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THEORETICAL ASPECTS OF POLYCRYSTALLINE PATTERN GROWTH
IN Al/Ge FILMS

RUDOLF HILFER

Department of Physics
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ABSTRACT. These notes discuss recent theoretical approaches to polycrystalline

fingering during annecaling of amorphous Al/Ge thin films, and compare them to
experiment.

Annealing of amorphous Al/Ge films can give rise to a highly branched polycrys-
talline pattern!. This demonstrates the existence of a remarkable new morphology,
both for phase separation, and for pattern growth. As a pattern growth mode it-
is intermediate between diffusion limited aggregation (no crystallization, no nucle-
ation) and dendritic single crystal growth %crystallization, but no nucleation). As
a phase transformation morphology it is controlled by long range diffusion, not
by interfacial mobility, but exhibits a linear time dependence for the radius of the
precipitate (“colony”)l'z. A typical precipitate (“colony”) consists of a branched
polycrystalline Ge core embedded in monocrystalline Al. The colonies are roughly
circular and grow into the surrounding amorphous phase of Al,Ge;_, with z ~ 0.4.
See the contributions of G. Deutscher and Y. Lereah in this volume for more details
on the morphology and the experiment.
My objective here will be to address the following three questions:

(8) Why is the phase boundary between crystalline Al and the amorphous phase
stable although the colonies grow into the metastable amorphous phase?

(b) Why does the radius of a colony increase linearly with time, and which factors
determine its velocity?

(c) What determines the strongly temperature dependent length scale of a colony?
1. Stability

During ordinary solidification from a melt the excess foreign atoms have to diffuse
away from the solid/liquid interface. Because this diffusion process has to occur
into the metastable phase and over large distances it will be more effective if the
interfacial area is increased. This leads to the Mullins-Sekerka (MS) instability
and a dendritic morphology for the growing crystal®. For the case of Al/Ge phase
separation, the crystalline colonies also grow into the metastable amorphous phase,
and one might expect to find the same MS-instability for the interface between the
colony and the amorphous region. Instead, in the experiment, the shape of the
colonies remains nearly circular during the growth process!+.

Growth of Germanium inside the colonies requires Ge-transfer from the amor-
phous region across the Al-rim to the polycrystalline Ge-aggregate. This can occur
by diffusion of atomic Ge through regions of crystalline Al. Assuming that this is
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indeed the dominant diffusion process which limits the growth of the colony one re-
alizes an important difference to the case of the MS-instability: The concentration
gradient of the (Ge) diffusion field, and the growth velocity (of the Al/amorphous
interface) have opposite orientation.

Let me consider a perturbation of the circular colony shape. Behind the most
advanced regions of the perturbed interface the concentration gradient of atomic
Ge will be smallest. Remember that Ge diffuses backwards from the interface
(opposite to the growth direction.) On the other hand the gradient is high close
to those regions of the interface that lag behind, in contrast to the ordinary case
where the gradient is largest close to advanced tips. For the Al/Ge colony the most
advanced tips are therefore slowed down relative to the rest of the interface, and the
perturbation will be damped out. This explains one of the reasons for the stability
of the circular colony shape observed in the experiment.

2. Linear Growth and Velocity Selection

The discussion above and experimental evidence!"? suggest the following central
features for the colony growth:

1. The dominant diffusion is that of atomic Ge backward from the Al/amorphous
. interface into the crystalline Al.
2.

Atomic diffusion in the amorphous phase is very slow compared with the crys-
talline phase.

3. Nucleation and growth of Ge crystallites occurs only at the interface between
Al and Ge.

4. Nucleation of Al crystals in the amorphous phase is much more frequent than

that of Ge but still rare; it controls the initiation of new colonies.

The first of these assumptions is central to the following treatment. It results from
the observation made in section 1 that the Al/Ge interface is separated from the
amorphous phase by a continuous Al rim and can only grow if Ge atoms diffuse
across this rim. It will be seen that the interplay between the Al/amorphous bound-
ary and the Al/Ge boundary which act respectively as source and sink for Ge atoms
gives rise to the linear growth law.

