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Stochastic reconstruction of sandstones
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A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a
Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and
‘‘pore size’’ distribution function, respectively. We find that the temperature decrease of the annealing has to
be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological
quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean
survival time of a random walker in the pore space is reproduced with good accuracy. However, a more
detailed investigation by means of local porosity theory shows that there may be significant differences of the
geometrical connectivity between the reconstructed and the experimental samples.

PACS number~s!: 61.43.Gt
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I. INTRODUCTION

The microstructures of porous media determine their m
roscopic physical properties@1–3#, such as conductivity
elastic constants, relaxation times, permeabilities, or ther
properties. The relation between geometric microstruct
and physical properties is a fundamental open prob
whose solution is important to many applications rang
from geophysics to polymer physics and material scien
For the geometric modeling of porous media, it is theref
important to characterize microstructures quantitatively a
to construct models using given geometric characteristic

The reconstruction of random media with given stocha
properties is also of great interest for a variety of other r
sons:

~i! Digitized three-dimensional geometries of real san
stones are difficult to obtain. Therefore the reconstruct
provides a method for easily generating detailed geome
as needed, e.g., in numerical calculations of macrosc
material parameters like those mentioned above.

~ii ! The reconstruction of three-dimensional samples fr
two-dimensional data.

~iii ! Any calculation of macroscopic quantities of rando
media needs a set of stochastic functions that describes
geometry. The reconstruction can help to decide which fu
tions one should use. The present work will focus mainly
the latter question, the so-called inverse problem.

Recently, a simulated annealing algorithm for the rec
struction of random porous media with predefined stocha
functions was proposed@4#. This method was used for th
reconstruction of two-phase porous media, i.e., sandsto
with a given two-point probability function and a lineal-pa
function, which were measured from real sandstones@5,6#. In
the present article, we will continue this work. An advanta
of the simulated annealing is that it allows for the reconstr
tion of a variety of different stochastic functions with th
available CPU time being the only limit on the use of a set
functions. In Refs.@5#, @6#, the two-point probability function
and the lineal-path function were used. Here we will exte
the investigations to the reconstruction of the so-cal
PRE 621063-651X/2000/62~1!/893~7!/$15.00
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‘‘pore size’’ distribution @7,8#, which is not the usual quan
tity obtained from mercury porosimetry. We will study
Berea sandstone and a Fontainebleau sandstone.

A comparison of the reconstructions with the origin
sandstones shows to what extent the characteristics of
original geometry are reconstructed. A salient feature of
original sandstone is the high degree of connectivity of
pore space. Hence one important criterion for judging a s
chastic reconstruction method is its ability to reproduce
connectivity of the original sandstone. It is shown that Be
reconstruction does a better job of capturing connectiv
than does the Fontainebleau reconstruction, although ne
captures connectivity particularly well. Another importa
criterion is the ability of the reconstruction procedure to
produce the macroscopic properties of the original materi
We show that the mean survival times of our reconstructi
of both sandstones agree well with mean survival times
the original sandstones.

The paper is organized as follows. In Sec. II we descr
the reconstruction algorithm. In Sec. III we introduce t
quantities we use in the reconstruction process and to c
acterize the sandstones. Because detailed discussions c
found in the references, we will focus mainly on practic
aspects and details of the implementation. In Sec. IV
present the results for the reconstructions of a Berea s
stone and a Fontainebleau sandstone, respectively.

II. THE RECONSTRUCTION METHOD

A two-phase porous medium consists of a pore or v
phaseP and a matrix or rock phaseM. Its microgeometry is
described in detail by the characteristic function

x~xW !5H 0 for xWPM,

1 for xWPP
. ~1!

For a discretized sample,xW5( j 1a, j 2a, j 3a) is the position
vector of a cubic grid withj i50,...,Mi21, lattice constanta,
893 ©2000 The American Physical Society



e
no

te

n-
-
n

t

er
e
t

ec
m

i
e

-

he
e

it

u
ly

the
ose

he
-
ther
-
ns

ef-
o-
of
l-
-

ace
ity
ause

nc-
ges
ve to

.g.,
n
ple
o-

in-

e
it is

fer-
-

eri-

us

in-

re

re

all

894 PRE 62C. MANWART, S. TORQUATO, AND R. HILFER
and sizeM13M23M3 . The total number of grid points is
given byN5M1M2M3 . In the following we will also refer
to a grid point as a voxel.

