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Abstract

Scaling of the free energy is derived from thermodynamic arguments. The
free energy is found to obey a new generalized scaling form which contains
standard scaling as a special case. Contrary to standard scaling the new
scaling form permits also nonuniversal exponents. The results are obtained
by analytic continuation from the classification scheme of Ehrenfest.

Assuming that critical theories are scale invariant the renor-
malization group approach to critical phenomena allows to
derive scaling hypotheses for thermodynamic functions and
leads to the concept of universality [1-6]. Thus in this modern
view the scaling concept derives from statistical mechanics
while thermodynamically it remains a hypothesis [7, 8, 9]. It
is becoming increasingly apparent however that scaling is
more general than universality. This suggests to revisit tra-
ditional thermodynamics and to ask whether or not the scal-
ing concept can be derived within it.

My objective in this paper is to derive the scaling concept
within thermodynamics. From this attempt results a novel
scaling form for the free energy which will be termed “ther-
modynamic scaling”. Thermodynamic scaling encompasses
nonuniversal exponents. Methodically the results of this
paper are simple consequences of analytically continuing the
thermodynamic theory of phase transitions advanced by
Ehrenfest [10].

Discontinuities in the derivatives of the free energy were
used by Ehrenfest to distinguish and classify phase transitions
[10]. Let F(T) denote the free energy as a function of tem-
perature. Assume that the system undergoes a phase tran-
sition at a critical temperature 7. A discontinuity in the free
energy itself is obviously impossible on physical grounds.
Ehrenfest defines the order of the transition as the smallest
integer p > 1 such that the p-th derivative of F has a discon-
tinuity at the critical point. More formally the criterion reads

& F(T) & F(T)
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where the limits A* may not exist. Numerous authors have
discussed the shortcomings of Ehrenfests classification [4, 11,
12]. Nevertheless if generalized to a precise definition of
“order” eq. (1) becomes useful encompassing even the scaling
concept.

Given the formulation (1) of Ehrenfests classification the
key towards a quantitative characterization of phase tran-
sitions by their order is to rewrite (1) in terms of a finite
difference quotient for an appropriate thermodynamic poten-
tial. Assuming without loss of generality that the specific heat
diverges, i.e. 0 < « < 1 it is appropriate to consider the
reduced entropy S,(T) = S(T,)' — S(T). Rewriting (1) for
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this quantity reads
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where AT = |T — T.|/N and p is an arbitrary integer vari-
able. This reformulation of eq. (1) can be analytically con-
tinued in p to give
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where now p € R. As T — T, the entropy S,(T F jAT) can
be approximated by its value for any j, in particular j = 0
and thus
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yields the expected result
lim 5.(T) A%, (5)
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i.e., the reduced entropy becomes singular upon approach to
the critical point.

Let me use this result to generalize Ehrenfests classification
scheme for phase transitions. By virtue of eq. (5) there exists
a unique pair (p*, p~) of real numbers such that 4* = 0 if
p < p* while 4* = oo if p > p* and 0 < 4* < oo if
p = p*.Itis then natural to generalize Ehrenfests definition
by defining the numbers (p* + 1,p~ + 1) as the generalized
order of a continuous phase transition. The generalized order
of a transition is related to the values of the critical exponents

and for the case at hand one identifies.
pt o= 2—a* ©)

where a* denotes the specific heat exponents above and
below 7.. In this way nonclassical values of the critical
exponents follow naturally from the classification scheme of
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Ehrenfest. Note that for logarithmic corrections the case
0 < A* < oo for p = p* is absent but this does not affect
the order of the transition.

More generally the free energy in (1) must in general be
replaced with its reduced m-th derivative where the integer m
is defined as the largest integer such that d" F/dT™ is still
continuous at T..

To obtain scaling laws it is necessary to consider more
than one variable. Consider thus n reduced thermodynamic
fields denoted by g, . . . ,g,. The critical point is now at the
origin (0, . . . ,0). Every approach to the critical point pro-
ceeds along a particular path which can be represented
mathematically as a parametrized curve ¥. The curve ¢:
R — R"maps tinto (y,(?), . . . ,y,(¢)) such that t = 0 corres-
ponds to the critical point, i.e. y,(0) = 0,i = 1, ... ,n. The
reduced m-th derivative of the free energy F™(g,, .. .,g,)
along € is a function of ¢ alone and thus

lim F™(g,(0), . .. .&)]1|™" = A@T1 - p®) (7)

|t]-0
where the dependence of the constants p and 4 on parameters
other than || has been explicitly indicated. Equation (7)
represents a novel form of scaling called thermodynamic
scaling. A

To see this more explicitly introduce a curvilinear coor-
dinate system in the neighbourhood of the critical point. The
coordinate system is chosen such that the curve € becomes
the coordinate curve along the first coordinate. A possible
candidate for such a curvilinear coordinate system can be
defined through

g = ') (8a)
g]/ = gj 2, “ e ey n. (Sb)
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which assumes that y, is invertible near the critical point. The
curve € corresponds to the coordinate curve ¢t — (g; = ¢,
g = 1,..., g, = 1).Inthe new coordinate system the criti-
cal point is approached as g; — 0. Considering again the
reduced m-th derivative of the free energy as a function of the
first coordinate gives

lim F™ (g, ..., g)gi "™ ™

8i~0
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This way of rewriting eq. (7) emphasizes the parametric
dependence of the constants p and 4 on the n — 1 variables
of eq. (8b) and the power law dependence on the distance to
the critical point.

Standard scaling can be recovered from eq. (9). The
requirement y;(0) = 0,7 = 1, . . ., nis fulfilled if to leading
order y,(f) = ¢;#* near the critical point with ¢;, 4, € R con-
stant. Note however that other forms for y,(¢) are also consis-
tent with thermodynamic scaling. For the case n = 2 one has
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explicitly g/ = ¢ = y7'(g,) = (g,/c,)" and g} = (¢ /c,)
(82/g7'). Then eq. (9) leads to

Fm(g, g) = glel™ Y(‘g2 ) (10)

arlay
1

for the singular part of m-th reduced derivative of the free
energy. This shows that in general there are two scaling
functions g(x) and Y(x), one for the exponent and one for the
amplitude. Standard scaling is recovered if g(x) is constant.

Summarizing, this paper has shown that continuous phase
transitions can be usefully classified according to their
generalized noninteger orders. The classification implies a
new form of thermodynamic scaling. Because the classifi-
cation is a purely mathematical consequence of ther-
modynamics it furnishes a simple and general derivation of
scaling within thermodynamics. Thermodynamic scaling is
more general than standard scaling and allows for violations
of universality because critical exponents may become scale
dependent.
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