Sie sind hier: ICP » R. Hilfer » Publikationen


1 J. Schopper, “Porosität und Permeabilität,” in Landolt-Börnstein: Physikalische Eigenschaften der Gesteine (K.-H. Hellwege, ed.), vol. V/1a, (Berlin), p. 184, Springer, 1982.
2 F. Dullien, Porous Media - Fluid Transport and Pore Structure. San Diego: Academic Press, 1992.
3 A. Scheidegger, The Physics of flow through Porous Media. Toronto: University of Toronto Press, 1974.
4 L. Schwartz, F. Auzerais, J. Dunsmuir, N. Martys, D. Bentz, and S. Torquato, “Transport and diffusion in three-dimensional composite media,” Physica A, vol. 207, p. 28, 1994.
5 J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media. Dordrecht: Kluwer Academic Publishers, 1990.
6 G. Stell, “Mayer-montroll equations (and some variants) through history for fun and profit,” in The Wonderful World of Stochastics (M. Shlesinger and G. Weiss, eds.), (Amsterdam), p. 127, Elsevier, 1985.
7 G. Stell and P. Rikvold, “Polydispersity in fluids, dispersions and composites: Some theoretical results,” Chem. Eng. Comm., vol. 87, p. 233, 1987.
8 H. Reiss, “Statistical geometry in the study of fluids and porous media,” J. Phys. Chem., vol. 96, p. 4736, 1992.
9 E. Harding and D. Kendall(eds.), Stochastic Geometry. London: Wiley, 1974.
10 G. Matheron, Random Sets and Integral Geometry. New York: Wiley, 1975.
11 J. Klafter, R. Rubin, and M. Shlesinger(eds.), Transport and Relaxation in Random Materials. Singapore: World Scientific, 1986.
12 V. Lehmann and U. Gösele, “Porous silicon formation: A quantum wire effect,” Appl.Phys.Lett., vol. 58, p. 856, 1991.
13 A. Cullis and L. Canham, “Visible light emission due to quantum size effects in porous silicon,” Nature, vol. 353, p. 335, 1991.
14 J. Drake, J. Klafter, R. Kopelman, and D. Awschalom(eds.), Dynamics in Small Confining Systems, vol. 290. Pittsburgh: Materials Research Society, 1993.
15 M. Hoffmann, “High-temperature properties of Si_{3}N_{4} ceramics,” MRS Bulletin, vol. 20, p. 28, 1995.
16 K. Yoshida, “Percolative conduction in a composite system of metal and ceramics,” Journal of the Physical Society of Japan, vol. 59, p. 4087, 1990.
17 U. Mann, “An integrated approach to primary petroleum migration,” in Geofluids: Origin, Migration and Evolutin of Fluids in Sedimentary Basins (J. Parnell, ed.), vol. 78, p. 233, Geological Society, 1994.
18 J. Bear and M. Corapcioglu, Advances in Transport in Porous Media. Dordrecht: Martinus Nijhoff, 1987.
19 I. Goldsmith and P. King, “Hydrodynamic modelling of cementation patterns in modern reefs,” in Diagenesis of Sedimentary Sequences (J. Marshall, ed.), p. 1, Geological Society, 1987.
20 G. Marsily, Quantitative Hydrogeology – Groundwater Hydrology for Engineers. San Diego: Academic Press, 1986.
21 Z. Kabala and A. Hunt, “A master equation for reactive solute transport in porous media,” Stochastic Hydrology and Hydraulics, vol. 7, p. 255, 1993.
22 D. Yale, “Recent advances in rock physics,” Geophysics, vol. 50, p. 2480, 1985.
23 W. England, A. Mackenzie, D. Mann, and T. Quigley, “The movement and entrapment of petroleum fluids in the subsurface,” J. Geophysical Soc. (London), vol. 144, p. 327, 1987.
24 Y. Tang and M. Aral, “Contaminant transport in layered porous media 1. general solution,” Water Resources Research, vol. 28, p. 1389, 1992.
25 R. Bales, S. Li, K. Maguire, M. Yahya, and C. Gerba, “MS-2 and Poliovirus transport in porous media: Hydrophobic effects and chemical perturbations,” Water Resources Research, vol. 29, p. 957, 1993.
26 Y. Jang, N. Sitar, and A. Kiureghian, “Reliability analysis of contaminant transport in saturated porous media,” Water Resources Research, vol. 30, p. 2435, 1994.
27 U. Ahmed, S. Crary, and G. Coates, “Permeability estimation: The various sources and their interrelationships,” Journal of Petroleum Technology, p. 578, May 1991.
28 L. Lake, Enhanced Oil Recovery. Englewood Cliffs: Prentice Hall, 1989.
29 M. Honarpour, L. Koederitz, and A. Harvey, Relative Permeability of Petroleum Reservoirs. Boca Raton: CRC Press Inc., 1986.
30 M. Yenkie and G. Natarajan, “Determination of specific surface area of granular activated carbon by aqueous phase adsorption of phenol and from pore size distribution measurements,” Separation science and technology, vol. 28, p. 1177, 1993.
31 W. Mochan and R. Barrera(eds.), ETOPIM 3, Proceedings of the Third International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, vol. Physica A 207. Amsterdam: North Holland, 1994.
32 J. Cushman(ed.), Dynamics of Fluids in Hierarchical Porous Media. London: Academic Press, 1990.
33 P. Adler, Porous Media. Boston: Butterworth-Heinemann, 1992.
34 D. Stoyan and H. Stoyan, Fractals, Random Shapes and Point Fields. Chichester: John Wiley, 1994.
35 J. Lafait and D. Tanner(eds.), ETOPIM 2, Proceedings of the Second International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, vol. Physica A 157. Amsterdam: North Holland, 1989.
36 M. Allen, G. Behie, and J. Trangenstein, Multiphase Flow in Porous Media, vol. 34 of Lecture Notes in Engineering. Berlin: Springer Verlag, 1988.
37 D. Stoyan, W. Kendall, and J. Mecke, Stochastic Geometry and its Applications. Berlin / Chichester: Akademie-Verlag / Wiley, 1987.
38 E. Sanchez-Palencia and A. Zaoui, Homogenization Techniques for Composite Media, vol. 272 of Lecture Notes in Physics. Berlin: Springer Verlag, 1987.
38a M. Sahimi, Flow and Transport in Porous Media and Fractured Rock. Weinheim: VCH Verlagsgesellschaft mbH, 1995.
39 J. Parker, “Multiphase flow and transport in porous media,” Reviews of Geophysics, vol. 27, p. 311, 1989.
40 D. Bergman and D. Stroud, “Phyical properties of macroscopically inhomogeneous media,” in Solid State Physics (H. Ehrenreich and D. Turnbull, eds.), (New York), p. 147, Academic Press, 1992.
41 M. Sahimi, “Flow phenomena in rocks: From continuum models to fractals, percolation, cellular automata and simulated annealing,” Rev. Mod. Phys., vol. 65, p. 1393, 1993.
42 J. Feder and T. Jøssang, “Fractal patterns in porous media flow,” in Fractals in Petroleum Geology and Earth Processes (C. Barton and P. L. Pointe, eds.), (New York), p. 179, Plenum Press, 1995.
43 A. Thompson, A. Katz, and C. Krohn, “The microgeometry and transport properties of sedimentary rock,” Adv. Phys., vol. 36, p. 625, 1987.
44 K. Meyer, P. Lorenz, B. Böhl-Kuhn, and P.Klobes, “Porous solids and their characterization,” Cryst. Res. Techn., vol. 29, p. 903, 1994.
45 S. Torquato, “Macroscopic behavior of random media from the microstructure,” Applied mechanics reviews, vol. 47, p. S29, 1994.