The porosityf, the probability of finding a point in pore
space, is given by

f5^x~xW !&. ~2!

With the assumption of a homogeneous, stationary, and
godic stochastic porous medium, the angular brackets de
a volume average.

The reconstruction is carried out by means of a simula
annealing method@4# with the target or ‘‘energy’’ function
defined as

Et~ f t!5(
xW

u f t~xW !2 f ref~xW !u2. ~3!

The function f ref is the stochastic function to be reco
structed, whereasf t is the actual value of this function mea
sured at iteration stept. For the reconstruction of more tha
one function, the energyEt at the iteration stept is given by
Et5SkEt( f t

(k)), where the indexk numbers the differen
functions to be reconstructed.

Starting from a random configuration with porosityf,
two voxels of different phases are exchanged at each it
tion step. Thus the porosityf remains constant during th
reconstruction process. The new configuration is accep
with the probability given by the Metropolis rule

p5H 1 if Et<Et21 ,

e~Et212Et!/T if Et.Et21 ,
~4!

whereT plays the role of a temperature. In the case of rej
tion, the old configuration is restored. By decreasing the te
peratureT, configurations with minimal energyE, i.e., with
minimal deviations of the stochastic functionsf t

(k) from their
reference functionsf ref

(k) , are generated. The process term
nates after a certain number of consecutive rejections. H
the reconstruction was finished after 105 consecutive rejec-
tions.

III. MEASURED QUANTITIES

A. The two-point probability function

Using Eq. ~1!, the two-point probability function is de
fined as

S2~xW1 ,xW2!5^x~xW1!x~xW2!&. ~5!

For a homogeneous and isotropic medium,S2(xW1 ,xW2)
5S2(r ) with r 5uxW12xW2u. In this caseS2(r ) can be evalu-
ated without loss of information from the intersection of t
sample with a plane or even a line. To speed up the num
cal evaluation ofS2 it is therefore sufficient to sampleS2
only in directions of the principal axis given by the un
vectorseW i @4#.

HenceS2 is calculated by evaluating Eq.~5! for every
pair of voxels atxW1 andxW25xW11reW i with r 50,1,...,r c where
r c is a cutoff value determined by the system size or a m
tiple of the correlation length. During the reconstruction on
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those terms inS2 are updated that have changed due to
exchange of voxels. On the sample boundaries we imp
periodic boundary conditions.

For reconstruction purposes, this simplification, i.e., t
reconstruction ofS2 only in the direction of the three coor
dinate axes, may create some problems. Because all o
directions remain unoptimized,S2 measured in these direc
tions may differ from the reference function. If this happe
the reconstructed sample is no longer isotropic@9,10#. Fur-
thermore, the reconstruction ofS2 only along orthogonal
lines reduces the three-dimensional optimization problem
fectively to the optimization of three one-dimensional tw
point probability functions. This may reduce the number
conditions that the two-point probability function has to fu
fill to be realizable@11#, and may lead one to conclude in
correctly that the reconstruction is realizable in the sp
dimension of interest. However, the problem of realizabil
does not apply to the reconstructions presented here, bec
the two-point probability functions used as reference fu
tions are measured from digitized three-dimensional ima
of real sandstones. Nevertheless, the reconstructions ha
be checked for their isotropy.

The isotropy of the reconstructions can be improved, e
by a full reconstruction of the two-point probability functio
using Fourier transform techniques or by rotating the sam
during the reconstruction. This was done for tw
dimensional reconstructions in@10#. However, for three-
dimensional reconstructions this leads to a prohibitive
crease of computation time.

For the specific surfaces, i.e., the surface per unit volum
of the interface between pore space and matrix space,
known that@12#

s524
]S2~r !

]r U
r 50

. ~6!

Therefore a reconstruction ofS2 implies that the specific
surface area of the reconstructions matches that of the re
ence sample. Equation~6! may also be used for the calcula
tion of the specific surface. Here we use a different, num
cally very efficient method introduced in@13# for calculating
s.

