:’S reconstructions the resultlng conflgurqtlons are qwte ACKNOWLEDGMENTS
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