46 R. Landauer, “Electrical conductivity in inhomogeneous media,” in Electrical Transport and Optical Properties of Inhomogeneous Materials (J. Garland and D. Tanner, eds.), (New York), p. 2, American Institute of Physics, 1978.
47 R. Hilfer and P. Øren, “Two phase flow and relative permeabilities,” 1993. Statoil Publ. Nr. F&U-LoU-94001.
48 R. Hilfer and P. Øren, “Dimensional analysis of pore scale and field scale immiscible displacement,” Transport in Porous Media, vol. 22, p. 53, 1996.
49 M. Leverett, W. Lewis, and M. True, “Dimensional-model studies of oil field behaviour,” Trans. AIME, vol. 146, p. 175, 1942.
50 M. Cole, J. Harvey, R. Lux, D. Eckart, and R. Tsu, “Microstructure of visibly luminescent porous silicon,” Appl.Phys.Lett., vol. 60, p. 2800, 1992.
51 S. Gardelis, U. Bangert, and B. Hamilton, “The correlation between structural and optical properties of luminescent porous silicon,” Thin solid films, vol. 255, p. 167, 1995.
52 E. Takasuka and K. Kamei, “Microstructure of porous silicon and its correlation with photoluminescence,” Applied physics letters, vol. 65, p. 484, 1994.
53 A. Cullis, L. Canham, G. Williams, P. Smith, and O. Dosser, “Correlation of the structural and optical properties of luminescent, highly oxidized porous silicon,” Journal of applied physics, vol. 75, p. 493, 1994.
54 H. Lee, Y. Seo, D. Oh, K. Nahm, E. Suh, Y. Lee, H. Lee, Y. Hwang, K. Park, S. Chang, and E. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Applied physics letters, vol. 62, p. 855, 1993.
55 P. Smith, “Some industrial applications of soft condensed matter in high-performance polymer processing,” in Phase Transitions in Soft Condensed Matter (T. Riste and D. Sherrington, eds.), (New York), p. 353, Plenum Press, 1989.
56 E. Weibel, “The non-statistical nature of biological structure and its implications on sampling for stereology,” in Geometrical Probability and Biological Structures: Buffon’s 200th Anniversary (R. Miles and J. Serra, eds.), (Berlin), p. 171, Springer, 1978.
57 P. Philippi, P. R. Yunes, C. Fernandes, and F. Magnani, “The microstructure of porous building materials: Study of a cement an lime mortar,” Transport in Porous Media, vol. 14, p. 219, 1994.
58 B. Mandelbrot, The Fractal Geometry of Nature. San Francisco: Freeman, 1982.
59 M. Zähle, “Random processes of Hausdorff rectifiable closed sets,” Math. Nachr., vol. 108, p. 49, 1982.
60 M. Zähle, “Random set processes in homogeneous Riemann spaces,” Math. Nachr., vol. 110, p. 179, 1983.
61 K. Falconer, The Geometry of Fractal Sets. Cambridge: Cambridge University Press, 1985.
62 J. Wohlenberg, “Dichte der minerale,” in Landolt-Börnstein-Physikalische Eigenschaften der Gesteine (K.-H. Hellwege, ed.), vol. V/1a, (Berlin), p. 66, Springer, 1982.
63 R. Hilfer, “Classification theory for phase transitions,” Int.J.Mod.Phys.B, vol. 7, p. 4371, 1993.
64 R. Hilfer, “Classification theory for anequilibrium phase transitions,” Phys. Rev. E, vol. 48, p. 2466, 1993.
65 R. Hilfer, “On a new class of phase transitions,” in Random Magnetism and High-Temperature Superconductivity (W. Beyermann, N. Huang-Liu, and D. MacLaughlin, eds.), (Singapore,), p. 85, World Scientific Publ. Co., 1994.
66 R. Hilfer and L. Anton, “Fractional master equations and fractal time random walks,” Phys.Rev.E, Rapid Commun., vol. 51, p. R848, 1995.
67 R. Hilfer, “Exact solutions for a class of fractal time random walks,” Fractals, vol. 3(1), p. 211, 1995.
68 R. Hilfer, “Fractional dynamics, irreversibility and ergodicity breaking,” Chaos, Solitons & Fractals, vol. 5, p. 1475, 1995.
69 R. Hilfer, “Foundations of fractional dynamics,” Fractals, vol. 3, p. 549, 1995.
70 D. Kendall, “Foundations of theory of random sets,” in Stochastic Geometry (E. Harding and D. Kendall, eds.), (London), p. 322, Wiley, 1974.
71 N. Cressie and G. Lassett, “Random set theory and problems of modeling,” SIAM Review, vol. 29, p. 557, 1987.
72 G. Choquet, “Theory of capacities,” Ann. Inst. Fourier, vol. V, p. 131, 1953.
73 W. Feller, An Introduction to Probability Theory and Its Applications, vol. I. New York: Wiley, 1968.
74 W. Feller, An Introduction to Probability Theory and Its Applications, vol. II. New York: Wiley, 1971.
75 W. Rudin, Real and Complex Analysis. New york: McGraw Hill, 1974.
76 Y. Bachmat and J. Bear, “Macroscopic modelling of transport phenomena in porous media 1: The continuum approach,” Transport in Porous Media, vol. 1, p. 213, 1986.
77 R.S.Mikhail and E. Robens, Microstructure and Thermal Analysis of Solid Surfaces. Chichester: Wiley, 1983.
78 P. Wong, J. Howard, and J. Lin, “Surface roughening and fractal nature of rocks,” Phys. Rev. Lett., vol. 57, p. 637, 1986.
79 P. Wong, “The statistical physics of sedimentary rock,” Physics Today, vol. December, p. 24, 1988.
80 J. Hansen and A. Skjeltorp, “Fractal pore space and rock permeability implications,” Phys. Rev. B, vol. 38, p. 2635, 1988.
81 C. Harris, “Characterization of surface roughness in porous media,” in Reservoir Characterization II (L. Lake, H. Carroll, and T. Wesson, eds.), (San Diego), p. 2, Academic Press, 1991.
82 C. Jacquin and P. Adler, “Fractal porous media ii: Geometry of porous geological structures,” Transport in Porous Media, vol. 2, p. 28, 1987.
83 J. Fripiat, “Porosity and adsorption isotherms,” in Fractal Approach to Heterogeneous Chemistry (D. Avnir, ed.), (Chichester), p. 331, Wiley, 1989.
84 P. Adler, “Flow in porous media,” in Fractal Approach to Heterogeneous Chemistry (D. Avnir, ed.), (Chichester), p. 341, Wiley, 1989.
85 O. Dinariev, “Gas and liquid transport in porous media with fractal geometry,” Fluid Dynamics, vol. 27, p. 682, 1992.
86 J. Feder, Fractals. New York: Plenum Press, 1988.
87 R. Lenormand, “Applications of fractal concepts in petroleum engineering,” Physica D, vol. 38, p. 230, 1989.
88 R. Lenormand, “Flow through porous media: limits of fractal patterns,” Proceedings of the royal society of london, vol. 423, p. 159, 1989.
89 C. Ruffet, Y. Gueguen, and M. Darot, “Complex conductivity measurements and fractal nature of porosity,” Geophysics, vol. 56, p. 758, 1991.
90 H. Davis, R. Novy, L. Scriven, and P. Toledo, “Fluid distribution and transport in porous media at low wetting phase saturation,” J. Phys. C, vol. 2, p. SA457, 1990.
91 C. Barton and P. L. Pointe(eds.), Fractals in Petroleum Geology and Earth Processes. New York: Plenum Press, 1995.
92 K. Gaida, W. Rühl, and W. Zimmerle Erdöl Erdgas Z., vol. 89, p. 336, 1973.
93 S. Brunauer, P. Emmer, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc., vol. 60, p. 309, 1938.
94 R. Haul and G. Dümbgen, “Vereinfachte Methode zur Messung von Oberflächengrößen durch gasadsorption,” Chemie-Ing.-Tech., vol. 35, p. 586, 1963.