B. Lineal-path function and ‘‘pore size’’ distribution

The lineal-path functionL(r ) is defined as the probability
of finding a line segment of lengthr entirely in pore space
when the line segment is randomly thrown into the poro
medium @14#. Hence forr 50, L(0)5f holds. The lineal-
path function is related to the linear contact distribution
troduced in mathematical stochastic geometry@15–17#. The
lineal-path function is calculated as follows: For a given po
voxel, the lineal pathr in units of the resolutiona is given as
the number of pore voxels lying between the given po
voxel and the nearest matrix voxel in directioneW i . Evaluat-
ing the line segments starting from each pore voxel in
three coordinate directionseW i and counting the numberl (r )
of line segments with lengthr, the lineal-path function is
given by
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PRE 62 895STOCHASTIC RECONSTRUCTION OF SANDSTONES
L~r !5 l ~r !/@~M12r !M2M31M1~M22r !M3

1M1M2~M32r !#, ~7!

where we assume nonperiodic boundary conditions.
The lineal-path function incorporates information abo

the connectivity of the pore space. Of course it would
desirable to reconstruct functions that provide more comp
information about the geometric connectivity of the po
space, as for example the cluster correlation function@3# or
the local percolation probability@2#, but currently the com-
putation time for evaluating these functions prevents th
use in the above reconstruction scheme.

The ‘‘pore size’’ distribution functionP~d! is defined
such thatP(d)dd is the probability that a randomly chose
point in the pore space lies at a distance@d,d1dd# from the
nearest point on the interface@7,8#. It is related to the spheri
cal contact distribution@15,16,18#. The associated cumula
tive distribution function

F~do!5E
do

`

P~d!dd ~8!

gives the fraction of the pore space that has a diameter la
thendo . Clearly

P~d!52
]F

]d
, ~9!

and

P~0!5
s

f
. ~10!

The mean pore size is given as

^d&5E
0

`

dP~d!dd5E
0

`

F~d!dd. ~11!

The quantityP~d! arises in rigorous bounds on the me
survival time@8#.

We compute an approximation toP~d! by choosing a ran-
dom point in pore space and measuring its distanced to the
nearest point on the matrix-pore interface assuming perio
boundary conditions. This process is repeated for sev
random points in pore space. The ‘‘pore size’’ distribution
then obtained by binning the distancesd and dividing by the
number of random placements in pore space. We empha
that the random placements in pore space are not neces
grid points. The computation ofd is only approximate be-
cause it requires a modeling of the interface between p
and matrix space. Here, we assume that the internal sur
is given by the surface of the cubic voxels. This is the sa
modeling that is used, e.g., in a computation of the m
survival time or in finite difference calculations of transpo
properties. In general, this may overestimate the specific
face area appearing in Eq.~10! by a factor of roughly 1.5
@19#. For use in the reconstruction we measuredd as the
distance between a pore voxel and the nearest matrix vo
The resulting function is not equal toP~d! becaused can
now only take values ofd5Ai 21 j 21k2 with i , j ,kPZ.
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C. The total fraction of percolating cells

The total fraction of percolating cellsp is a key measure
in local porosity theory@20,2#. Local porosity theory mea-
sures the fluctuations of morphological quantities, e.g.,
rosity, specific surface, and connectivity, in cubic su
samples of the total sample@21#. We will refer to such a
cubic subsample with side lengthL as a measurement cel
Based on the scale-dependent morphological quantities,
theory provides scale-dependent estimates for transport
rameters from a generalized effective medium the
@22,23#.

Let m(f,L)df be the probability that a given measur
ment cell of side lengthL has a porosity in the interva
@f,f1df#. The probability density functionm is called
local porosity distribution. The probability that a given me
surement cell with porosityf is percolating in all three di-
rections is the local percolation probability functionl(f,L).
Here percolating in all three directions means that each f
of the measurement cell is connected to the opposite
with a path lying entirely in pore space. Using this, the to
fraction of percolating cells is given by

p~L !5E
0

1

m~f,L !l~f,L !df. ~12!

The total fraction of percolating cellsp(L) is the probability
of finding a measurement cell with side lengthL, which is
percolating in all three directions. Hencep is a measure for
the geometrical connectivity.

D. The mean survival time

In contrast to the previous quantities, the mean survi
time t is not a purely geometrical but a physical observab
The mean survival timet is the average lifetime of a random
walker, which can freely move in pore space, but gets
stantly absorbed on contact with the pore-matrix interface
is a measure of a characteristic pore size. The mean surv
time t is calculated using a first passage cube~FPC! algo-
rithm @19,24#. The FPC algorithm uses the fact that the me
time it takes for a certain type of diffusive random walk
starting at the center of a cube with side length 2L to cross
the surface of this cube is given by

t~T!'0.224 85L2. ~13!