To approach the problem more formally replace the local concentration of

atomic Ge by its angular average ¢(r) and that of crystalline Ge by its angular
average p(r). Then one finds

8c /)
E = DLV [4 81 (la)

on the “left” inside the Al and

% = DpV%c (13)

in the amorphous phase on the “right” of the interface. Df, resp. Dp is the diffusion

constant on the left resp. right. At the interface one has ¢ = ¢1 on the Al side

(r = R_) and ¢ = cg on the amorphoys side (r = R;). The growth process is
described in its simplest form through

8p
9P _ Bep. 2
5 = Ber (2)
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The phenomenological rate constant B describes the growth of the branched Ge
structure and thus incorporates nucleation and growth of Ge crystallites. At the
Al/amorphous interface, r = R(t), the diffusion field must obey mass conservation:

2[R0 @c+pirn) = .50

8c

r=k_ — Drg- 3)

r=R;

Here p(R) is a small sced concentration of crystalline Ge at the boundary. Ac = cp—
cL (%enotes the discontinuity in the concentration across the interface (miscibility
gep).

The ramified Al/Ge boundary close to the Al/amorphous boundary acts as a
sink for the diffusing Ge and from Eq. (3) this implies a finite concentration gradient
and thus a finite velocity for the moving front. Transforminginto the moving frame
one writes

c(r,t) = co f(2) resp. p(r,t) = cog(z), 4)

where R = vt, z = (r — R)/£, ¢o is the concentration of Ge in the amorphous phase
and ¢{ = Dy /v is the basic length scale in the problem. For sufficiently long times
(v*t/Dy » 1) the curvature of the interface can be neglected and one obtains a
closed nonlinear equation for f 4

f'+ P =0f1-f-f, (5)
with the boundary conditions .
f(=o0) = f'(~o0) =0 (6a)
fo == | (65)
Co
floy=1-°L_ (6¢)
Co

where 8 = ¢ BDr [v? is a dimensionless control parameter and € = g(0) is the small
seed concentration at the interface introduced in Eq. (3). The solutions to Eq. (5)
are displayedin Fig. 1in f— f'-space. Trajectories fulfilling the boundary conditions
at z = —co emerge from the origin with a slope f'/f =1/( =[-1 +$. +4p8)1/3)/2.
The straight line 1 — f — f' = 0 is a separatrix. The boundary condition Eq. (6c)
determines a straight line parallel to the separatrix. First choose a value for 3, then
follow the associated flow line starting from (0,0) until it intercepts this straight

line and read off the corresponding value f(0) = c1/co. This determines 8 and thus
v as a function of ¢z, (see inset of Fig. 1).

3. Length Scales

Before discussing the last question it is instructive to compare the theoretical conse-
quences with experiment. The growth velocity is found to be constant as predicted.
For slow velocities, i.e, 8 3 1, one derives the relation v = (cr/co)dr/€C 4. It has
been checked experimentally by comparing the temperature dependence of D/§¢
with that of v and was found to be in good agreement 2. If the transformation
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Fig. 1: Trajectories fulfilling the boundary conditions at z = —oo for

selected values of B (8 = 0.2, 1, 5, 25, 100, 500). Inset: Dependence of

f(0) = cr/co on B for trajectories fulfilling all boundary conditions with
¢ = 0.001.

were interface-controlled one might expect to find the same activated behaviour
for v as for D, and consequently a temperature independent length scale. This,
however, is not borne out by experiment ?, and indeed the theory above predicts
v éBDL)]h showing that the temperature dependence of £¢ depends on that of
B. Here lies a problem, because B is not a material parameter. Experimentally the
activation energy of the nucleation rate has been measured 2, and it was found that
the relation v o (BDL)'/? is obeyed if B has the same activated behaviour as the
nucleation rate. One also observes a broad distribution of crystallite sizes where
the size of the largest Ge-crystallites is comparable to the width of a finger. These
observations plus a theoretical consistency argument 4 suggest that the nucleation
rate for Ge-grains at the Al/Ge interface plays a central role for the understanding
of B, and for the length scale (resp. velocity) selection in the experiment.

As a first step let me posc the simpler question how nucleation alone deter-
mines a characteristic length for a competitive growth process. To be more specific
consider the following highly idealized model for the growth of an isolated Ge-finger
in the colony.