95 C. Meng and Y. Wang, “The determination of the internal specific surface of two-phase system by small angle x-ray scattering,” Journal of non-crystalline solids, vol. 122, p. 41, 1990.
96 P. Debye and A. Bueche, “Scattering by an inhomogeneous solid,” J. Appl. Phys., vol. 20, p. 518, 1949.
97 P. Debye, H. Anderson, and H. Brumberger, “Scattering by an inhomogeneous solid II: The correlation function and its application,” J. Appl. Phys., vol. 28, p. 679, 1957.
98 S. Prager, “Viscous flow through porous media,” Phys.Fluids, vol. 4, p. 1477, 1961.
99 S. Prager, “Diffusion and viscous flow in concentrated suspensions,” Physica, vol. 29, p. 129, 1963.
100 H. Weissberg and S. Prager, “Viscous flow through porous media II. approximate three-point correlation function,” Phys. Fluids, vol. 5, p. 1390, 1962.
101 H. Weissberg, “Effective diffusion coefficient in porous media,” J. Appl. Phys., vol. 34, p. 2636, 1963.
102 W. Haller, “Rearrangement kinetics of the liquid-liquid immiscible microphases in alkali borosilicate melts,” J. Chem. Phys., vol. 42, p. 686, 1965.
103 R. Reck and S. Prager, “Diffusion-controlled quenching at higher quencher concentration,” J. Chem. Phys., vol. 42, p. 3027, 1965.
104 M. Doi, “A new variational approach to the diffusion and the flow problem in porous media,” J. Phys. Soc. Japan, vol. 40, p. 567, 1976.
105 S. Torquato and G. Stell, “Microstructure of Two Phase Random Media I: The n-Point Probability Functions,” J. Chem. Phys., vol. 77, p. 2071, 1982.
106 S. Torquato and G. Stell, “Microstructure of Two Phase Random Media II: The Mayer-Montroll and Kirkwood-Salsburg Hierarchies,” J. Chem. Phys., vol. 78, p. 3262, 1983.
107 S. Torquato and G. Stell, “Microstructure of Two Phase Random Media III: The n-Point Matrix Probability Functions for Fully Penetrable Spheres,” J. Chem. Phys., vol. 79, p. 1505, 1983.
108 P. Rikvold and G. Stell, “Porosity and specific surface for interpenetrable-sphere models of two-phase random media,” J. Chem. Phys., vol. 82, p. 1014, 1985.
109 P. Rikvold and G. Stell, “D-dimensional interpenetrable sphere models of random two-phase media: Microstructure and application to chromatography,” J. Colloid and Interface Sci., vol. 108, p. 158, 1985.
110 G. Stell and P. Rikvold, “Polydispersity in fluids and composites: Some theoretical results,” Int. J. Thermophysics, vol. 7, p. 863, 1986.
111 J. Berryman, “Measurement of spatial correlation functions using image processing techniques,” J. Appl. Phys., vol. 57, p. 2374, 1985.
112 J. Berryman and S. Blair, “Use of digital image analysis to estimate fluid permeability of porous media: Application of two-point correlation functions,” J. Appl. Phys., vol. 60, p. 1930, 1986.
113 M. Yanuka, F. Dullien, and D. Elrick, “Percolation processes and porous media: I. geometrical and topological model of porous media using a threedimensional joint pore size distribution,” Journal of colloid and interface science, vol. 112, p. 24, 1986.
114 M. Kwiecen, I. MacDonald, and F. Dullien, “Three-dimensional reconstruction of porous media from serial section data,” J. Microsc., vol. 159, p. 343, 1990.
115 F. Dullien, “Characterization of porous media - pore level,” Transport in Porous Media, vol. 6, p. 581, 1991.
116 S. Torquato and M. Avellaneda, “Diffusion and reaction in heterogeneous media: Pore size distribution, relaxation times, and mean survival time,” J. Chem. Phys., vol. 95, p. 6477, 1991.
117 C. Lin and M. Cohen, “Quantitative methods for microgeometric modeling,” J. Appl. Phys., vol. 53, p. 4152, 1982.
118 J. Thovert, J. Salles, and P. Adler, “Computerized chracterization of the geometry of real porous media: Their discretization, analysis and interpretation,” J. Microscopy, vol. 170, p. 65, 1993.
119 P. Spanne, J. Thovert, C. Jacquin, W. Lundquist, K. Jones, and P. Adler, “Synchrotron computed microtomography of porous media: Topology and transports,” Phys. Rev. Lett., vol. 73, p. 2001, 1994.
120 J. Harlan, D. Picot, and P. Loll, “Calibration of size-exclusion chromatography: Use of a double gaussian distribution function to describe pore sizes,” Analytical biochemistry, vol. 224, p. 557, 1995.
121 K. Hosoya, K. Kimata, and N. Tanaka, “Influence of pore size and pore size distribution of polymer-based packing materials on chromatographic separation of carbon clusters,” Journal of liquid chromatography, vol. 16, p. 3059, 1993.
122 S. Sakai, “Determination of pore size and pore size distribution 2. dialysis membranes,” Journal of membrane science, vol. 96, p. 91, 1994.
123 S. Mochizuki and A. Zydney, “Theoretical anaylsis of pore size distribution effects on membrane transport,” Journal of membrane science, vol. 82, p. 211, 1993.
124 E. Grosgogeat, J. Fried, and R. Jenkins, “A method for the determination of the pore size distribution of molecular sieve materials and its application to the characterization of partially pyrolyzed polysilastyrene/porous glass composite membranes.,” Journal of membrane science, vol. 57, p. 237, 1991.
125 M. Sasthav, W. P. Raj, and M. Cheung, “Characterization of microporous polymeric materials: Pore continuity and size distribution via thermal analysis,” Journal of colloid and interface science, vol. 152, p. 376, 1992.
126 H. Kamiya, K. Isomura, and T. Jun-ichiro, “Powder processing for the fabrication of si_{3}n_{4} ceramics: I, influence of spray-dried granule strength on pore size distribution in green compacts,” J. Amer. Chem. Soc., vol. 78, p. 49, 1995.
127 W. W. Chen and B. Dunn, “Characterization of pore size distribution by infrared scattering in highly dense zns,” Journal of the American Ceramic Society, vol. 76, p. 2086, 1993.
128 L. Garrido and J. L. Ackerman, “Molecular diffusion to determine pore size distribution in porous solids,” Ceramic engineering and science proceedings, vol. 12, p. 2042, 1992.
129 N. Naito, L. De Jonghe, and M. Rahaman, “Pore size distribution during compaction and early stage sintering of silicon nitride,” Journal of materials science, vol. 25, p. 1686, 1990.
130 R. Murdey and W. Machin, “Adsorption hysteresis and the pore size distribution of a microporous silica gel,” Langmuir, vol. 10, p. 3842, 1994.
131 S. Zeng, A. Hunt, and R. Greif, “Pore size distribution and apparent gas thermal conductivity of silica aerogel,” Journal of heat transfer, vol. 116, p. 756, 1994.
132 H. Naono, M. Hakuman, and K. Nakai, “Determination of pore size distribution of mesoporous and macroporous silicas by means of benzene-desorption isotherms,” J. Coll. Interf. Sci., vol. 165, p. 532, 1994.
133 B. Russell and M. LeVan, “Pore size distribution of bpl activated carbon determined by different methods,” Carbon, vol. 32, p. 845, 1994.