Hence it is not necessary to simulate the steps of the wa
in detail. Instead, one determines the biggest cube cent
around the position of the walker, which is still entirely
pore space. The walker then jumps on the surface of
FPC and a time given by Eq.~13! is added to its lifetime.
This procedure is iterated until the walker touches the in
face and gets absorbed. The mean survival time is given
averaging over many walkers.

The probability with which the walker jumps to a certa
point on the surface of the FPC is described by a probab
density functionw(y,z) wherey andz are the coordinates on
the surface, assuming without loss of generality thatx5
6L. For an analytic expression ofw(y,z) we refer to@24#.
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IV. RESULTS

In this section we present results for reconstructions o
Berea sandstone and a Fontainebleau sandstone. For
sandstones we computed reconstructions with the lineal-
function and the two-point probability function~LS recon-
struction! as well as reconstructions with the ‘‘pore size
distribution function and the two-point probability functio
~PS reconstruction!. The Berea sandstone and its reconstr
tions have the dimension 12831283128 and the resolution
a510mm. The porosity isf50.1775. The Fontaineblea
sandstone has dimensions 29933003300 and its reconstruc
tions have the dimension 12831283128. The resolution is
a57.5mm; the porosity isf50.1355. The reconstructe
functions were calculated as described above; i.e., we u
periodic boundary conditions for all except for the linea
path function. The two-point probability functionS2(r ) was
reconstructed in the intervalr 50,1,...,63. The annealing pro
cess terminated after 105 subsequent rejections.

We performed fiveLS reconstructions and fivePS recon-
structions for both the Berea and the Fontainebleau sa
stones. Some of the results are summarized in Table I for
Berea sandstone and in Table II for the Fontainebleau s
stone, respectively. The values are averaged over five re
structions. The quantitytD is the mean survival time multi
plied by the diffusion coefficientD for the random-walk
process discussed above. The quantityf p gives the fraction
of pore voxels that belong to the percolating cluster.

Figure 1 shows two-dimensional slices of the original a
the reconstructed sandstones. The top row shows the orig
sandstones, the row in the middle theLS reconstructions,
and the bottom row thePS reconstructions. The slices wer
taken from reconstructions with the value ofp(L560),
which is close to the average values given in the tables.
slices are chosen to have average porosity. In the case o

TABLE I. Characteristic quantities of the Berea sandstone,
LS reconstructions, and itsPS reconstructions. The values give
for the reconstructions are averaged over five configurations.

Berea LS PS

Porosity 0.1775 0.1775 0.1775
Specific surface~mm21! 13.9 14.7 14.4
Mean survival timetD ~mm2! 100 89 93
Mean pore sizêd& ~mm! 6.71 6.52 6.66
f p (%) 97.16 88.76 85.49
p(L560) 0.997 0.747 0.712

TABLE II. Characteristic quantities of the Fontainebleau san
stone, itsLS reconstructions, and itsPS reconstructions. The value
given for the reconstructions are averaged over five configurati

Fontainebleau LS PS

Porosity 0.1355 0.1355 0.1355
Specific surface~mm21! 10.0 10.6 10.4
Mean survival timetD ~mm2! 134 129 121
Mean pore size@d# ~mm! 7.85 7.88 7.73
f p (%) 99.35 52.22 51.26
p(L560) 0.956 0.265 0.234
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Berea sandstone, the reconstructions look similar to
original sandstone, while for the Fontainebleau sandstone
reconstructions are clearly distinguishable from the origi
sandstone. The matrix of the original Fontainebleau sa
stone shows a granular structure where single grains ca
identified. The pores between these grains are long and
row. In the reconstructions, no granular structure of the m
trix space is visible. The pores of the reconstructions
more rounded in shape. For both sandstones, the numb
isolated pores is significantly higher in the reconstructio
This is expressed byf p , the fraction of pore space belongin
to the percolating cluster. For the Berea, 97.16% of the p
space belongs to the percolating cluster whereas for the
constructions this fraction is roughly 10% smaller. For t
Fontainebleau the difference is even bigger. In the origi
sandstone, 99.35% of the pore space percolates while fo
reconstructionsf p is approximately 52%. Here we find tha
oneLS andPS reconstruction of the Fontainebleau are n
percolating in all three directions.

In the course of our work we also used a slowly decre

s

-

s.