A polycrystalline Germanium finger is idealized as a rectangular shape of length
L and width W, with W < L. To represent the grain structure consider the
rectangular shape being filled with a hexagonal tiling. A grain corresponds to a
connected region of elementary hexagons. Each grain is identified by a unique
number. The rectangular shape grows unidirectionally keeping W constant. This
idealizes the fact that most of the growth of a Ge-finger occurs close to its tip,
while lateral growth is negligible. To simplify the growth dynamics assume that the
rectangle grows stepwise through the addition of one layer of elementary hexagons
at a time. The elementary hexagons may be thought of as critical nuclei which
can either be incorporated into the existing grains touching the surface or nucleate
a new crystallite. For simplicity assume that each of the eclementary hexagons in
the new layer can nucleate a new crystallite with probability pn,. If an elementary
hexagon does not nucleate a new grain, it is added to an existing grain in the
previous layer according to the following rules: If the two hexagons in the previous
layer which it touches (let me call them predecessors) belong to the same grain,



HILFER 131

then the new hexagon will also be added to that grain, i.c., it acquires the same
number. If the two predecessors have different numbers, then the number of the
new hexagon is chosen with probability 1/2 from the numbers of its predecessors.

In this model the growth of a single grain starts with a single hexagon and ends
when that grain ceases to touch the surface. This can be caused by the nucleation
of other grains on its surface or by screening through neighboring grains. The
grain growth is competitive in that cach grain can only grow at the expense of its
neighbours because the overall available surface area W is kept constant.

Before presenting some of the results for this model let me point out that they
seem to be relatively insensitive to the artificial rectangular geometry of the model
above. This is seen from the fact that ‘qualitatively similar results are obtained
in a model where analogous nucleation rules have been introduced into diffusion
limited aggregation with surface tension ®. In that case a branched polyerystalline
structure with finite finger width is produced. Other variants of the model have
taken preferential nucleation at already existing grain boundaries into account 5.

To extract a length scale from this nucleation and growth model consider the
grain length X along the growth direction. X is a random variable defined as
the maximum linear extension of a grain in the direction perpendicular to to the
growth surface. An approximate probability density P(X}) for this quantity can

be obtained in closed form in the limit of small p,,®. Its asymptotic expansion is
found to have the scaling form

P(X)) ~ X exp (_z—):") ' @

where

b= (5-ba-) . (8)

Here v is a monotone function of the nucleation probability p,, with »(0) = 1/2.
The power law with exponent 3/2 is cutoff with an exponential function, and for
Pna — 0 the decay length is divergent.

The form for P(X) can be easily checked by simulation. In Fig. 2 the density
P(X,) is plotted on a log-log scale for a system of width W = 3000 with the values
Pou = 1% (circles) and ppu = 0.1% (crosses) for the nucleation probability. In the
simulations L = 10 layers of size W = 3000 were added. The initial layer consisted
of a few hundred different grains, and periodic boundary conditions were imposed
identifying the first and the last element in each layer. In Fig. 2 a straight line of
slope -3/2 has been drawn for comparison. Despite the approximations implicit in
Eq. (7) and the relatively small scale of the simulation (3 x 107 hexagons) theory
and simulation are in good agreement.

These results show that nucleation enters only into the cutoff function of the
grain length distribution, and does not influence the exponent which is determined
purely by the competitive growth process. Although the model does not involve the
characteristic interplay of the twointerfaces discussed in section 2, it shows that the
nucleation parameter v alone determines a characteristic length for the resulting
grain structure. This in itself may be important for other growth models®. The
model does however not give a better understanding of the parameter B in the
previous section. For that a more detailed model of the nucleation process at the
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Fig. 2: Probability density P(X}) of grain length for p,, = 0.001 (crosses)
and pny = 0.01 (circles). The straight line has slope -3/2.

AléGc interface is needed. It must be pointed out that the model above ignores all
subsequent grain growth resulting from the reduction of the interfacial energy in the
initial grain structure (Ostwald ripening), and the resulting grain size distributions
can therefore not be expected to agree with those in the experiment.

In summary these notes have discussed some theoretical aspects of polycrys-
talline fingering in Al/Ge. The stability question was answered on the basis of the
classical Mullins Sekerka analysis. The colony growth has been described in an
averaged fashion. Within this phenomenological approach the linear growth law
and the velocity selection were seen to follow from the boundary conditions. The
theoretical predictions have been compared against experiment. This comparison
indicated that nucleation of Ge at the Al/Ge interface plays a central role. Sub-
sequently a simple model for a single polycrystalline finger involving nucleation
and competitive growth has been introduced. It was utugied analytically and by
simulation. The Sistribution of grain lengths for this model was found to follow a
scaling form with an exponential cutoff function whose decay rate depends only on

the nucleation rate. The theoretical expression and the simulation results for the
distribution appear to be in good agreement.
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