134 C. Lastoskie, K. E. Gubbins, and N. Quirke, “Pore size distribution analysis of microporous carbons: A density functional theory approach,” The journal of physical chemistry, vol. 97, p. 4786, 1993.
135 P. Gu, P. Xie, and Y. Fu, “A.c. impedance phenomena in hydrating cement systems: Frequency dispersion angle and pore size distribution,” Cement and Concrete Research, vol. 24, p. 86, 1994.
136 L. Konecny and S. Naqvi, “The effect of different drying techniques on the pore size distribution of blended cement mortars,” Cement and concrete research, vol. 23, p. 1223, 1993.
137 L. Tang and L.-O. Nilsson, “A study of the quantitative relationship between permeability and pore size distribution of hardened cement pastes,” Cement and concrete research, vol. 22, p. 541, 1992.
138 E. Smith, W. Powers, and P. Shea, “Relationship of bromide and atrazine movement in soil to pore size distribution, compaction, and saturation cycles,” Soil science, vol. 159, p. 23, 1995.
139 Y. Nagarajarao, “Pore size distribution measurements in swell-shrink soils,” Zeitschrift für Pflanzenernährung und Bodenkunde, vol. 157, p. 81, 1994.
140 H. Yamaguchi, Y. Hashizume, and H. Ikenaga, “Change in pore size distribution of peat in shear processes,” Soils and foundations, vol. 32, p. 1, 1992.
141 A. Netto, “Pore-size distribution in sandstones,” Aapg Bulletin, vol. 77, p. 1101, 1993.
142 J. Howard and W. Kenyon, “Determination of pore size distribution in sedimentary rocks by proton nuclear magnetic resonance,” Marine and petroleum geology, vol. 9, p. 139, 1992.
143 F. J. Griffiths and R. C. Joshi, “Change in pore size distribution owing to secondary consolidation of clays,” Canadian geotechnical journal, vol. 28, p. 20, 1991.
144 A. Watkinson, Y. Xu, and Y. Koga, “Pore size distribution of coals and chars from western canada,” Fuel, vol. 73, p. 1797, 1994.
145 J. Kloubek, “Pore size distribution in separon using mercury contact angles in pores and hysteresis in porosimetry,” Journal of adhesion science and technology, vol. 6, p. 667, 1992.
146 V. Karathanos and G. Saravacos, “Porosity and pore size distribution of starch materials,” Journal of food engineering, vol. 18, p. 259, 1993.
147 W. D. Machin, “Temperature dependence of hysteresis and the pore size distribution of two mesoporous adsorbents,” Langmuir, vol. 10, p. 1235, 1994.
148 S. Sato, “General method of evaluting pore size distribution of solids using nitrogen adsorption isotherm,” Journal of chemical engineering of Japan, vol. 21, p. 534, 1988.
149 D. Milburn, B. Adkins, and B. Davis, “Alumina supported molybdenum and tungsten oxide catalysts. surface area and pore size distribution from nitrogen adsorption and mercury penetration,” Appl. catalysis, vol. 119, p. 205, 1994.
150 G. Zgrablich, S. Mendioroz, L. Daza, J. Pajares, V. Mayagoita, F. Rojas, and W. Conner, “Effect of porous structure on the determination of pore size distribution by mercury porosimetry and nitrogen sorption,” Langmuir, vol. 7, p. 779, 1991.
151 H. Ritter and L. Drake, “Pore-size distribution in porous materials,” Industrial and Engineering Chemistry (Analytical Edition), vol. 17, p. 782, 1945.
152 W. Purcell, “Capillary pressures – their measurement using mercury and the calculation of permeability therefrom,” Am. Inst. Min. Metall. Petrol. Engrs., vol. 186, p. 39, 1949.
153 A. Thompson, A. Katz, and R. Raschke, “Mercury injection in porous media: A resistance devil’s staircase with percolation geometry,” Phys. Rev. Lett., vol. 58, p. 29, 1987.
154 A. Lane, N. Shah, and W. Conner, “Measurement of the morphology of high-surface-area solids: Porosimetry as a percolation process,” Journal of colloid and interface science, vol. 137, p. 315, 1991.
155 N. Wardlaw, Y. Li, and D. Forbes, “Pore throat size correlation from capillary pressure curves,” Transport in Porous Media, vol. 2, p. 597, 1987.
156 M. Ioannidis and I. Chatzis, “A mixed-percolation model of capillary hysteresis and entrapment in mercury porosimetry,” Journal of colloid and interface science, vol. 161, p. 278, 1993.
157 M. Ioannidis, I. Chatzis, and A. Payatakes, “A mercury porosimeter for investigating capillary phenomena and microdisplacement mechanisms in capillary networks,” Journal of colloid and interface science, vol. 143, p. 22, 1991.
158 C. D. Tsakiroglou and A. C. Payatakes, “Effects of pore-size correlations on mercury porosimetry curves,” Journal of colloid and interface science, vol. 146, p. 479, 1991.
159 M. Spearing and P. Matthews, “Modelling characteristic properties of sandstones,” Transport in Porous Media, vol. 6, p. 71, 1991.
160 C. D. Tsakiroglou and A. Payatakes, “A new simulator for mercury porosimetry for the characterization of porous materials,” Journal of colloid and interface science, vol. 137, p. 315, 1990.
161 A. Rosenfeld and A. Kak, Digital Picture Processing. New York: Academic Press, 1982.
162 R. DeHoff, E. Aigeltinger, and K. Craig, “Experimental determination of the toological properties of three dimensional microstructures,” J. Microscopy, vol. 95, p. 69, 1972.
163 L. Muche and D. Stoyan, “Contact and chord length distributions of the poisson voronoi tessellation,” Journal of applied probability, vol. 29, p. 467, 1992.
164 S. Lu, Binglin Torquato, “Chord-length and free-path distribution functions for many-body systems,” J. Chem. Phys., vol. 98, p. 6472, 1993.
165 S. Torquato and B. Lu, “Chord-length distribution function for two-phase random media,” Phys. Rev. E, vol. 47, p. 2950, 1993.
166 T. B. Borak, “A method for computing random chord length distributions in geometrical objects,” Radiation research, vol. 137, p. 346, 1994.
167 P. Levitz and D. Tchoubar, “Disordered porous solids: From chord distributions to small angle scattering,” J. Phys. I France, vol. 2, p. 771, 1992.
168 R. Hilfer, “Geometric and dielectric characterization of porous media,” Phys. Rev. B, vol. 44, p. 60, 1991.
169 R. Hilfer, “Geometry, dielectric response and scaling in porous media,” Physica Scripta, vol. T44, p. 51, 1992.
170 R. Hilfer, “Local porosity theory for flow in porous media,” Phys. Rev. B, vol. 45, p. 7115, 1992.
171 F. Boger, J. Feder, R. Hilfer, and T. Jøssang, “Microstructural sensitivity of local porosity distributions,” Physica A, vol. 187, p. 55, 1992.
172 R. Hilfer, “Local porosity theory for electrical and hydrodynamical transport through porous media,” Physica A, vol. 194, p. 406, 1993.
173 B. Hansen, E. Haslund, R. Hilfer, and B. Nøst, “Dielectric dispersion measurements of salt water saturated porous glass compared with local porosity theory,” Mater.Res.Soc.Proc., vol. 290, p. 185, 1993.
174 R. Hilfer, B.Nøst, E.Haslund, Th.Kautzsch, B.Virgin, and B.D.Hansen, “Local porosity theory for the frequency dependent dielectric function of porous rocks and polymer blends,” Physica A, vol. 207, p. 19, 1994.
175 E. Haslund, B. Hansen, R. Hilfer, and B. Nøst, “Measurement of local porosities and dielectric dispersion for a water saturated porous medium,” J. Appl. Phys., vol. 76, p. 5473, 1994.