FIG. 1. Two-dimensional slices of the Berea sandstone, the F
tainebleau sandstone, and two reconstructions of each. The top
shows the original sandstones, the middle row theLS reconstruc-
tions, and the bottom row thePS reconstructions with the Bere
sandstones on the left and the Fontainebleau sandstones on the
side. All slices have approximately the average porosity off
50.1775 for the Berea andf50.1355 for the Fontainebleau, re
spectively.
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PRE 62 897STOCHASTIC RECONSTRUCTION OF SANDSTONES
ing step function for the temperatureT to obtain an optimal
match of the reconstructed functions. Surprisingly, with
slow cooling schedule the majority of the reconstructed c
figurations was not percolating in all three directions. F
thermore, the reconstructed samples showed a strong an
ropy with E(S̃2) of the order 1022, whereS̃2 denotes the
two-point probability function measured in the directionsei
1ej Þ i .

For the reconstructions presented here, we used a
exponential cooling scheduleT5exp(t/105) wheret as above
denotes the iteration step. This cooling schedule took
proximately 30N iterations steps to complete a reconstru
tion, whereas the slow cooling took more than 300N itera-
tions steps. Using the fast cooling schedule
reconstructions of the Berea sandstone are percolating i
three directions and only oneLS and onePS reconstruction
of the Fontainebleau are not percolating. Also, with the f
cooling schedule the reconstructed functions are matc
very well; i.e.,E(S2) is of the order 10210, E(L) is of the
order 1028. Moreover, the anisotropy measured in terms
E(S̃2) was reduced by an order of magnitude. PlottingS̃2 ,
only the PS reconstructions of the Fontainebleau show
small deviations.

Our explanation for the fact that a slower cooling sche
ule results in reconstructions with stronger anisotropy a
only poor connectivity is the artificial anisotropy introduce
by reconstructingS2 andL only in three directions. With an
increasing number of iterations the influence of the isotrop
random starting configuration is decreased while the an
tropic calculation scheme of the two-point probability fun
tions as described above becomes more significant.
view agrees with previous work@5,6# where three-
dimensional isotropic reconstructions of sandstones also
ing a fast cooling schedule were presented. The poor con
tivity of the reconstructions with a slow cooling schedu
may be a result of their strong anisotropy.

In Figs. 2, 3, and 4 the two-point probability function
S2 , the lineal-path functionsL, and the ‘‘pore size’’ distri-
bution functionsP, respectively, are plotted for both san
stones using lines and for typical reconstructions using d

FIG. 2. Two-point probability functionsS2 of the Berea~top!
and the Fontainebleau~bottom! sandstones. The solid lines sho
the reference functions, the points show typical reconstructed fu
tions for aLS and aPS reconstruction.
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Here typical means that the energy given by Eq.~3! of the
reconstructed functions is close to the average value. In
case of the two-point probability function, the reconstruct
functions appear to be indistinguishable from the refere
functions. The same applies to the lineal-path functions m
sured from theLS reconstructions. The lineal-path function
of thePS reconstructions clearly underestimate the refere
functions. Complementary to this,P is equally matched by
both types of reconstructions as shown in Fig. 4. A logari
mic plot of P and L reveals that the reconstructions on
poorly match the tails of those functions. This is due to t
extremely small values ofP~d! andL(r ) for larged and large
r, respectively. Furthermore, for the lineal-path functionL
this may be a finite size effect becauseL is a long ranged
function with L(r ).0 for values ofr in the order of a third
of the system size.

Looking at Fig. 4 it seems that for our reconstructions t
lineal-path functionL and the two-point probability function
S2 incorporate nearly the same information about the sh
of the pores asS2 andP do. Moreover, as seen from Fig.
thePS reconstruction lacks information about long line se
ments. This may be understood from the fact thatP is a very
short ranged function withP(d)Þ0 only in a range smaller
than the correlation length. For the Berea sandstoneP(d)
50 for d.60mm, and for the Fontainebleau sandsto

c-

FIG. 3. Lineal-path functionsL of the Berea~top! and the Fon-
tainebleau~bottom! sandstone. The solid lines correspond to t
reference functions, the points show typicalLS and typical PS
reconstructions.
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898 PRE 62C. MANWART, S. TORQUATO, AND R. HILFER
P(d)50 for d.78mm. Hence even thoughP contains full
three-dimensional information about spherical regions
pore space, similar information is already provided by
two-point probability functionS2 .

Looking at the parameters given in Tables I and II, thePS
reconstructions match the specific surface better. This is
pected because the specific surfaces can be measured from
eitherS2 or P as seen from Eqs.~6! and~10!. However, the
value ofs measured from Eq.~10! turns out to be roughly a
factor of 1.5 bigger than the value computed from Eq.~6!.
This is due to the simple surface modeling in the calculat
of P as discussed above. We believe the kink inP~d! for d
50.5a to be an artifact of the discretization.