176 J. Cardy (ed.), Finite-Size Scaling. Amsterdam: North-Holland, 1988.
177 V. Privman (ed.), Finite-Size Scaling and Numerical Simulation of Statistical Systems. Singapore: World Scientific, 1990.
178 R. Hilfer, “Absence of hyperscaling violations for phase transitions with positive specific heat exponent,” Z. Physik B, vol. 96, p. 63, 1994.
179 E. O’Neill, Introduction to Statistical Optics. Reading: Addison-Wesley, 1963.
180 B. Lu and S. Torquato, “Local volume fraction fluctuations in heterogeneous media,” J. Chem. Phys., vol. 93, p. 3452, 1990.
181 B. Lu and S. Torquato, “Photographic granularity: mathematical formulation and effect of impenetrability of the grains,” Journal of the Optical Society of America A, vol. 7, p. 7171, 1990.
182 R. Guyer, “Porosity fluctuations, tortuosity fluctuations, and other types of fluctuations: Long-time tails and localization in porous media,” Phys. Rev. B, vol. 37, p. 5713, 1988.
183 C. Ostertag-Henning, B. Virgin, T. Rage, R. Hilfer, R. Koch, and U. Mann, “Messung dreidimensionaler lokaler Porositätsverteilungen,” 1995. to be published.
184 C. Andraud, B. Virgin, E. Haslund, R. Hilfer, A. Beghdadi, and J. Lafait, 1994. unpublished.
185 B. Gnedenko, The Theory of Probability. New York: Chelsea, 1962.
186 B. Nøst, B. Hansen, and E. Haslund, “Dielectric dispersion of composite materials,” Physica Scripta, vol. T44, p. 67, 1992.
187 J. Koplik, C. Lin, and M. Vermette, “Conductivity and permeability from microgeometry,” J. Appl. Phys., vol. 56, p. 3127, 1984.
188 P. Doyen, “Permeability, conductivity and pore geometry of sandstone,” J. Geophys. Res., vol. 93, p. 7729, 1988.
188a J. Fredrich, B. Menendez, and T. Wong, “Imaging the pore structure of geomaterials,” Science, vol. 268, p. 276, 1995.
189 C. Andraud, A. Beghdadi, and J. Lafait, “Entropic analysis of random morphologies,” Physica A, vol. 207, p. 208, 1994.
190 R. Hilfer, “Scaling theory and the classification of phase transitions,” Mod. Phys. Lett. B, vol. 6, p. 773, 1992.
191 A. Prudnikov, Y. Brychkov, and O. Marichev, Integrals and Series, vol. 3. New York: Gordon and Breach, 1990.
192 D. Ruelle, Statistical Mechanics. London: Benjamin Inc., 1969.
193 P. Nutting, “On the absorption of light in heterogeneous media,” London, Edinburgh & Dublin Phil. Mag. Ser. 6, vol. 26, p. 423, 1913.
194 G. Porod, “Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen I,” Kolloid Zeitschrift, vol. 124, p. 83, 1951.
195 G. Porod, “Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen II,” Kolloid Zeitschrift, vol. 125, p. 51, 1952.
196 B. Widom and J. Rowlinson, “New model for the study of liquid-vapour phase transitions,” J. Chem. Phys., vol. 52, p. 1670, 1970.
197 J. Ziman, Models of Disorder. Cambridge: Cambridge University Press, 1982.
198 J. Finney, “Random packings and the structure of simple liquids I. the geometry of random close packing,” Proc. Roy. Soc., vol. 319A, p. 479, 1970.
199 L. Schwartz, J. Banavar, and B. Halperin, “Biased diffusion calculations of electrical transport in inhomogeneous continuum systems,” Phys. Rev. B, vol. 40, p. 9155, 1989.
200 S. Bryant, D. Mellor, and C. Cade, “Physically representative network models of transport in porous media,” AIChE Journal, vol. 39, p. 387, 1993.
201 L. Schwartz and J. Banavar, “Transport properties of disordered continuum systems,” Phys. Rev. B, vol. 39, p. 11965, 1989.
202 R. Jullien, A. Pavlovich, and P. Meakin, “Random packings of spheres built with sequential models,” J. Phys. A, vol. 25, p. 4103, 1992.
203 N. Morrow, I. Chatzis, and J. Taber, “Entrapment and mobilization of residual oil in bead packs,” SPE Proceedings, vol. 60th SPE Conference, Las Vegas, 1985.
204 S. Bryant and M. Blunt, “Prediction of relative permeability in simple porous media,” Phys. Rev. A, vol. 46, p. 2004, 1992.
205 P. Sen, “Grain shape effects on dielectric and electrical properties of rocks,” Geophysics, vol. 49, p. 586, 1984.
206 N. Martys, S. Torquato, and D. Bentz, “Universal scaling of fluid permeability for sphere packings,” Phys. Rev. E, vol. 50, p. 403, 1994.
207 I. C. Kim and S. Torquato, “Effective conductivity of composites containing spheroidal inclusions: Comparison of simulations with theory,” Journal of applied physics, vol. 74, p. 1844, 1993.
208 B. U. Felderhof, “Effective transport properties of composites of spheres,” Physica A, vol. 207, p. 13, 1994.
209 B. U. Felderhof and P. Iske, “Mean field approximation to the effective moduli of a solid suspension of spheres,” Phys. Rev. A, vol. 45, p. 611, 1992.
210 R. Coleman, “Introduction to mathematical stereology,” tech. rep., Department of Theoretical Statistics, University of Aarhus, Denmark, 1979.
211 S. Wicksell, “The corpuscle problem I,” Biometrika, vol. 17, p. 84, 1925.
212 S. Wicksell, “The corpuscle problem II,” Biometrika, vol. 18, p. 152, 1926.
213 D. Stauffer and A. Aharony, Introduction to Percolation Theory. London: Taylor and Francis, 1992.
214 P. Sen, J. Roberts, and B. Halperin Phys. Rev. B, vol. 32, p. 3306, 1985.
215 S. Feng, B. Halperin, and P. Sen, “Transport properties of continuum systems near the percolation threshold,” Phys. Rev. B, vol. 35, p. 197, 1987.
216 E. Cinlar and S. Torquato, “Exact determination of the two-point cluster function for one-dimensional continuum percolation,” Journal of statistical physics, vol. 78, p. 827, 1995.
217 S. Miyazima, K. Maruyama, and K. Okumura, “Critical exponent of bulk conductivity in swiss cheese model,” J. Phys. Soc. Japan, vol. 9, p. 2805, 1991.
218 J. A. Given, I. C. Kim, and S. Torquato, “Comparison of analytic and numerical results for the mean cluster density in continuum percolation,” J. Chem. Phys., vol. 93, p. 5128, 1990.
219 W. Elam, A. Kerstein, and J. Rehr, “Critical properties of the void percolation problem for spheres,” Phys. Rev. Lett., vol. 52, p. 1516, 1984.
220 I. Fatt, “The network model of porous media I. capillary pressure characteristics,” AIME Petroleum Transactions, vol. 207, p. 144, 1956.
221 I. Fatt, “The network model of porous media II. dynamic properties of a single size tube network,” AIME Petroleum Transactions, vol. 207, p. 160, 1956.
222 I. Fatt, “The network model of porous media III. dynamic properties of network with tube radius distribution,” AIME Petroleum Transactions, vol. 207, p. 164, 1956.
223 R. Ehrlich and F. Crane, “A model for two phase flow in consolidated materials,” Trans. AIME, vol. 246, p. 221, 1969.
224 I. Chatzis and F. Dullien, “Modelling pore structure by 2-d and 3-d networks with applications to sandstones,” J. of Canadian Petroleum Technology, p. 97, Jan-Mar 1977.
225 M. Dias and A. Payatakes, “Network models for two-phase flow in porous media I: Immiscible microdisplacement of non-wetting fluids,” J. Fluid Mech., vol. 164, p. 305, 1986.
226 C. Diaz, I. Chatzis, and F. Dullien, “Simulation of capillary pressure curves using bond correlated site percolation on a simple cubic network,” Transport in Porous Media, vol. 2, p. 215, 1987.
227 J. Koplik and T. Lasseter, “One- and two-phase flow in network models of porous media,” Chem. Eng. Commun., vol. 26, p. 285, 1984.
228 K. McCall, D. Johnson, and R. Guyer, “Magnetization evolution in connected pore systems,” Phys.Rev. B, vol. 44, p. 7344, 1991.
229 M. Blunt and P. King, “Macroscopic parameters from simulations of pore scale flow,” Phys. Rev. A, vol. 42, p. 4780, 1990.
230 J. Bear, C. Braester, and P. Menier, “Effective and relative permeabilities of anisotropic porous media,” Transport in Porous Media, vol. 2, p. 301, 1987.
231 C. O’Carroll and K. Sorbie, “Generalization of the poiseuille for one- and two- phase flow in a random capillary network,” Phys. Rev. E, vol. 47, p. 3467, 1993.
232 P. Øren, J. Billiotte, and W. Pinczewski, “Mobilization of waterflood residual oil by gas injection for water wet conditions,” SPE Formation and Evaluation, vol. March 1992, p. 70, 1992.
233 G. Matthews and M. Spearing, “Measurement and modelling of diffusion, porosity and other pore level characteristics of sandstones,” Marine and Petroleum Geology, vol. 9, p. 146, 1992.
234 U. Oxaal, “Fractal viscous fingering in inhomogeneous porous models,” Phys. Rev. A, vol. 44, p. 5038, 1991.
235 U. Oxaal, F. Boger, J. Feder, T. Jøssang, P. Meakin, and A. Aharony, “Viscous fingering in square lattice models with two types of bonds,” Phys. Rev. A, vol. 44, p. 6564, 1991.
236 R. Lenormand, “Liquids in pourous media,” Journal of physics C, vol. 2, p. 79, 1990.
237 R. Lenormand, E. Touboul, and C. Zarcone, “Numerical models and experiments on immiscible displacements in porous media,” J. Fluid Mech., vol. 189, p. 165, 1988.
238 M. McKellar and N. Wardlaw, “A method of making two dimensional glass micromodels of pore sytems,” J. Cdn. Pet. Tech., vol. 21, p. 39, 1982.
239 R. Larson, L. Scriven, and H. Davis, “Percolation theory of two phase flow in porous media,” Chem. Eng. Science, vol. 36, p. 57, 1981.
240 N. Seaton, “Determination of the connectivity of porous solids from nitrogen sorption measurements,” Chem. Eng. Science, vol. 46, p. 1895, 1991.
241 M. Yanuka, “Percolation processes and porous media: I. computer calculations of percolation probabilities and cluster formation,” Journal of colloid and interface science, vol. 127, p. 35, 1989.
242 M. Yanuka, “Percolation processes and porous media: I. prediction of the capillary hysteresis loop from geometrical and topological information of pore space,” Journal of colloid and interface science, vol. 127, p. 48, 1989.
243 M. Yanuka, “Percolation theory approach to transport phenomena in porous media,” Transport in Porous Media, vol. 7, p. 265, 1992.
244 R. Chandler, J. Koplik, K. Lerman, and J. Willemsen, “Capillary displacement and percolation in porous media,” J. Fluid Mech., vol. 119, p. 249, 1982.
245 P. Meakin, J. Feder, V. Frette, and T. Jøssang, “Invasion percolation in a destabilizing gradient,” Phys. Rev. A, vol. 46, p. 3357, 1992.
246 A. H. Hirsch, Lee M. Thompson, “Size-dependent scaling of capillary invasion including buoyancy and pore size distribution effects,” Phys. Rev. E, vol. 50, p. 2069, 1994.
246a M. Blunt, M. King, and H. Scher, “Simulation and theory of two-phase flow in porous media,” Phys. Rev. A, vol. 46, p. 7680, 1992.
247 J. Essam, “Percolation theory,” Rep. Prog. Phys., vol. 43, p. 835, 1980.
248 A. Aharony, “Percolation,” in Directions in Condensed Matter Physics (G. Grinstein and G. Mazenko, eds.), (Singapore), p. 1, World Scientific, 1986.
249 J. Quiblier, “A new three dimensional modeling technique for studying porous media,” J. Colloid Interface Sci., vol. 98, p. 84, 1984.
250 P. Crossley, L. Schwartz, and J. Banavar, “Image based models of porous media: Application to vycor glass and carbonate rocks,” Appl. Phys. Lett., vol. 59, p. 3553, 1991.
251 R. Blumenfeld and S. Torquato, “Coarse graining procedure to generate and analyze heterogeneous materials: Theory,” Phys. Rev. E, vol. 48, p. 4492, 1993.
252 J. Salles, J. Thovert, and P. Adler, “Reconstructed porous media and their application to fluid flow and solute transport,” Journal of Contaminant Hydrology, vol. 13, p. 3, 1993.
253 E. Guyon, L. Oger, and T. Plona, “Transport properties in sintered porous media composed of two particle sizes,” J. Phys. D, vol. 20, p. 1637, 1987.
254 P. Wong, J. Koplik, and J. Tomanic, “Conductivity and permeability of rocks,” Phys. Rev. B, vol. 30, p. 6606, 1984.
255 J. Roberts and L. Schwartz, “Grain consolidation and electrical conductivity in porous media,” Phys. Rev. B, vol. 31, p. 5990, 1985.
256 L. Schwartz and S. Kimminau, “Analysis of electrical conduction in the grain consoliation model,” Geophysics, vol. 52, p. 1402, 1987.
257 H. Scher and R. Zallen J. Chem. Phys., vol. 53, p. 3759, 1970.
258 V. Shante and S. Kirkpatrick Adv. Phys., vol. 20, p. 325, 1971.
259 I. Gel’fand and G. Shilov, Generalized Functions, vol. I. New York: Academic Press, 1964.
260 F. Leij, T. Skaggs, and M. Genuchten, “Analytical solutions for solute transport in three dimensional porous media,” Water Resources Research, vol. 27, p. 2719, 1991.
261 M. Quintard and S. Whitaker, “Convection, dispersion, and interfacial transport of contaminants: Homogeneous porous media,” Adv. Water Res., vol. 17, p. 221, 1994.
262 P. Germann, “Length scales of convection-dispersion approaches to flow and transport in porous media,” Journal of Contaminant Hydrology, vol. 7, p. 39, 1991.
263 S. Kirkpatrick, “Percolation and conduction,” Rev. Mod. Phys., vol. 45, p. 574, 1973.
264 I. Webman, J. Jortner, and M. Cohen, “Theory of optical and microwave properties of microscopically inhomogeneous materials,” Phys. Rev. B, vol. 15, p. 5712, 1977.
265 J. Bernasconi Phys. Rev. B, vol. 18, p. 2185, 1978.
266 J. Yeomans and R. Stinchcombe J. Phys. C, vol. 11, p. 4095, 1978.
267 R. Hilfer, Renormierungsansätze in der Theorie ungeordneter Systeme. Frankfurt: Verlag Harri Deutsch, 1986.
268 E. Sanchez-Palencia and A. Zaoui, Non-Homogeneous Media and Vibration Theory, vol. 127 of Lecture Notes in Physics. Berlin: Springer Verlag, 1980.
269 R. Burridge and J. Keller, “Poroelasticity equations derived from microstructure,” J.Acoust.Soc.Am., vol. 70, p. 1140, 1981.