In the case of Berea we find the best agreement of
mean pore sizêd& for the PS reconstructions, while in the
case of the Fontainebleau the match appears to be bette
the LS reconstruction. The lineal-path function seems to
better suited to describe the long narrow pores of the F
tainebleau sandstone than the ‘‘pore size’’ distribution.
already seen from the two-dimensional slices, the appear
of the Berea sandstone is quite similar to the appearanc
the reconstructions. The pores are much more rounde
shape. Here the reconstruction is slightly improved with
spect to the mean pore size by incorporatingP, which con-
tains information about spherical regions.

FIG. 4. ‘‘Pore size’’ distribution functionsP of the Berea sand-
stone ~top! and the Fontainebleau sandstone~bottom!. The solid
lines correspond to the reference functions, the points show typ
LS and typicalPS reconstructions.
n
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We find analogous results for the mean survival timet,
which is a diffusive transport property. In fact, the me
survival time can be related to the mean pore size@8#. The
mean survival time is a physical transport property, but u
like the fluid permeability, it does not capture the same
formation about the dynamical connectivity of the po
space; indeed, neither does the conductivity~or formation
factor! @8,25#. Nonetheless, a cross-property formula relati
the fluid permeability to a combination of the porosity, me
survival time, and formation factorF has been shown to be
highly accurate estimate ofk for sandstones@26#. This cross-
property formula was used to demonstrate that the per
ability of another reconstructed sandstone@5# was in excel-
lent agreement with the exact Stokes solution determina
of the permeability of the original sandstone@26#.

We note that a good match oft alone may not always
indicate a good match forF or k. In fact, combining results
from @22,23,6# suggests thatF correlates strongly with the
local percolation probabilityp, which is a measure of the
geometrical connectivity. We find significant differences b
tween the local percolation probabilities of the real san
stones and the present reconstructions.

Figure 5 shows plots of the local percolation probabilityp
for the original sandstones, theLS reconstructions, thePS

al

FIG. 5. Total fraction of percolating cellsp for the Berea sand-
stone ~top! and the Fontainebleau sandstone~bottom!. The solid
lines showp measured from the original sandstones. The cur
shown for the reconstructions are averaged over five configurat
each.
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reconstructions, and reconstructions of the two-point pr
ability function only ~S reconstruction!. The pureS recon-
structions are included here for comparison to previous w
@6#. The curves shown for the reconstructions are avera
over five configurations each. The local percolation proba
ity p of the reconstructions lies well below the curves of t
original sandstones. From this plot it seems that neither
use ofL nor the use ofP can significantly improve the geo
metric connectivity compared to the reconstruction ofS2
only. The differences between the curves of the three rec
structions seem to be within the range of statistical fluct
tions. Nevertheless, a similar result for theS reconstruction
of the Fontainebleau sandstone was presented in@6# for a
larger sample. Other work@5# showed that aLS reconstruc-
tion of a different Fontainebleau sandstone reproduced
geometric connectivity well.

In general, when comparing theLS reconstructions and
the PS reconstructions the resulting configurations are qu
similar. For our reconstructions, the two-point probabil
functionS2 and the lineal-path functionL incorporate nearly
the same morphological information asS2 andP do. Look-
ing at the reconstructions of the Berea sandstone and
reconstructions of the Fontainebleau sandstone it app
that the latter one is much more demanding to reconstr
This may be due to its characteristic granular structure,
narrow pore throats, the lower porosity, and to the lar
sample size of the original sandstone. We also note that
-

ia

tri
-

k
ed
l-

e

n-
-

e

e

he
rs
t.
e
r

he

Berea sample is only 12831283128, resulting in poor sta-
tistical quality.

Our work has shown that simulated annealing provide
flexible and simple to implement method for reconstructi
two-phase random media and that local porosity theory p
vides highly sensitive tools for their comparison and ana
sis. However, with the present computer power there is st
need to introduce simplifications to reduce the computat
time. Reconstructing the two-point probability functionS2
only in certain directions may artificially introduce a stron
anisotropy or affect the connectivity. We find that a fa
cooling schedule can reduce this problem. This implies t
the final configuration is not completely independent fro
the initial configuration, and hence the reconstructed mic
structure does not only depend on the reconstructed sta
cal functions, which would be desirable.
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