270 S. Whitaker, “Flow in porous media i,” Transport in Porous Media, vol. 1, p. 3, 1986.
271 H. Ene, “Application of the homogenization method to transport in porous media,” in Dynamics of Fluids in Hierarchical Porous Media (J. Cushman, ed.), (London), p. 223, Academic Press, 1990.
272 J. Keller, “A theorem on the conductivity of a composite medium,” J. Math. Phys., vol. 5, p. 548, 1964.
273 A. Dykhne, “Conductivity of a two-dimensional two-phase system,” Soviet Physics JETP, vol. 32, p. 63, 1971.
274 G. Milton, “Classical hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors,” Phys. Rev. B, vol. 38, p. 11296, 1988.
275 B. Abramovich and P. Indelman, “Effective permittivity of lognormal isotropic random media,” J. Phys. A: Math.Gen., vol. 28, p. 693, 1995.
276 G. Matheron, Elements pour une Theorie des Milieux Poreux. Paris: Masson, 1967.
277 P. King J. Phys. A: Math. Gen., vol. 20, p. 3935, 1987.
278 L. Landau and E. Lifhitz, Electrodynamics of Continuous Media. Oxford: Pergamon, 1960.
279 B. Noetinger, “The effective permeability of a heterogeneous medium,” Transport in Porous Media, vol. 15, p. 99, 1994.
280 T. Levy, “Fluids in porous media and suspensions,” in Homogenization Techiques for Composite Media (E. Sanchez-Palencia and A. Zaoui, eds.), (Berlin), p. 63, Springer Verlag, 1985.
281 J. Hearst and P. Nelson, Well Logging for Physical Properties. New York: McGraw-Hill, 1985.
282 J. H. Doveton, Log Analysis of Subsurface Geology. New York: Wiley, 1986.
283 W. Chew and P. Sen, “Dielectric enhancement due to electrochemical double layer: Thin double layer approximation,” J. Chem. Phys., vol. 77, p. 4683, 1982.
284 G. Archie, “The electrical resistivity log as an aid in determining some reservoir characteristics,” Trans. AIME, vol. 146, p. 54, 1942.
285 P. Sen, C. Scala, and M. Cohen, “A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads,” Geophysics, vol. 46, p. 781, 1981.
286 J. Schopper, “Elektrische Leitfähigkeit von Gesteinen aufgrund von Elektrolyten im Porenraum,” in Landolt-Börnstein: Physikalische Eigenschaften der Gesteine (K.-H. Hellwege, ed.), vol. V/1b, (Berlin), p. 276, Springer, 1982.
287 I. Holwech and B. Nøst, “Dielectric dispersion measurements of salt-water saturated porous glass,” Phys.Rev.B, vol. 38, p. 12845, 1989.
288 R. Maute, W. Lyle, and E. Sprunt, “Improved data analysis method determines Archie parameters from core data,” Journal of Petroleum Technology, p. 103, January 1992.
289 D. McLachlan, M. Button, S. Adams, V. Gorringe, J. Kneen, J. Muoe, and E. Wedepohl, “Formation resistivity factors for a compressible solid-brine mixture,” Geophysics, vol. 52, p. 194, 1987.
290 G. Keller and P. Licastro, “Dielectric constant and electrical resisitivity of natarual-state cores,” U.S. Geol. Surv. Bull., vol. 1052-H, p. 257, 1959.
291 J. Poley, J. Noteboom, and P. de Waal, “Use of VHF dielectric measurements for borehole formation analysis,” The Log Analyst, vol. 19, p. 8, 1978.
292 W. Kenyon, “Texture effects on megahertz dielectric properties of calcite rock samples,” J. Appl. Phys., vol. 55, p. 3153, 1984.
293 D. Stroud, G. Milton, and B. De, “Analytical model for the dielectric response of brine saturated rocks,” Phys. Rev. B, vol. 34, p. 5145, 1986.
294 R. Knight and A. Nur, “The dielectric constant of sandstones, 60 kHz to 4 MHz,” Geophysics, vol. 52, p. 644, 1987.
295 M. Taherian, W. Kenyon, and K. Safinya, “Measurement of dielectric response of water saturated rocks,” Geophysics, vol. 55, p. 1530, 1990.
296 D. Stroud and D. Bergman, “Frequency dependence of the polarization catastrophe at a metal-insulator transition and related problems,” Phys. Rev. B, vol. 25, p. 2061, 1982.
297 C. Yoon and S. Lee, “Measurement of the ac conductivity and dielectric constant in a two-dimensional lattice percolation system,” Phys. Rev. B, vol. 42, p. 4594, 1990.
362 E. Haslund, “Dielectric dispersion of salt water saturated porous glass containing thin glass plates,” Geophysics, p. in print, 1995.
298 C. Böttcher and P. Bordewijk, Theory of Electric Polarization, vol. II. Amsterdam: Elsevier Scientific Publishing Co., 1978.
299 R. Fuchs, “Theory of the optical properties of small cubes,” Phys. Lett., vol. 48A, p. 353, 1974.
300 R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B, vol. 11, p. 1732, 1975.
301 D. Bergman, “Physics of composite media with a periodic microstructure,” Physica A, vol. 207, p. 1, 1994.
302 P. Lysne, “A model for the high frequency electrical response of wet rocks,” Geophysics, vol. 48, p. 775, 1983.
303 J. Korringa, “The influence of pore geometry on the dielectric properties of clean sandstones,” Geophysics, vol. 49, p. 1760, 1984.
304 B. U. Felderhof and R. Jones Z. Physik B, vol. 62, p. 43, 1986.
305 K. Ghosh and R. Fuchs, “Spectral theory for two-component porous media,” Phys. Rev. B, vol. 38, p. 5222, 1988.
306 K. Ghosh and R. Fuchs, “Critical behaviour in the dielectric properties of random self-similar composites,” Phys. Rev. B, vol. 44, p. 7730, 1991.
307 D. Bergman, “Rigorous bounds for the complex dielectric constant of a two-component composite,” Ann. Phys., vol. 138, p. 78, 1982.
308 R. Fuchs and K. Ghosh, “Optical and dielectric properties of self-similar structures,” Physica A, vol. 207, p. 185, 1994.
309 M. Thorpe, B. Djordjevic, and J. Hetherington, “Spectral functions for two-dimensional composites,” Physica A, vol. 207, p. 65, 1994.
310 C. Böttcher, Theory of Electric Polarization, vol. I. Amsterdam: Elsevier Scientific Publishing Co., 1973.
311 G. Milton, “The coherent potential approximation is a realizable effective medium scheme,” Commun. Math. Phys., vol. 99, p. 463, 1985.
312 L. Schwartz, “Effective medium theory of electrical conduction in two-component anisotropic composites,” Physica A, vol. 207, p. 131, 1994.
313 P. Sheng, “Consistent modeling of the electrical and elastic properties of sedimentary rocks,” Geophysics, vol. 56, p. 1236, 1991.
314 K. Mendelson and M. Cohen, “The effect of anisotropy on the electrical properties of sedimentary rocks,” Geophysics, vol. 47, p. 257, 1982.
315 P. Sen, “Relation of certan geometrical features to the dielectric anomaly of rocks,” Geophysics, vol. 46, p. 1714, 1981.
316 P. Sheng, “Effective medium theory of sedimentary rocks,” Phys. Rev. B, vol. 41, p. 4507, 1990.
317 P. Kogut and J. Straley, “Distribution induced non-universality of the percolation conductivity exponents,” J. Phys. C, vol. 12, p. 2151, 1979.
318 A. Katz and A. Thompson, “Quantitative prediction of permeability in porous rock,” Phys. Rev. B, vol. 34, p. 8179, 1986.
319 D. Johnson, J. Koplik, , and L. Schwartz, “New pore-size parameter characterizing transport in porous media,” Phys. Rev. Lett., vol. 57, p. 2564, 1986.
320 J. Banavar and D. Johnson, “Characteristic pore sizes and transport in porous media,” Phys. Rev. B, vol. 35, p. 7283, 1987.
321 J. Auriault, “Nonsaturated deformable porous media: Quasistatics,” Transport in Porous Media, vol. 2, p. 45, 1987.
322 S. Whitaker, “Flow in porous media II: the governing equations for immiscible two phase flow,” Transport in Porous Media, vol. 1, p. 105, 1986.
323 J. Auriault and C. Boutin, “Deformable porous media with double porosity. quasi statics. I: Coupling effects,” Transport in Porous Media, vol. 7, p. 63, 1992.
324 J. Auriault and C. Boutin, “Deformable porous media with double porosity. quasi statics. II: Memory effects,” Transport in Porous Media, vol. 10, p. 153, 1993.
325 J. Auriault, O. Lebaigue, and G. Bonnet, “Dynamics of two immiscible fluids flowing through deformable porous media,” Transport in Porous Media, vol. 4, p. 105, 1989.
326 A. Paterson, A First Course in Fluid Dynamics. Cambridge: Cambridge Uiniversity Press, 1983.
327 J. Walsh and W. Brace, “The Effect of Pressure on Porosity and the Transport Properties of Rock,” J. Geophysical Research, vol. 89, p. 9425, 1984.
328 L. Schwartz, P. Sen, and D. Johnson, “Influence of rough surfaces on electrolytic conduction in porous media,” Phys. Rev. B, vol. 40, p. 2450, 1989.
329 L. Rapaport, “Scaling laws for use in design and operation of water oil flow models,” Trans. AIME, vol. 204, p. 143, 1955.
330 J. Geertsma, G. Croes, and N. Schwarz, “Theory of dimensionally scaled models of petroleum reservoirs,” Trans. AIME, vol. 207, p. 118, 1956.
331 F. Perkins and R. Collins, “Scaling laws for laboratory flow models of oil reservoirs,” Petroleum Transactions AIME, vol. 219, p. 383, 1960.
332 R. Bentsen, “Conditions under which the capillary term may be neglected,” The Journal of Canadian Petroleum Technology, vol. October-December, p. 25, 1978.
333 R. Larson, H. Davis, and L. Scriven, “Displacement of residual nonwetting fluid from porous media,” Chemical Engineering Science, vol. 36, p. 75, 1981.
334 M. Shook, D. Li, and L. Lake, “Scaling immiscible flow through permeable media by inspectional analysis,” In Situ, vol. 16, p. 311, 1992.
335 E. Peters, N. Afzal, and R. Gharbi, “On scaling immiscible displacements in permeable media,” Journal of Petroleum Science and Engineering, vol. 9, p. 183, 1993.
336 D. Zhou and E. Stenby, “Displacement of trapped oil from water wet rock,” Transport in Porous Media, vol. 11, p. 1, 1993.
337 M. Aleman, T. Ramamohan, and J. Slattery, “The difference between steady state and unsteady state relative permeabilities,” Transport in Porous Media, vol. 4, p. 449, 1989.
338 N. Wardlaw and M. McKellar, “Oil blob populations and mobilization of trapped oil in unconsolidated packs,” The Canadian Journal of Chemical Engineering, vol. 63, p. 525, 1985.
339 G. Willhite, Waterflooding, vol. 3 of SPE Textbook Series. USA: Society of Petroleum Engineers, 1986.
340 R. Lenormand and C. Zarcone, “Physics of blob displacement in a twodimensional porous medium,” SPE Proceedings, vol. SPE Conference, Tulsa, p. 23, 1986.
341 I. Chatzis, M. Kuntamukkula, and N. Morrow, “Effect of capillary number on the microstructure of residual oil in strongly water wet sandstones,” SPE Reservoir Engineering, vol. August 1988, p. 902, 1988.
342 M. Aleman and J. Slattery, “A linear stability analysis for immiscible displacements,” Transport in Porous Media, vol. 3, p. 455, 1988.
343 V. Frette, J. Feder, T. Jøssang, and P. Meakin, “Buoyancy driven fluid migration in porous media,” Phys. Rev. Lett., vol. 68, p. 3164, 1992.
344 P. deGennes, “Wetting: Statics and dynamics,” Rev.Mod.Phys., vol. 57, p. 827, 1985.
345 M. Zhou and P. Sheng, “Dynamics of immiscible displacement in a capillary tube,” Phys. Rev. Lett., vol. 64, p. 882, 1990.
346 P. Sheng and M. Zhou, “Immiscible fluid displacement: Contact line dynamics and the velocity dependent capillary pressure,” Phys. Rev. A, vol. 45, p. 5694, 1992.
347 G. Jerauld and S. Salter, “The effect of pore structure on hysteresis in relative permeability and capillary pressure: Pore level modeling,” Transport in Porous Media, vol. 5, p. 103, 1990.
348 H. Princen, “Capillary pressure behavior in pores with curved triangular cross-section: effect of wettability and pore size distribution,” Colloids and surfaces, vol. 65, p. 221, 1992.
349 C. Marle, Multiphase Flow in Porous Media. Editions Technip, Paris: Institut Francais du Petrole, 1981.
350 F. Kalaydjian, “A macroscopic description of multiphase flow in porous media involving space time evolution of fluid/fluid interface,” Transport in Porous Media, vol. 2, p. 537, 1987.
351 J. Trangenstein, “Numerical analysis of reservoir fluid flow,” in Multiphase Flow in Porous Media (M. Allen, G. Behie, and J. Trangenstein, eds.), (Berlin), p. 87, Springer Verlag, 1988.
352 M. Allen, “Basic mechanics of oil reservoir flows,” in Multiphase Flow in Porous Media (M. Allen, G. Behie, and J. Trangenstein, eds.), (Berlin), p. 1, Springer Verlag, 1988.
353 F. Kalaydijan, “Origin and quantification of coupling between relative permeabilities for two-phase flow in porous media,” Transport in Porous Media, vol. 5, p. 215, 1990.
354 B. Bourbiaux and F. Kalaydjian, “Experimental study of cocurrent and countercurrent flows in natural porous media,” SPE Reservoir Engineering, vol. August 1990, p. 361, 1990.
355 T. Mannseth, “Commentary on ‘Origin and quantification of coupling between relative permeabilities for two-phase flow in porous media’ by F. Kalaydjian,” Transport in Porous Media, vol. 6, p. 469, 1991.
356 W. Rose, “Measuring Transport Coefficients Necessary for the Description of Coupled Two-Phase Flow of Immiscible Fluids in Porous Media,” Transport in Porous Media, vol. 3, p. 163, 1988.
357 R. Ehrlich, “Viscous coupling in two-phase flow in porous media and its effect on relative permeabilities,” Transport in Porous Media, vol. 11, p. 201, 1993.
358 N. Morrow, “Wettability and its effect on oil recovery,” Journal of Petroleum Technology, vol. December 1990, p. 1476, 1990.
359 J. Heaviside, “Measurement of relative permeability,” in Interfacial Phenomena in Petroleum Recovery (N. Morrow, ed.), vol. 36 of Surfactant Science Series, (New York), p. 377, Marcel Dekker Inc., 1991.
360 H. Langtangen, A. Tveito, and R. Winther, “Instability of buckley-leverett flow in a heterogeneous medium,” Transport in Porous Media, vol. 9, p. 165, 1992.
361 N. Morrow, “Introduction to interfacial phenomena in oil recovery,” in Interfacial Phenomena in Petroleum Recovery (N. Morrow, ed.), vol. 36 of Surfactant Science Series, (New York), p. 1, Marcel Dekker Inc., 1991.